PID参数自整定方法综述

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PID参数自整定方法综述(1)

关键词: PID控制参数整定自整定

PID参数自整定方法综述

摘要: PID控制是迄今为止在过程控制中应用最为广泛的控制

方法。文章综述了PID参数自整定方法,并对将来的发展进行了讨论。

关键词:PID控制; 参数整定;自整定

PID调节器从问世至今已历经了半个多世纪,在这几十年中,人们为它的发展和推广作出了巨大的努力,使之成为工业过程控制中主要的和可靠的技术工具。即使在微处理技术迅速发展的今天,过程控制中大部分控制规律都未能离开PID,这充分说明PID控制仍具有很强的生命力。

PID控制中一个至关重要的问题,就是控制器三参数(比例系数、积分时间、微分时间)的整定。整定的好坏不但会影响到控制质量,而且还会影响到控制器的鲁棒性。此外,现代工业控制系统中存在着名目繁多的不确定性,这些不确定性能造成模型参数变化甚至模型结构突变,使得原整定参数无法保证系统继续良好的工作,这时就要求PID控制器具有在线修正参数的功能,这是自从使用PID控制以来人们始终关注的重要问题之一。

本文在介绍PID参数自整定概念的基础上,对PID参数自整定方法的发展作一综述。

1 PID参数自整定概念

PID参数自整定概念中应包括参数自动整定(auto-tuning)和参数在线自校正(self tuning on-line)。

具有自动整定功能的控制器,能通过一按键就由控制器自身来完成控制参数的整定,不需要人工干预,它既可用于简单系统投运,也可用于复杂系统预整定。运用自动整定的方法与人工整定法相比,无论是在时间节省方面还是在整定精度上都得以大幅度提高,这同时也就增进了经济效益。目前,自动整定技术在国外已被许多控制产品所采用,如Leeds&Northrop的Electromax V、SattControlr的ECA40等等,对其研究的文章则更多。

自校正控制则为解决控制器参数的在线实时校正提供了很有吸引力的技术方案。自校正的基本观点是力争在系统全部运行期间保持优良的控制性能,使控制器能够根据运行环境的变化,适时地改变其自身的参数整定值,以求达到预期的正常闭环运行,并有效地提高系统的鲁棒性。

早在20世纪70年代,Astrom等人首先提出了自校正调节器,以周期性地辨识过程模型参数为基础,并和以最小方差为控制性能指标的控制律结合起来,在每一采样周期内根据被控过程特性的变化,自动计算出一组新的控制器参数。20世纪80年代,Foxboro公司发表了它的EXACT自校正控制器,使用模式识别技术了解被控过程特

性的变化,然后使用专家系统方法去确定适当的控制器参数。这是一种基于启发式规则推理的自校正技术。20世纪90年代,神经网络的概念开始应用于自校正领域。

具有自动整定功能和具有在线自校正功能的控制器被统称为自整定控制器。一般而言,如果过程的动态特性是固定的,则可以选用固定参数的控制器,控制器参数的整定由自动整定完成。对动态特性时变的过程,控制器的参数应具有在线自校正的能力,以补偿过程时变。

2 PID参数自整定方法

要实现PID参数的自整定,首先要对被控制的对象有一个了解,然后选择相应的参数计算方法完成控制器参数的设计。据此,可将PID参数自整定分成两大类:辨识法和规则法。基于辨识法的PID参数自整定,被控对象的特性通过对被控对象数学模型的分析来得到,在对象数学模型的基础上用基于模型的一类整定法计算PID参数。基于规则的PID参数自整定,则是运用系统临界点信息或系统响应曲线上的一些特征值来表征对象特性,控制器参数由基于规则的整定法得到。

2.1辨识法

这类方法的本质是自适应控制理论与系统辨识的结合。为解决被控对象模型获取问题,Kalman首先将系统辨识的方法引入了控制领域。

辨识法适用于模型结构已知,模型参数未知的对象,采用系统辨识的方法得到过程模型参数,并和依据参数估计值进行参数调整的确定性等价控制规律结合起来,综合出所需的控制器参数;如果被控过程特性发生了变化,可以通过最优化某一性能指标或期望的闭环特性,周期性地更新控制器参数。

参数辨识可用不同类型的模型为依据。例如,附加有辅助输入的自回归移动平均模型(ARMAX)、传递函数模型或神经网络指数模型等,而最常用的是低阶并等值于有纯滞后的离散差分模型。同样,可用不同的参数辨识方法估计模型参数,例如递推最小二乘法(RLS)、辅助变量法(IV)或最大似然法(ML)等。

在获得对象模型的基础上设计PID参数时常用的原理,经典的有极点配置原理、零极点相消原理、幅相裕度法等;现代的则往往借助于计算机,利用最优化方法或线性二次型指标等,寻找在某个性能指标下的控制器参数最优值。

极点配置法是Astrom在Wellstead工作的基础上提出来的,它的出发点不是去极小化某一性能指标函数(如使输出误差方差最小)以使闭环控制系统达到预期的响应,而是通过对闭环系统的极点按工艺要求进行配置,来达到预期的控制目的。这种方法适用于二阶或二阶以下的对象,因为在用于二阶或二阶以下对象的情况时,由于在线辨识的参数不多,故能获得期望的动态响应。

零极点相消原理是由Astrom首先提出的,它的基本思想是利用调节器传递函数中的零极点抵消被控对象传递函数的某些零极点,从而使整个闭环系统工作在期望的状态上。采用零极点相消原理,要求过程必须是二阶加纯滞后对象,而且要求传递函数的分子项中常数项不为零。

幅相裕度法是利用幅值裕度和相角裕度整定PID参数,这能使系统具有良好的控制性能和鲁棒性能。Ho等在这方面作了许多工作[1~3],在他最新的研究中将幅相裕度法和性能指标最优设计相结合,给出了能同时满足系统鲁棒性和性能指标最优要求的PID参数整定公式。Ho还指出,在确定了幅值裕度(或相角裕度)的前提下,最优指标和相角裕度(或幅值裕度)间需要折衷处理,给出了在幅值裕度一定的情况下,使得ISE(误差平方积分)最小的相角裕度计算公式。

至于现代的PID参数设计法,如Nishikawa等人[4]提出的参数自动整定法,在控制器参数需要整定时,给系统一个小的不至于影响正常运行的干扰信号,以估计对象参数,然后运用ISE指标设计PID参数,一方面能使系统性能满足某些优化指标,但另一方面却可能因有些优化算法无解而带来问题。

这类基于辨识的参数自整定方法直观、简单,易于实现,已有众多的文献资料提供了有关模型辨识和控制器的设计方法,而且在过程控制及其参数校正方面不需要特定的经验,所以说它是比较容易开发的。但这并不意味着这种为设计者带来的优点就一定能够转变为用户

相关文档
最新文档