人教版八年级上册数学教学课件.docx

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标:

(一)知识目标

1、在已有的整式乘法的知识中摸索、探究,提炼出完全平方公式

(二)技能目标

1、通过乘法公式的运用,培养学生运用公式的计算能力。

2、通过从多项式的乘法公式再运用公式计算多项式的乘法,培养学生从特殊到一般,从一般到特殊的思维能力。

3、通过乘法公式的几何背景,培养学生运用数形结合的思想,方法的能力。

(三)情感目标

让学生在探索和解决数学问题的过程中体会数学思维的批判性、严密性。

教学重点:

公式的灵活运用。

教学难点:

公式中字母的广泛含义

教学工具:

小黑板、幻灯片

教学过程:

一、知识回顾

出示小黑板:

1、计算:(2m+n)(2m-n) (x+y)(x+y)

2、有一块边长为a米的正方形林地,将它的各边均增加b米,问现在此林地的面积为多少?(先画图,再列式表示)

学生活动(口答),师板书:

(a+b)(a+b)=(a+b)2=a2+2ab+b2

结合前面(x+y)(x+y)=(x+y)2

师问:以上式子为何种运算形式?如何计算?

生答:两数和的平方,结果有三项:等于这两数的`平方

和再加上它们乘积的两倍

(a+b)2=a2+2ab+b2

二、知识运用(出示小黑板)

试一试:

下列各题是否符合完全平方公式的结构特征,若符合,那么a、b分别代表准?

2 2(3a+2b)2 (2a+—) (4s+1) 2 b

引导生观察得出:以上几个完全平方公式,结果均有三项(首平方,尾平方,积的2倍在中间)。

互动1:(出示幻灯片)

1、(a-b)2 (2x-3y)2

以上2式是否具有完全平方公式的结构特征,若具有:说说a、b分别代表谁?

师生共同完成:(a-b)2=[a+(-b)]2=a2+2a×(-b)+ (-b)2=a2-2ab+b2

(2x-3y)2=[2x+(3y)]2=(2x)2+2×2x×(-3y)+(-3y)2=4x2-12xy+9y2

师生共同观察得出:a、b可表示数字、字母、代数式等互动2:(出示的灯片)

练一练,填空

1、(2x+y) (2x+y)=(2x+y)2=(2x )2+(2×2x×y)+(y )2

22

222 2、(-—a+1)=( )+( ) +( )=( )3 4

(-2s-4t)2=[( )+( )]2=( ) +( ) +( )=( )

(x+y)(x-y)=( )

(x+y)2=( x-y) 2+( )

互动3:师生共同完成

我当小老师,判断下列各题正确与否:

(2x+1)2=(2x)2+2×2x×1+1=4x2+4x+1

(x-y)2=x2-2xy-y2 (符号)

(a+b)2=a2+b2 (与积的乘方相混)

29223(—m-n)=—m+3mn+n (符号) 2 4

三:小结:

从以上所有的结果已看出完全平方公式的结果有三项,每项的符号有规律,前后二项都为正,只有中间积的2倍为正或为负(两数同号为正、异号为负)。

四:知识升华

1、已知x+y=4 xy=-12,

则:①(x+y)2的值为多少?

②2xy的值为多少?

③x2+y2的值为多少?

2、用简便方法计算:992=( - )2

=( )+ ( ) + ( )

=( )

1)2=( )2 (30—3

=( )+ ( ) + ( )

教学后记:

此节课为公开课,学生兴趣高,气氛较好,知识目标已达到,但对于两数和的平方,学生往往容易漏项,变三项为二项,且易与积的乘方混淆,今后需加强混合运算方面的练习。

相关文档
最新文档