高三数学《直线与圆》专题测试题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学《直线与圆》专题测试题含答案
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( )
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .既不充分也不必要条件
2.直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0 B .3x -y +4=0 C .3x -y -4=0 D .x -3y -4=0
3.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-3
4
C.3D .2
4.过点P (-2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )
A .3条
B .2条
C .1条
D .0条
5.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )
A .3x +y -5=0
B .x -2y =0
C .x -2y +4=0
D .2x +y -3=0 6.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0C .x +y +1=0 D .x +y =0
7.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.43
8.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )
A .(x -2)2+(y -1)2=25
B .(x -2)2+(y -1)2=5
C .(x -1)2+(y -2)2=25
D .(x -1)2+(y -2)2=5
9.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( )
A .(-32,32)
B .(-∞,-32)∪(32,+∞)
C .(-22,22)
D .[-32,3 2 ]
10.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪
⎧x +y ≤4,y ≥x ,x ≥1,
过点P 的直线l 与圆C :x 2+y 2=14相交于A ,
B 两点,则|AB |的最小值是( )
A .26
B .4 C.6D .2
11.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )
A .内切
B .相交
C .外切
D .相离
12.已知两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1
b
2的最小值为( )
A .1
B .3 C.19D.4
9
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共四小题,每小题5分。
13.过原点且与直线6x -3y +1=0平行的直线l 被圆x 2+(y -3)2=7所截得的弦长为________.
14.已知f (x )=x 3+ax -2b ,如果f (x )的图象在切点P (1,-2)处的切线与圆(x -2)2+(y +4)2=5相切,那么3a +2b =________.
15.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.
16.已知集合A =⎩⎨⎧⎭
⎬⎫
x |x +1x -2≤0,若k ∈Z ,且k ∈A ,使得过点B (1,1)的任意直线与圆x 2+y 2+kx -2y -3
8
k =0总有公共点的概率为________.
三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)在△ABC 中,已知A (5,-2),B (7,3),且AC 边的中点M 在
y 轴上,BC 边的中点N 在x 轴上,求:
(1)顶点C 的坐标;(2)直线MN 的方程.
18.(本小题满分12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
19.(本小题满分12分)设直线l的方程为(a+1)x+y-2-a=0(a∈R).
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若a>-1,直线l与x,y轴分别交于M,N两点,O为坐标原点,求△OMN面积取最小值时直线l的方程.
20.(本小题满分12分)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.