线性回归模型高级计量经济学清华大学潘文清
回归分析在数学建模中的应用
![回归分析在数学建模中的应用](https://img.taocdn.com/s3/m/668969ee7c1cfad6195fa77f.png)
Keywords: Multiple linear regression analysis; parameter estimation;inspection
II
咸阳师范学院 2013 届本科毕业论文
目 录
摘 要.............................................................................................................................. I Abstract...................................................................................................................... II 目 录.......................................................................................................................... III 引言................................................................................................................................ 1 1 回归分析的背景来源及其概念................................................................................ 1 1.1 回归分析的背景............................................................................................. 1 1.2 回归分析的基本概念..................................................................................... 1 2 线性回归分析模型.................................................................................................... 2 2.1 一元线性回归的模型..................................................................................... 2 2.1.1 回归参数 0 , 1 和 2 的估计.............................................................. 3 2.1.2 一元线性回归方程的显著性检验.................................................... 3
潘省初计量经济学——第一章
![潘省初计量经济学——第一章](https://img.taocdn.com/s3/m/72be74b2e109581b6bd97f19227916888586b903.png)
两个基本要素的结合
计量经济研究方法的下一步也是核心一步,是两个 基本要素的结合,即用加工好的数据估计计量经济模 型。这一步需要使用一批计量经济技术。计量经济技 术是经典统计学方法特别是统计推断技术的扩展。这 种扩展是必要的,因为在估计计量经济模型时会遇到 一些特别的问题。
上述过程的结果是一个估计好的计量经济模型,所 谓估计模型就是依据有关数据估计模型的参数,估计 好的模型可用于计量经济学的三个主要目的:结构分 析,预测和政策评价。
8
计量经济学的三个要素
计量经济学的三个要素是经济理论、经济数据和统 计方法。对于解释经济现象来说,“没有计量的理论 ”和“没有理论的计量”都是不够的,正如计量经济 学创始人之一的弗里希所强调的那样,它们的结合是 计量经济学的发展能够取得成功的关键。
9
计量经济学是经济预测的科学
计量经济学从根上说,是对经验规律的认识以及将 这些规律推广为经济学“定律”的系统性努力,这些 “定律”被用来进行预测,即关于什么可能发生或者 什么将会发生的预测。因此,广义地说,计量经济学 可以称为经济预测的科学。
12
2. 时代背景
计量经济学的产生,与当时的时代背景是密切相关 的。上世纪二十年代末期,在资本主义世界发生了严 重的经济危机,原有的经济理论失灵,产生了所谓的 “凯恩斯革命”。
在这种背景下,各国政府出于对经济的干预政策的 需要,企业管理层为了摆脱或减少经济危机的打击, 在经济繁荣时期获取更多的利润,要求采用计量经济 理论和方法,进行经济预测,加强市场研究,探讨经 济政策的效果,因而计量经济学应运而生。
结论:现实中经济变量之间 的关系一般是一种
不精确的关系,因此用(1)式这样的数学模型描述 是不合适的,因为它不能正确反映客观实际情况。
第三章 回归模型的估计 概论(高级计量经济学-清华大学 潘文清)
![第三章 回归模型的估计 概论(高级计量经济学-清华大学 潘文清)](https://img.taocdn.com/s3/m/58f9790e03d8ce2f00662379.png)
2、极大似然估计
对具有pdf或pmf为f(Y;)的随机变量Y(其参数未知), 随机抽取一容量为n的样本Y=(Y1,Y2,…Yn)’其联合分布为:
gn(Y1,Y2,…Yn;)=if(Yi;) 可将其视为给定Y=(Y1,Y2,…Yn)’时关于的函数,称其为关于 的似然函数(likelihood function),简记为L() : L()= gn(Y1,Y2,…Yn;)=if(Yi;) 对离散型分布,似然函数L()就是实际观测结果的概率。 极大似然估计就是估计参数,以使这一概率最大; 对连续型分布,同样也是通过求解L()的最大化问题,来 寻找的极大似然估计值的。
二、类比估计法(The Analogy Principle)
1、基本原理
• 总体参数是关于总体某特征的描述,估计该参数, 可使用相对应的描述样本特征的统计量。 (1)估计总体矩,使用相应的样本矩
(2)估计总体矩的函数,使用相应的样本矩的函数 对线性回归模型: Y=0+1X+u
上述方法都是通过样本矩估计总体矩,因此,也 称为矩估计法(moment methods, MM)。 (3)类比法还有: • 用样本中位数估计总体中位数; • 用样本最大值估计总体最大值; • 用样本均值函数mY|X估计总体期望函数Y|X,等
可见,总体均值的极大似然估计就是样本均值,总 体方差的极大似然估计就是样本方差。
3、极大似然估计的统计性质
由数理统计学知识: (n-1)s*2/2~2(n-1)
因此, Var[(n-1)s*2/2]=2(n-1)
Var(S*2)=24/(n-1)
§3.2 估计总体关系 Estimating a Population Relation 一、问题的引入(Introduction)
计量经济学中级教程(潘省初清华大学出版社)课后习题答案
![计量经济学中级教程(潘省初清华大学出版社)课后习题答案](https://img.taocdn.com/s3/m/9e94d8b56aec0975f46527d3240c844769eaa0a6.png)
计量经济学中级教程(潘省初清华大学出版社)课后习题答案计量经济学中级教程习题参考答案第一章绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说)(2)建立计量经济模型(3)收集数据(4)估计参数(5)假设检验(6)预测和政策分析 1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。
为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YYn==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正)(1)对(2)对(3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。
(4)错R 2 =ESS/TSS 。
(5)错。
我们可以说的是,手头的数据不允许我们拒绝原假设。
(6)错。
因为∑=22)?(tx Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。
2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。
数学建模作业
![数学建模作业](https://img.taocdn.com/s3/m/99bd51e26294dd88d0d26b7d.png)
一、摘要本文根据所给出的数据,运用excel软件并采用数据分析法,制定了一个具体可行的调整方案(其可靠性为95%)。
首先,本文对题中的12组数据,进行相关性分析,求出各观测站所测的年平均降雨γ>的观测站组合。
其次,对这量间的相关系数γj i,,找出满足,0.381i j些组合进行一元线性回归,得到一元回归模型,并作F检验。
经过检验进行优化选择,可先去掉5,9,11三个观测站。
通过对一元线性回归模型分析知,观测站8的年平均降雨量可由观测站6预测得到。
因此在满足足够大的信息量下,本模型可减少5,8,9,11四个观测站,而他们的信息均可由6观测站来预测,可靠性为95%。
由于降雨量具有随机性,为更精确预测该地区未来十年的年平均降雨量,本文利用精简后的数据建立时间序列模型。
对原数据列进行一阶差分处理,得到稳定的新时间序列。
分析新时间序列的自相关函数与偏自相关函数图像,然后采用自相关函数和偏相关函数检验法对模型进行识别,确定使用ARMA(1,1)模型。
借助于SPSS软件对数据进行处理,并对理论结果进行白噪声检验,结果表明ARMA(1,1)具有可靠性与实用性。
关键字:相关性分析数据分析一元线性回归时间序列自相关函数 arma(1,1)模型白噪声检验二、问题重述问题一:某地区内有12个气象观测站,根据27年来各观测站测得的年降雨量(见附表1),由于经费问题, 有关单位拟减少气象站数目以节约开支, 但又希望还能够尽量多地获取该地区的降水量信息。
现要求设计一个方案:尽量减少观测站,而所得到的年降水量的信息量仍足够大。
问题二:为研究该地区的降雨量特点,需要对该地区未来十年的降雨量进行预测分析。
三、模型假设1.该地区的地理特征具有一定的均匀性,而不是表现为复杂多变的地理特征。
2.不考虑其它区域及天气对本地区降雨量的影响3.该市的气候特征较稳定,不出现较大的自然灾害,27年的统计数据能够全面地反映该市的气候特征;4.该市的气候不会因环境的变化而发生较大的变化; 四、符号说明γji,为任意两个观测站间的相关系数)1(t --p n α为自由度n-p-1的t 分布双侧临界值y为欲预测值p 为p 元回归数px x x y s .....21为剩余标准差X t(,,,...12X X X n )为平稳时间序列X表示原始序列Y表示一阶差分序列白噪声序列方差a五、问题分析5.1 问题一的分析本案例实质上是个典型的预测问题,即用较少的测站来预测12个站的年降水量,本模型的基本思想是:如果某一观测站的年降水量可用其它观测站的年降水量来线性回归的话,就可删去这一观测站。
庞浩计量经济学第二章简单线性回归模型
![庞浩计量经济学第二章简单线性回归模型](https://img.taocdn.com/s3/m/af932e02c950ad02de80d4d8d15abe23482f032b.png)
最小二乘法的应用
在统计学和计量经济学中,最 小二乘法广泛应用于估计线性 回归模型,以探索解释变量与 被解释变量之间的关系。
通过最小二乘法,可以估计出 解释变量的系数,从而了解各 解释变量对被解释变量的影响 程度。
最小二乘法还可以用于时间序 列分析、预测和数据拟合等场 景。
最小二乘法的局限性
最小二乘法假设误差项是独立同分布 的,且服从正态分布,这在实际应用 中可能不成立。
最小二乘法无法处理多重共线性问题, 当解释变量之间存在高度相关关系时, 最小二乘法的估计结果可能不准确。
最小二乘法对异常值比较敏感,异常 值的存在可能导致参数估计的不稳定。
04
模型的评估与选择
R-squared
总结词
衡量模型拟合优度的指标
详细描述
R-squared,也称为确定系数,用于衡量模型对数据的拟合程度。它的值在0到1之间,越接近1表示模型拟合越 好。R-squared的计算公式为(SSreg/SStot)=(y-ybar)2 / (y-ybar)2 + (y-ybar)2,其中SSreg是回归平方和, SStot是总平方和,y是因变量,ybar是因变量的均值。
数据来源
本案例的数据来源于某大型电商 平台的销售数据,包括商品的销 售量、价格、评价等。
数据处理
对原始数据进行清洗和预处理, 包括处理缺失值、异常值和重复 值,对分类变量进行编码,对连 续变量进行必要的缩放和转换。
模型建立与评估
模型建立
基于处理后的数据,使用简单线性回 归模型进行建模,以商品销售量作为 因变量,价格和评价作为自变量。
线性回归模型是一种数学模型, 用于描述因变量与一个或多个 自变量之间的线性关系。它通 常表示为:Y = β0 + β1X1 + β2X2 + ... + ε
第四章--经典线性回归模型(高级计量经济学-清华大学-潘文清)PPT课件
![第四章--经典线性回归模型(高级计量经济学-清华大学-潘文清)PPT课件](https://img.taocdn.com/s3/m/2448def548d7c1c708a145ba.png)
(3)由性质(1)与性质(2)知:
MSE(b|X)=E(b-)(b-)’|X)
=Var(b|X)+[bias(b|X)]2
0
(n)
.
17
四、估计2及Var(b) Estimation of 2 and Var(b)
或
Y=X+
其中,=(0, 1,…,k)’, =(1,2,…,n)’
注意: 这里的线性性指Y关于参数是线性的。
.
3
假设2(strict Exogeneity): E(i|X)=E(i|X1,X2,…Xn)=0, (i=1,2,…n)
注意:
(1) 由E(i|X)=0 易推出:E()=0, E(Xji)=0 或有: Cov(Xj, i)=0 (i, j=1,2,…n)
求解min SSR(+)。
有约束的(i)的残差平方和不会小于无约束的(ii)的 残差平方和:e+’e+e’e
.
25
为避免将无解释力的解释变量纳入到X中去,引入 调整的决定系数(adjusted coefficient of determination):
(4)决定系数仅是对样本回归线拟合样本数据的程 度给予描述。而CR模型并不要求R2要有多高,CR 模型关心的是对总体回归参数的估计与检验。
如果X是非随机的,则假设2变成
E(i|X)=E(i)=0
(4)假设2的向量形式:
E(|X)=0
.
5
注意:
(1)本假设排除了解释变量间的多重共线性 (multicollinearity)
(2) 本假设意味着X’X是非奇异的,或者说X必须 满秩于k+1。因此应有k+1≤n。
第十章定性选择模型计量经济学潘省初
![第十章定性选择模型计量经济学潘省初](https://img.taocdn.com/s3/m/5d23e31b2a160b4e767f5acfa1c7aa00b52a9d82.png)
log F (zi ) 1 F (zi )
exp(zi )
exp(zi )
log 1 exp(zi ) log
1 exp(zi )
1 exp(zi )
1 exp(zi ) exp(zi )
1 exp(zi )
1 exp(zi )
exp(zi )
log 1 exp(zi ) 1
log exp(zi )
INCOME的系数估计值0.002表明,一个学生的成 绩不变,而家庭收入增加1000美元,该生决定去读研 的概率的估计值增加0.002。
LPM模型中,解释变量的变动与虚拟因变量值为1 的概率线性相关,因而称为线性概率模型。
线性概率模型存在的问题
(1)线性概率模型假定自变量与Y=1的概率之间存 在线性关系,而此关系往往不是线性的。 (2)拟合值可能小于0或大于1,而概率值必须位于 0和1的闭区间内。
由于累积正态分布和累积logistic分布很接近,
只是尾部有点区别,因此,我们无论用(10.11)还
பைடு நூலகம்
是(10.12),也就是无论用logit法还是probit法,
得到的结果都不会有很大不同。可是,两种方法得
到的参数估计值不是直接可比的。由于logistic分布
的方差为
2
3
,因此,logit模型得到的的估计值必
Variable Coefficient Standard error t-Statistic
Constant
-0.51
0.19
-2.65
INCOME
0.0098
0.003
3.25
AGE
0.016
0.0053
3.08
应用回归分析第四版课后习题答案-全-何晓群-刘文卿精选全文完整版
![应用回归分析第四版课后习题答案-全-何晓群-刘文卿精选全文完整版](https://img.taocdn.com/s3/m/f0a62f97f80f76c66137ee06eff9aef8941e4886.png)
可编辑修改精选全文完整版实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。
证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。
证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xxi ni i Y L X X X Y n E X Y E E ββ)] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==01010)()1(])1([βεβεβ=--+=--+=∑∑==i xxi ni i xx i ni E L X X X n L X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xxi ni i xx i n i X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑==222212]1[])(2)1[(σσxx xx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 证明:(1)01ˆˆˆˆi i i i iY X e Y Y ββ=+=-())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSE SSR )Y ˆY Y Y ˆn1i 2i i n1i 2i+=-+-=∑∑==0100ˆˆQQββ∂∂==∂∂ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章1.一个回归方程的复相关系数R=0.99,样本决定系数R2=0.9801,我们能2ˆ22-=∑neiσ判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。
潘省初计量经济学第3版
![潘省初计量经济学第3版](https://img.taocdn.com/s3/m/95dc74de85868762caaedd3383c4bb4cf7ecb7ad.png)
β 0 X 2t β1 X 2t X 1t ...... β K X 2t X Kt X 2tYt
......
......
......
......
β 0 X kt β1
X kt X 1t ...... β K
X Kt 2
X ktYt
按矩阵形式,上述方程组可表示为:
X'
1 Y1
X 1n
Y2
... ...
X
Kn
Yn
Y
即 ( X ' X )β X 'Y
β ( X X )1 X Y
14
三. 最小二乘估计量 β的性质 我们的模型为 Y X u
估计式为
Yˆ
Xβ
1.β 的均值
β ( X X )1 X Y
( X X )1 X ( Xβ u)
( X X )1 X Xβ ( X X )1 X u
收入不变的情况下,价格指数每上升一个点, 食品消费支出减少7.39亿元(0.739个billion)
3
例2:
Ct
β 1
β 2 Dt
β 3 Lt
ut
其中,Ct=消费,Dt=居民可支配收入 Lt=居民拥有的流动资产水平
β2的含义是,在流动资产不变的情况下,可支配收入变动 一个单位对消费额的影响。这是收入对消费额的直接影响。
为求Var( β ),我们考虑
E
β
β
β
β
β0 β0
E
β1 β1
...
β
0
β
0
β1 β1
...
βK
βK
β
K
βK
17
Var(β 0 )
应用经济学硕士研究生培养方案
![应用经济学硕士研究生培养方案](https://img.taocdn.com/s3/m/1417c0aab1717fd5360cba1aa8114431b90d8ea4.png)
应用经济学硕士研究生培养方案(学科代码:0202)一、培养目标本学科致力于培养具有严谨求实的学术作风,德、智、体全面发展,具有坚定正确的政治方向,具有扎实的经济学理论基础、合理的知识结构和宽广的知识面,具有独立从事经济研究的能力,能胜任经济类课程的教学,能胜任实际经济工作。
较为熟练地掌握一门外语并能阅读本学科的外文资料;毕业后可承担本学科的教学、科研工作和中高层次的经济管理工作;具有健康的心理和体魄。
二、学科专业1、区域经济学2、数量经济学3、财政学(含税收学)4、产业经济学5、统计学三、学习年限及应修学分全日制硕士研究生的学习年限一般为3年。
在完成培养要求的前提下,对少数学业优秀、科研成果突出的硕士生,可申请提前毕业,提前期一般不超过1年。
如确需延长学习年限的,延长期一般不超过1年。
至少须修满35学分,其中,课程学习32学分,实践环节3学分。
四、课程设置及考核方式(具体见课程设置与教学计划表)实践环节由科研实践和教学实践组成,科研实践必须参加校内外相关学科学术会议1次,撰写心得体会一份(计1学分);选听学科前沿系列讲座1次,至少6学时;撰写相关文献综述一份(计1学分)。
教学实践必须听课30学时,讲课30学时,提交教学大纲一份(计1学分)。
科研实践和教学实践均由导师负责考核。
五、培养方式研究生由导师及导师小组全面负责培养,以导师指导和本学科教师集体培养相结合为原则,建立和完善有利于学术群体作用的培养机制。
课程学习和研究并重;专业课的学习采取系统讲授、重点辅导、讨论讲座以及任课教师制定参考文献、书目,学习阅读后写综述和评论等多种形式。
加强研究生的自学能力、表达能力、写作能力、实际工作能力等的训练和培养。
六、学位(毕业)论文研究生在修完全部学位课程和修满所要求的总学分后,要在导师的指导下,进行学位(毕业)论文的研撰,由硕士研究生独立完成,论文写作时间不少于一年。
论文选题必须经过充分调查研究,查阅相关的文献,了解国内外本领域的研究历史和现状,选择本学科内有重要学术价值和实用价值、研究基础较为薄弱的问题,或能为解决当前、当地经济和社会发展的热点、难点问题以及为政府决策提供借鉴的问题作为论文选题;研究生确定了论文选题后,在论文写作之前,必须撰写开题报告,开题报告应包括论文选题的理由或意义、国内外有关该论题研究的现状及趋势、本人的详细研究计划、写作提纲、主要参考文献等内容。
高级计量经济学-1
![高级计量经济学-1](https://img.taocdn.com/s3/m/2d511bfc16fc700aba68fc6f.png)
步骤之一,即探索性的关系识别。 • 一些人为了获得预想的结果,常常有目的地进行“数据淘洗
〞 (data-cleaning) ,即删除那些不支持预想结果的观察值, 甚至修改数据。 • 因而应该认识到,利用计量经济学方法得出的结论都是有条 件的。
和归纳开展为探讨多因素间的数量关系和进行假说检 验
第十九页,编辑于星期六:十八点 十八分。
计量经济学与经验研究
• 传统研究方法侧重于得到模型参数的“精确〞估计, 但对于“数据生成过程〞未给予高度关注。
• 研究人员依据感觉或经验提出模型,然后利用“试错 法〞、逐步回归等手段估计变量之间的统计关系,在 此基础上,“选择〞出自己满意的模型。
o 高雪梅主编(2005).《计量经济分析方法与建模:EVIEWS应 用及实例》.北京:清华大学出版社.
4
第四页,编辑于星期六:十八点 十八分。
△ 初、中、高级计量经济学
• 初级以计量经济学的数理统计学基础知识和经典 的线性单方程模型理论与方法为主要内容;
• 中级以用矩阵描述的经典的线性单方程模型理论 与方法、经典的线性联立方程模型理论与方法, 以及传统的应用模型为主要内容;
8
第八页,编辑于星期六:十八点 十八分。
• 非经典计量经济学一般指20世纪70年代以来开展的计 量经济学理论、方法及应用模型,也称为现代计量经济 学。
• 非经典计量经济学主要包括:微观计量经济学、非参数 计量经济学、时间序列计量经济学和动态计量经济学等。
• 非经典计量经济学的内容体系:模型类型非经典的计量 经济学问题、模型导向非经典的计量经济学问题、模型 结构非经典的计量经济学问题、数据类型非经典的计量 经济学问题和估计方法非经典的计量经济学问题。
第二章 回归分析与模型设定(高级计量经济学-清华大学 潘文清)
![第二章 回归分析与模型设定(高级计量经济学-清华大学 潘文清)](https://img.taocdn.com/s3/m/1aaab481a0116c175f0e4879.png)
• 条件偏度 (The conditional skewness)
E[(Y E (Y | x)) 3 | x] S (Y | x) [Var(Y | x)]3 / 2
E[(Y E (Y | x)) 4 | x] K (Y | x) [Var(Y | x)]4 / 2
但我们往往只能得到样本数据。因此自然想到用 样本均值来估计总体均值, 并寻找样本回归函数 (SRF): mY|x=f(X) We hope the SRF is a good estimate of the PRF.
Y PRF SRF
X
A simple illustration: how to find the sample mean 表 2.1 是1960年美国1027个家庭关于收入与储蓄率 的联合频率分布. p(xi,yj) =the proportion of the 1027 families who reported the combination (X=xi and Y=yj).
Table 2.1 Joint frequency distribution of X=income and Y=saving rate
X Y 0.50 0.40 0.25 0.15 0.05 0.00 -0.05 -0.18 -0.25 p(x) 0.5 0.001 0.001 0.002 0.002 0.010 0.013 0.001 0.002 0.009 0.041 1.5 0.011 0.002 0.006 0.009 0.023 0.013 0.012 0.008 0.009 0.093 2.5 0.007 0.006 0.004 0.009 0.033 0.000 0.011 0.013 0.010 0.093 3.5 0.006 0.007 0.007 0.012 0.031 0.002 0.005 0.006 0.006 0.082 4.5 0.005 0.010 0.010 0.016 0.041 0.001 0.012 0.009 0.009 0.113 5.5 0.005 0.007 0.011 0.020 0.029 0.000 0.016 0.008 0.007 0.103 6.7 0.008 0.008 0.020 0.042 0.047 0.000 0.017 0.008 0.005 0.155 8.8 0.009 0.009 0.019 0.054 0.039 0.000 0.014 0.008 0.003 0.155 12.5 0.014 0.008 0.013 0.024 0.042 0.000 0.004 0.006 0.002 0.113 17.5 0.004 0.007 0.006 0.020 0.007 0.000 0.003 0.002 0.003 0.052
第五章 经典线性回归模型(II)(高级计量经济学-清华大学 潘文清)
![第五章 经典线性回归模型(II)(高级计量经济学-清华大学 潘文清)](https://img.taocdn.com/s3/m/a457162e192e45361066f578.png)
如何解释j为“当其他变量保持不变,Xj变化一个 单位时Y的平均变化”?
本质上: j=E(Y|X)/Xj 即测度的是“边际效应”(marginal effect)
因此,当一个工资模型为 Y=0+1age+2age2+3education+4gender+ 时,只能测度“年龄”变化的边际效应: E(Y|X)/age=1+22age 解释:“当其他变量不变时,年龄变动1个单位时 工资的平均变化量” 2、弹性: 经济学中时常关心对弹性的测度。
X1’X1b1+X1’X2b2=X1’Y (*) X2’X1b1+X2’X2b2=X2’Y (**) 由(**)得 b2=(X2’X2)-1X2’Y-(X2’X2)-1X2’X1b1 代入(*)且整理得: X1’M2X1b1=X1’M2Y b1=(X1’M2X1)-1X1’M2Y=X1-1M2Y=b* 其中,M2=I-X2(X2’X2)-1X2’ 又 M2Y=M2X1b1+M2X2b2+M2e1 而 M2X2=0, M2e1=e1-X2(X2’X2)-1X2’e1=e1 则 M2Y=M2X1b1+e1 或 e1=M2Y-M2X1b1=e* 或
b1是1的无偏估计。
设正确的受约束模型(5.1.2)的估计结果为br,则有 br= b1+ Q1b2
或 b1=br-Q1b2 无论是否有2=0, 始终有Var(b1)Var(br) 多选无关变量问题:无偏,但方差变大,即是无效 的。变大的方差导致t检验值变小,容易拒绝本该纳 入模型的变量。
§5.2 多重共线性
1、估计量的方差 在离差形式的二元线性样本回归模型中: yi=b1x1i+b2x2i+e
回归模型在统计分析中的应用
![回归模型在统计分析中的应用](https://img.taocdn.com/s3/m/e8ec736a591b6bd97f192279168884868762b83b.png)
回归模型在统计分析中的应用目录1. 内容简述 (2)1.1 回归分析的定义和目的 (2)1.2 回归模型在统计分析中的重要性 (3)2. 回归模型的基础知识 (5)2.1 线性回归模型 (6)2.2 非线性回归模型 (8)2.3 回归模型的假设条件 (9)3. 回归模型的构建 (10)3.1 数据预处理 (11)3.2 模型选择与估计 (12)3.3 模型拟合与评估 (13)4. 具体应用 (15)4.1 金融领域 (16)4.1.1 股票价格预测 (17)4.1.2 信用评分模型 (19)4.2 健康研究 (20)4.2.1 疾病风险评估 (21)4.2.2 治疗效果分析 (22)4.3 经济分析 (23)4.3.1 经济增长预测 (24)4.3.2 消费行为研究 (25)4.4 营销管理 (26)4.4.1 消费者行为分析 (27)4.4.2 广告效果评估 (29)5. 模型优化和扩展 (30)6. 回归模型的解释和报告 (32)6.1 结果解释 (33)6.2 CFA表示法 (34)6.3 报告撰写技巧 (36)7. 回归分析软件工具 (37)8. 案例研究 (38)8.1 案例一 (40)8.2 案例二 (41)8.3 案例三 (42)9. 结论与展望 (43)9.1 回归模型在统计分析中的价值 (44)9.2 未来研究方向 (45)1. 内容简述回归模型在统计分析中扮演着至关重要的角色,它是一种强大的工具,用于探究自变量(解释变量)与因变量(响应变量)之间的关系。
通过构建和分析回归模型,我们可以对数据进行预测、估计和解释,从而为决策提供科学依据。
本文档将详细介绍回归模型的基本概念、类型、特点以及应用场景。
我们将从回归模型的基本原理出发,逐步深入探讨不同类型的回归模型,如线性回归、逻辑回归等,并针对每种模型提供实例数据和案例分析。
我们还将讨论回归模型的诊断与验证方法,以确保模型的准确性和可靠性。
潘省初计量经济学中级教程习题参考答案
![潘省初计量经济学中级教程习题参考答案](https://img.taocdn.com/s3/m/0ba546a451e79b8969022615.png)
计量经济学中级教程习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。
为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1n ii Y Y n ==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.1074130********=+++。
第二章 经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正)(1)对(2)对(3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。
(4)错R 2 =ESS/TSS 。
(5)错。
我们可以说的是,手头的数据不允许我们拒绝原假设。
(6)错。
因为∑=22)ˆ(t x Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。
2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。
高级计量经济学课件 (2)
![高级计量经济学课件 (2)](https://img.taocdn.com/s3/m/d51b2ff289eb172ded63b762.png)
2)
~
t(N
K
1)
本例中:
t (0.7512 0.6635) 1 =5.9456。 p值为0.0000 0.004874
结论:拒绝规模报酬不变的原假设,而认为规模 报酬是递增的(为什么?)。
iN1ˆi 0
N i 1
X
1i
ˆi
0
N i 1
X
Ki
ˆi
0
含义:OLS估计所的残差与解释变量不相关。即残 差中不存在任何可解释的成份。
注意:只有回归方程中包含常数项,由OLS估计所 得残差总和才一定为0。
假定7:回归模型的解释变量之间不能存 在完全的多重共线性。
n “完全的多重共线性”:是指一个解释变量是 其他解释变量的线性组合 。说明该解释变量所 提供的信息与其他解释变量是完全重复的。
2 ˆ
2
<41.9232,
在5%的显著性水平上,不能拒绝 2 0.01 的原假设。
2. 单个回归系数的显著性检验
如果随机误差项 i 是经典误差项,并且满足正态性假定 :
Z
ˆk k sd (ˆk )
~
N (0,1)
用估计量的标准误替代标准差,统计量服从t分布。即:
t
ˆk k se(ˆk )
Yi E(Yi X 1i ,, X Ki ) i
问题本质:
多元线性回归方程将被解释变量分解成为两部分:
(1)E(Yi X 1i ,, X Ki ) 0 1 X 1i k X Ki
这部分是可以由解释变量来解释。
(2) i Yi E(Yi X 1i ,, X Ki )
基本统计量TSS、RSS、ESS的自由度:
计量经济模型案例
![计量经济模型案例](https://img.taocdn.com/s3/m/d34b19de941ea76e58fa04dd.png)
计量经济模型案例【篇一:计量经济模型案例】计量经济学案例分析案例分析1 一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也… 城镇居民可支配收入与人均消费性支出的关系的研究一、研究的目的本案例分析根据1980年~2009 年城镇居民人均可支配收入和人均消费性支出的基本数据,应用一元线性回归分析的方法研究了城镇居民人均可支配收入和人均消费性支出之间数量关系的基本规律,并在… 研究城镇居民可支配收入与人均消费性支出的关系班级:国际经济与贸易一班姓名:李文泳学号:2008524119一、研究的目的本案例分析根据1980年~2009 年城镇居民人均可支配收入和人均消费性支出的基本数据,应用一元线性回归分析的方法研究了城镇… 计量经济学案例分析姓名:学号:学院:管理学院专业: 10级工程管理计量经济学案例分析案例:研究从1989-2009年,影响我国国债发行总量的主要因素。
当年的国债发行总量(y),国内生产总值(x1)、城乡居民储蓄存款(x2)、国家… 《计量经济学》案例分析统计学院统计学教研室2008年3月编写/2010年3月修订第 1 章特殊自变量的计量经济模型1 虚拟变量模型一、季节调整的虚拟变量方法1.案例摘自高铁梅《计量经济分析方法与建模》p79 2.案例内容研究季度国民生… 案例分析1一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断… 计量经济学案例分析1 一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即,min E(Y-X’)2 的解为
*=0=[E(XX’)]-1E(XY)
由类比法,对样本回归模型
Yi=Xi’b+ei i=1,2,…,n 其中,Xi=(1, X1i, …,Xki)’, b=(b0, b1, …,bk)’ 需求解极值问题 min (1/n)(ei)2
上述问题相当于求解残差平方和(sum of squared residuals, SSR)的极小值
min SSR(b)=ei2=(Yi-Xi’b)2=e’e=(Y-Xb)’(Y-Xb) 其中,e=(e1,e2,…,en)’
在假设3下,解为: b=(X’X)-1(X’Y)
该方法称为普通最小二乘法(ordinary Least Squares)
注意: (1) 1阶偏导: SSR/b= -2X’(Y-Xb)
2阶偏导: 2SSR/2b=2X’X 由min(X’X)>0 知2X’X>0, 从而b=(X’X)-1(X’Y)是最小值 (2) 由1阶极值条件可以得到所谓正规方程(normal equations):
X’(Y-Xb)=X’e=0 正规方程是OLS所特有的,而不论是否有E(i|X)=0
如果X是非随机的,则假设2变成
E(i|X)=E(i)=0
(4)假设2的向量形式:
E(|X)=0
注意:
(1)本假设排除了解释变量间的多重共线性 (multicollinearity)
(2) 本假设意味着X’X是非奇异的,或者说X必须 满秩于k+1。因此应有k+1≤n。
(3) 由于λ表述了矩阵X’X的相关信息,因此本假 设意味着当n∞时应有新信息进入X,即Xi不能老 是重复相同的值。
SSR(b)=e’e=Y’MY=’M
三、高斯-马尔科夫定理 Gauss-Markov Theorem
•Question: OLS估计量的统计性质如何? (1)[Unbiaseness] E(b|X)=, E(b)= E(b|X)=E[(+(X’X)-1X’)|X]=+(X’X)-1X’E(|X)= (2)[Vanishing Variance] Var(b|X)=E[(b-)(b-)’|X] =E[(X’X)-1X’’X(X’X)-1|X] =(X’X)-1E(’|X) =(X’X)-12I =2(X’X)-1
注意: 这里的线性性指Y关于参数是线性的。
假设2(strict Exogeneity): E(i|X)=E(i|X1,X2,…Xn)=0, (i=1,2,…n)
注意: (1) 由E(i|X)=0 易推出:E()=0, E(Xji)=0 或有: Cov(Xj, i)=0 (i, j=1,2,…n) (2) 由于可以有j≤i, 或j>i, 意味着i既不依赖过去的X,
中b主中对第角i个线元第素i个的元方素差。:Var(bi)= 2cii, cii为(X’X)-1
对任何其元素平方和为1的(k+1)1向量, ’=1 ’Var(b|X) = 2’(X’X)-1 2max[(X’X)-1] = 2{min[(X’X)]}-1
• 一些有用的等式
(1) (2) 因为 (3)
则
且 (4)
X’e=0 b-=(X’X)-1X’ b=(X’X)-1X’Y=(X’X)-1X’(X+)=+(X’X)-1X’ 定义nn方阵: P=X(X’X)-1X’ , M=In-P
P=P’ , M=M’ P2=P, M2=M
PX=X, MX=On(k+1) e=MY=M
也不依赖于未来的X。因此排除了动态模型。 例:对AR(1)模型: Yi=0+1Yi-1+i=Xi’+i
这里Xi=(1, Yi-1)’,显然E(Xii)=E(Xi)E(i)=0,但 E(Xi+1i)≠0。因此,E(i|X)≠0
(3) 计量经济学中,关于严格外生性有其他的定义。 如定义为i独立于X,或X是非随机的。这一定义排 除了条件异方差性。而我们这里的假设2是允许存在 条件异方差性的。
第四章 经典线性回归模型(I)
Classical Linear Regression Model (I)
§4.1 经典线性回归模型 Classical Linear Regression Models
一、经典回归模型 Classical Regression Model
假设随机抽取一容量为n的样本(Yi, Xi), i=1,…,n, 其中,Yi是标量,Xi=(1,X1i,X2i,…,Xki)’,或
假设4(Spherical error variance) (a) [conditional homoskedasticity]: E(i2|X)=2>0, i=1,2,…,n (b) [conditional serial uncorrelatedness]: E(ij|X)=0, i, j=1,2,…,n
类似地,
var(i)=2 Cov(i, j)=0
(4) 假设4并不意味着i与X是独立的。它充许i的 条件高阶矩(如:偏度、峰度)可依赖于X。
二、参数的估计 Estimation of
由假设1与假设2知: E(Y|X)=0+1X1+…+kXk=X’
其中,X=(1, X1, …,Xk)’ 即线性模型Y=X’+关于E(Y|X) 正确设定。注意: (1) Nhomakorabea假设4可写成
E(ij|X)=2ij, 其中, i= j时,ij=1; i≠j时,ij=0
矩阵形式: E(’)=2I
(2)由假设2,
Var(i|X)=E(i2|X)-E[(i|X)]2=E(i|X)=2
同理, Cov(i,j|X)=E(ij|X)=0
(3) 假设4意味着存在非条件同方差性:
Y1
Y
Y2
Yn
1
X
1 1
X11 X12 X1n
X k1
Xk2
X kn
经典回归模型(classical regression model)建立在 如下假设之上:
假设1(linearity):
Yi=0+1X1i+…+kXki+i
=Xi’+i
或
Y=X+
(i=1,2,…n)
其中,=(0, 1,…,k)’, =(1,2,…,n)’