(完整word版)高思导引四年级第二十一讲排列组合教师版

合集下载

完整word版,高思导引四年级第十八讲行程问题三教师版

完整word版,高思导引四年级第十八讲行程问题三教师版

第18讲行程问题三内容概述运动过程较为复杂的行程问题,一般通过分段、比较等办法进行考虑,在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律.典型问题兴趣篇1.莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果她和莉莉一起到校.如果莉莉每分钟走53米,那么莎莎骑车每分钟行进多少米?答案:159详解:视从家到学校的路程为一个全程,由题意知道莎莎到校,再返回家,再到学校,一共走了三个全程,在同样时间内莉莉走了一个全程,即莎莎速度是莉莉的三倍53×3=1592.小燕上学时骑车,回家时步行,路上共用50分钟.如果往返都步行,则全程需要70分钟.求小燕往返都骑车所需的时间.答案:30分钟详解:视从家到学校的路程为一个全程,往返情况:骑车+步行=50步行+步行=70得知一个全程骑车比步行多用20分钟70-2×20=30分钟3.一天,小悦到离自己家4000米的表哥家去玩.早晨7:20时,小悦从家出发向表哥家走去,每分钟行60米,同时表哥骑车从家出发来接她.表哥到小悦家后才发现小悦已经走了,又立即返回去追.表哥骑车每分钟行260米.当表哥追上小悦后,带着她一起回表哥家,这时骑车速度变为每分钟骑175米.请问:当他们到达表哥家时还差几分钟就到8点了?答案:差4分钟详解:表哥从自己家到小悦家的时间是4000/260=200/13分,在这段时间小悦行走了4000/260×60=12000/13米同时这个距离也是表哥要返回去追小悦时两个人之间的路程差,路程差÷速度差=追及时间,所以追及时间是4000/260×60/(260-60)=60/13分;追上小悦时距离小悦家的路程为60/13×260=1200米,这时距离表哥家还有4000-1200=2800米,走这2800米的速度为175米/分所以用的时间是2800÷175=16分,因此本题所用总时间分三部分从表哥家到小悦家的时间200/13,追及时间60/13,回去时间16,共200/13+60/13+16=36分钟20+36=56分。

高思导引 四年级第十四讲 行程问题二教师版

高思导引 四年级第十四讲 行程问题二教师版

第14讲行程问题二内容概述参与运动的某些对象自身具有长度的行程问题.涉及多个对象的行程问题,一般需要从其中两个对象入手进行分析,并把所得的结论与其他对象联系起来.1.(1)费叔叔沿着一条与铁路平行的公路散步,每分钟走60米,迎面开过来一列长300米的火车.从火车头与费叔叔相遇到火车尾离开他共用了20秒.求火车的速度.(2)小悦沿着一条与铁路平行的公路散步,她散步的速度是每秒2米.这时从小悦背后开来一列火车,从车头追上她到车尾离开她共用了18秒.已知火车速度是每秒17米,求火车的长度.答案:14米/秒270米解析:(1)相遇问题,60米/分=1米/秒300−20=15 15-1=14(2)追击问题,(17-2)⨯18=270米2.(1)一列火车长180米,每秒行20米,这列火车通过320米的大桥,需要多长时间?(2)一列火车以每秒20米的速度通过一座长200米的大桥,共用21秒,这列火车长多少米?答案:25秒220米解析:(1)火车过桥(320+180)−20=25秒(2)20⨯21-200=220米3.一列火车长180米,每秒行20米;另一列火车长200米,每秒行18米.两车相向而行,它们从车头相遇到车尾相离要经过多长时间?答案:10秒解析:火车相遇,路程为两车路程之和(180+200)÷(20+18)=10秒4. 甲火车长370米,每秒行15米;乙火车长350米,每秒行21米,两车同向行驶,乙车从追上甲车到完全超过甲车需要多长时间?答案:120秒解析:火车追击,路程为两车路程之和(370+350)÷(21-15)=120秒5.许三多所在的钢七连队伍长450米,以每秒1.5米的速度行进.许三多以每秒3米的速度从队尾跑到队头需要多长时间?然后从队头返回队尾,又需要多长时间?答案:300秒100秒解析:队尾到对头是追击问题450÷(3-1.5)=300秒对头到队尾是相遇问题450÷(3+1.5)=100秒6.甲、乙两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米.坐在甲车上的小坤从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗为止共用13秒, 问:乙车全长多少米?答案:390米解析:相遇问题,从相遇到离开单位不统一60+48=108千米每时=30千米每秒30⨯13=390米7.现有两列火车同时同方向齐头行进,快车每秒行18米,慢车每秒行10米,行12秒后快车超过慢车.如果这两列火车车尾对齐,同时同方向行进,则9秒后快车超过慢车.请问:快车和慢车的车长分别是多少米?答案:快96米慢72米解析:齐头并进多走的是一个快车的车长(18-10)⨯12=96米车尾对齐多走的是一个慢车的车长(18-10)⨯9=72米8.有甲、乙、丙三人,甲每分钟走40米,乙每分钟走50米,丙每分钟走60米. A、B两地相距2700米.甲、乙两人从A、B两地同时出发相向而行,他们出发15分钟后,丙从B 地出发去追赶乙.请问:甲在与乙相遇之后多少分钟又与丙相遇?又过了多少分钟丙才追上乙?答案:6分钟54分钟解析:甲乙相遇时2700÷(40+50)=30分钟这时丙走了15分钟走了15⨯60=900米乙走了50⨯30=1500米,甲丙相距1500-900=600米600÷(40+60)=6分钟(600+50⨯6-60⨯6)÷(60-50)=54分钟9.有甲、乙、丙三人,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米. 如果甲从A地,乙和丙从B地,三人同时出发相向而行.甲和乙相遇后,过了15分钟又与丙相遇.求A、B两地的距离.答案:16500米解析:甲丙相遇的路程是乙比丙多走的路程(60+40)⨯15=1500米1500÷(50-40)=150分钟150⨯(60+50)=16500米10.东、西两城相距75千米.小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西走,每小时行15千米.三人同时动身,途中小辉遇见小强即折回向东骑,遇见了小明又折回向西骑,再遇见小强又折回向东骑,……这样往返,直到三人在途中相遇为止.请问:小辉共骑了多少千米?答案:90千米解析:小辉行走的时间和两人从出发到相遇的时间是一样的75÷(6.5+6)=6小时6⨯15=90千米拓展篇1.(1)一列火车长400米,以每分钟800米的速度通过一条长2800米的隧道,需要多长时间?(2)一列火车长720米,每秒行驶15米,全车通过一个山洞用了64秒.这个山洞长多少米?答案:4分钟240米解析:(1)火车过桥(2800+400)÷800=4分钟(2)15⨯64-720=240米2.一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.你知道火车有多长吗?它的速度是多少?答案:200米10米/秒解析:从火车车头上桥,到车尾离开桥所走路程是:车长+桥长火车完全在桥上所走路程是:桥长-2个车长所以行走一个车长的距离用(120-80)÷2=20秒行走桥长用的时间是120-20=100秒1000÷100=10米/秒车长为200米3.有一列客车和一列货车,客车长400米,每秒行驶20米;货车长800米,每秒行驶10米.试问:如果两车相向而行,它们从相遇到错开需要多长时间?如果两车同向而行,客车赶超货车(从追上到完全超过)需要多长时间?答案:40秒120秒解析:(800+400)÷(20+10)=40秒(800+400)÷(20-10)=120秒4.一列客车和一列货车同向而行,货车在前,客车在后.已知客车通过460米长的隧道用30秒,通过410米长的隧道用28秒.又已知货车长160米,每小时行驶54千米.请问:客车从追上到离开这列货车需要多少秒?答案:45秒解析:通过隧道走的路程都是:车长+桥长460-410=50 30-28=2 速度为50÷2=25米每秒车长为:25⨯30-460=290米54千米每时=15米每秒(290+160)÷(25-15)=45秒5.与铁路平行的一条小路上,有一个行人与一个骑车人同时向南行进,行人速度为每小时3.6千米,骑车人速度为每小时10.8千米.这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.请问:这列火车的车身总长是多少米?答案:286米解析:3.6千米每时=1米每秒10.8千米每时=3米每秒(26⨯3-22)÷(26-22)=14 22⨯(14-1)=286米6.人大附小组织学生去春游,队伍行进的速度是每秒2米,宋老师以每秒4米的速度从队尾跑到队头,再回到队尾,共用6分钟.请问:队伍的总长是多少米?答案:540米解析:两次跑的路程是一样的,两次速度分别为2米每秒6米每秒所以去的时候的时间是回来时的三倍6分钟=360秒360÷4⨯6=540米7.阿奇在一条与铁路平行的小路上行走,有一列客车迎面开来,40秒后经过阿奇. 如果这列客车从阿奇的背后开来,60秒后经过阿奇.试问:如果阿奇站着不动,客车多长时间可以经过阿奇?答案:48秒解析:迎面开来是路程和速度和背后开来是路程差速度差40(车速+人速)=60(车速-人速)车速=5人速路程为240人速240÷5=488.一列货车和一列客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小明在客车内沿着客车前进的方向向前走,小明发现货车用140秒就超过了他.已知小明在客车内行走的速度为每秒l米,客车的速度为每秒20米,客车长350米,货车长280米.求货车从追上客车到完全超过客车所需要的时间.答案:210秒解析:小明发现货车用140秒就超过了他,所走路程为货车车长280÷140=2米每秒货车速度为2+20+1=23米每秒(350+280)÷(23-20)=210秒9.甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?答案:32千米每时解析:从甲车和卡车相遇开始计时,乙车和卡车相遇用了一个小时路程和为甲乙两车行走6小时的路程差(52-40)6=72千米72÷1=72千米每时72-40=32千米每时10.甲、乙两人同时从A地出发向B地前进,甲骑车,乙步行.与此同时,丙从B地出发向A地前进.甲骑9千米后与丙相遇,而乙走6千米后就与丙相遇.如果甲骑车的速度是乙步行速度的3倍,求A、B两地的距离.答案:12千米解析:从甲丙相遇时开始计时,再过一段时间乙丙相遇甲的速度是乙速度的三倍所以相同时间内甲走的路程是乙路程的三倍当甲走9千米时乙走3千米所以乙丙速度相同所以甲走9千米时丙走3千米路程为12千米11.甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的3倍.现在甲从A地向B地行进,乙、丙两人从B地向A地行进.三人同时出发,出发时,甲、乙步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又重新改为步行,三人仍按原来的方向继续前进.试问:三人之中谁最先到达目的地?谁最后到达目的地?答案:丙最先到达,甲最后到达解析:画线段图总路程为四份,丙两份时间到达,甲四份时间到达乙不到四份时间12.A、B两城相距56千米,甲、乙、丙三人分别以每小时6千米、5千米、4千米的速度前进.甲、乙两人从A城,丙从B城同时出发,相向而行.请问:出发多长时间后,乙正好在甲和丙的中点?答案:7小时解析:由分析知乙正好在甲丙中点上时一定是甲丙相遇后的时间,相同时间内,甲走6份路程,乙走5份路程,丙走4份路程甲乙相差1份所以乙丙也相差一份根据容斥原理知道这一份为9份-56=1份所以一份路程为7 时间为7小时超越篇1.米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过来,8:00货车追上了米老鼠,又过了30秒,货车超过了它;’另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了12秒客车离开了它.如果客车的长度是货车的2倍,客车的速度是货车的3倍.请问:客车和货车什么时间相遇?两车错车需要多长时间?答案:9:15 15秒米代表米老鼠客代表客车货代表货车解析:在速度上:30(货-米)=12(客+米)÷2 客=3货客=9米货=3米货车长度30(货-米)=30(3米-米)=60米客车车上12(客+米)=120米9:30相遇时米老鼠走了一份路程客车走了9份路程两人共走了10份路程走1:30时米老鼠路程为90米客车路程为810米货车路程为270米全程为900米900÷(270÷90+810÷90)=75分钟8:00+00:75=9:15分(60+120)÷(9+3)=15秒2.货车和客车相向而行,两车在A点迎面相遇,在B点错开,A点和B两点之间的距离为150米.已知客车的长度为450米,速度为每小时108公里,货车的速度为每小时72公里.如果货车比客车长,那么货车的长度是多少?答案:550米解析:108公里每时=30米每秒 72公里每时=20米每秒从相遇到错开客车走的路程为 150+450=600 600÷30=20秒20(30+20)-450=550米3.铁路旁有一条小路,一列长110米的火车以每小时30千米的速度向北缓缓驶去.14时10分追上向北行走的一位工人,15秒后离开这个工人;14时16分迎面遇到一个向南走的学生,12秒后离开这个学生.请问:工人与学生将在何时相遇?答案:14时40分解析:碰到工人是追击问题 30÷3.6-110÷15=1米每秒=60米每分碰到学生是相遇问题 110÷12-30÷3.6=65米每秒=50米每分 火车速度为30千米每时=500米每分工人与学生的时间为6(500-60)÷(50+60)=24分钟14时16份+24分=14时40分4.A 、B 两地相距120千米,甲、乙两人分别骑车从A 、B 两地同时相向出发,甲速度为每小时50千米,出发后1小时30分钟相遇,然后甲、乙两人继续沿各自方向往前骑.在他们相遇6分钟后,甲与迎面骑车而来的丙相遇,而丙在c 地追上乙.若甲以每小时44千米的速度,乙以每小时比原速度快6千米的车速,两人同时分别从A 、B 出发相向而行,则甲、乙二人在C 点相遇,问丙的车速是多少?答案:70千米每时解析:第一次相遇可以求出乙的速度为 30千米每时 再过6分钟甲共走了80千米 第二次甲乙两人相遇时间为 120÷(44+36)=1.5时C 距离A 地66千米 追上乙,丙走了80-66=14千米 乙走了14-8=6千米 14÷(6÷30)=70千米每时5.快、中、慢三辆车同时从甲地出发追赶前方的骑车人,分别用6分钟、12分钟、20分钟追上,已知快车每小时行24千米,中车每小时行20千米,求慢车每小时行多少千米. 答案:18.4千米每时解析:每次都是速度差,路程差都一样是开始时距离骑车人的距离求出骑车人速度为16千米每时,路程差为0.8千米 慢车速度为18.4千米每时6.快、中、慢三辆车同时从甲地出发开往乙地,与此同时冬冬以每分钟100米的速度沿公路走向甲地.已知快车出发30分钟后在途中遇上冬冬,中车出发35分钟后遇上冬冬.三辆车到达乙地的时候分别用了100分钟、120分钟、150分钟.请问:慢车出发多长时间后可以遇上冬冬?答案:42分钟解析:与上题类似,求出刚开始距离东东的距离即可。

高思导引-四年级十六讲-统筹与对策教师版

高思导引-四年级十六讲-统筹与对策教师版

第16 讲ﻩ统筹与对策整理人:张肖内容概述生活中的统筹规划问题,包括合理安排顺序、选择最短或最长路线、人员分配、货物调度等,一般采用枚举、比较和逐步调整的方法. 各种游戏对策问题,在必胜方案中通常要占据关键位置或选取特殊数值,分析对一般从简单情形出发进行逆推.典型问题1.妈妈让冬冬给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.冬冬估算了一下,完成这些工作要花20分钟. 为了尽快给客人沏茶,你认为最合理的安排,最少需要多少分钟?答案:16分钟解析:在试题中,烧开水之前一定要洗开水壶,但是在烧开水的同时,可以把洗茶壶、洗茶杯、拿茶叶三件事都做完。

所以根据先洗水壶,然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶,共需要1+15=16分钟。

2.理发店里同时来了A、B、C三个顾客,A理板寸需要7分钟,B理光头需要10分钟,C烫卷发需要40分钟.请问:如何安排这三个人的理发顺序才能使得他们三人所花的时间总和最短?这个最短的时间是多少?答案:A先理发,然后B,最后C;81分钟解析:因为理发时间固定,为使所花时间总和最短,则只需三人等待时间最短,因此按照理发时间从短到长的顺序理发,这样A只理板寸,花费7分钟,B等待A并理光头,共花费7+10=17分钟,C等待A、B并烫卷发,共花费7+10+40=57分钟,三人共花费7+17+57=81分钟。

3.西点店里卖的面包都是5个一袋或3个一袋的,不拆开零售.已知5个一袋的售价是8元,3个一袋的售价是5元,要给47位同学每人发1个面包最少要花多少钱?答案:76元解析:5个一袋的面包单价为8÷5=1.6元,3个一袋的面包单价为5÷3=1.67元,1.6<1.67,所以要尽量多购买5个一袋的面包,同时不要让面包有剩余。

47÷5=9……2,2不能被3整除,将两袋5个的与剩余的两个凑成12个,可正好换成4袋3个的,因此需购买7袋5个的和4袋3个的,共花8×7+5×4=76元。

高思导引-四年级-竖式问题教师版汇编

高思导引-四年级-竖式问题教师版汇编

学习-----好资料第5讲竖式问题内容概述以字母或汉字表示数字的竖式问题,学会选择适当的突破口,并逐步解决问题;能够将文字叙述的题目转化为数字谜形式,便于直观地解决问题。

典型问题兴趣篇1.如图5-1所示,每个英文字母代表一个数字,不同的字母代表不同的数字,其中“G”代表“5”,“A”代表“9”,“D”代表“0”,“H”代表“6”.问:“I”代表的数字是多少?分析:也一定有A+E=HC=4,A+D=D,所以,它们的和一定有进位,所以,、2、F分别是1没有用,所以1、2、3、8B,现在还剩进位,所以E=7I=3.的加法竖式中,不同的汉字代表不同的数字,相同的汉字代)在图5-22. (1 表相同的数字,那么每个汉字各代表什么数字?的减法竖式中,不同的汉字代表不同的数字,相同的汉字代表相在图5-3(2)同的数字,那么每个汉字各代表什么数字?分析:,卒=1(1)观察可得:车,马=卒,所以兵=5=0,兵+兵马,所炮=,+1=5,所以马=4炮+=2以炮5240+5210=10450=2=马,所以:兵,=12)观察可得:炮,兵—兵=马,一定有借位,所以马=9,炮—兵(292=929—1221的竖式中,相同的汉字代表相同的3. 在图5-4+如果23+解数字,不同的汉字代表不同的数字,”所代表的三,那么“字++谜=30 数数字谜位数是多少?更多精品文档.学习-----好资料不同的汉字代表不同的数字,每个汉字代表一个数字,图5-5所示的竖式中,4. ”代表的四位数是多少?那么“北京奥运分析:奥++京,北+奥=0,所以可得要进位,所以;京=8 观察可得:北=1,北+京=9 ,运位,所以:奥=0+运=8,所以要进2=1809 北京奥运ABCDE所示的乘法竖式成立,那么5. 已知图5-6是多少?相同的符号代5-7的竖式中,6. (1) 在图表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?的竖式中,相同的符号代表5-8(2) 在图不同的符号代表不同的数字,相同的数字,那么☆、△、○分别代表什么数字?分析:三种可能,因为是三位数5、9,×△=△,所以△=1、)(1△,○=1,☆乘一位数等于四位数,所以1排除,经分析:△=5=2=2 ,○,当△=5时,☆=4、)△=15、6三种可能,排除12 (=3○=5时,△当=6☆,更多精品文档.学习-----好资料7. 如图5-9,相同的字母表示相同的数字,不同的字母表示不同的数字,那么十个方框中数字之和是多少?分析:B×B=B,所以B=1、5、6,三种可能,经分析1排除,A×B=B,所以B=5,A为奇数,三位数乘B得三位数,所以第一个方格中添1,一百多乘一位数得四位数,所以A只能是7、9,当A=7时,C=7,矛盾不成立;当A=9时,C=7,成立;所以:195×95=18525 1+9+1+7+5+1+8+5+2+5=448. 在图5-10和图5-11中的方格内填入适当的数字,使下列除法竖式成立.分析:,所以除数9=783(1)除数×=6003 ,所以被除数×6=522=87,8787=69÷6003=2465 5=145,所以被除数8=232,所以除数=29,29×(2)除数×29=85÷2465所示的除法竖式中填入合适的数字,使得竖式成立,那么其中的商5-129.在图是多少?分析:三= 除数×7=两位数,除数×另一个一位数,所以除数只能是位数,且三位数的十位上是2 ,9=12614,14×7=98,14×=79所以除数更多精品文档.好资料学习-----后所得乘积恰好是将原来的四位数各位数字顺序910. 有一个四位数,它乘以.颠倒而得的新四位数,求原来的四位数拓展篇不同的汉字代表不同的数字,相同的汉字代表相同的数字,和5-14中,1. 在图5-13. 求出它们使竖式成立的值分析:,四个语、语=5 (1)观察得:巧=1,所以三个英相加得数,进2相加得20,所,向前进2的个位是8,所以英得6 以学=4 以学+学得数个位也是8,所1465+林=7,奥++=6,奥林+匹进2,所以林2 ()观察的奥+林有进1,所以奥6789=83,所以匹,克=9 匹+克进,在这个算式中,相2. 如图5-15不同的同的字母代表相同的数字,、A字母代表不同的数字,那么数字分别是多少?B、C分析:有借位,没有借位,C—BCA=A,—B=B,所以C—AC观察—A=4A=A,所以B=9,所以有借位且,C=8,已知C—B—B=B8、4、9不同的字母表示不同的数在图5-16的竖式中,相同的字母表示相同的数字,3. 字,并且A<B<C<D. 问:竖式中的和是多少?分析:D=5 C=4,,,观察得A=2B=3 2233+3344+4455=10032更多精品文档.学习-----好资料4. 在图5-17的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,那么“”所代表的七位数是多少?携手上海世博会分析:,个=9,手=0,上观察得,黄金三角:携=1,所=7位数的和肯定要进位,要使进1为,则博,=6位,办海=4,假设百位向前进2以会只能是2,,位,办=5,成立,1094382 ;假设百位向前进3=8当世=3时,在;,成立,1094872=8时,在=3当世小悦写了一个四位数,冬冬把这个四位数的个位抹掉,变成了一个三位数,5. 阿奇又把这个三位数的个位抹掉,变成了一个两位数,最后把这三个数加起来,小悦原来写的四位数是多少?结果刚好是7826.分析:利用位值原理ABCD+ABC+AB=78261000A+100B+10C+D+100A+10B+C+10A+B=1110A+111B+11C+D=7826D=1 56-55=1 则当则B=0 C=5时-时当A=778267770=56 7051即一个各位数字互不相同的三位数,用它的三个数字组成一个最大的三位数,6. 再用这三个数字组成一个最小的三位数,组成的这两个三位数之差正好是原来. 求原来的三位数的三位数.更多精品文档.学习-----好资料移到左边首位数字前面,所构成44,将这个7. (1) 一个自然数的个位数字是 4倍,那么原数最小是多少?的新数恰好是原数的一个五位数,将它的各位数字顺序颠倒就可以得到一个新的五位数,而且(2)/4倍,那么原来的五位数是多少这个新的五位数恰好是原数的)(1219782)(中的一个数字,不同的字母2,……908. 如图5-18,每一个英文字母代表,1 、RF分别代表什么数字?、、、代表不同的数字,则字母AQT更多精品文档.学习-----好资料分析:不QAQ×T=1符合题意,当Q=6时为5或6 当Q=5时A=2 .........QTAQ等于T=1 则........AQ×T=AQF=3R=7,Q=5,T=1,A=2,所以“美”三个汉字分别代表三个各不相同的“峡”、中的竖式里,“江”、9. 图5-19. 数字,请把这个竖式写出来分析:=6 ,所以美0,1,5,6中的一个,通过实验排除0,1,5先确定美是□□江,则=×江4或8之一,又因为江峡美或美通过确定江是2 排除,所以江=24或8=8=□□□峡,则峡由于江峡美×峡所示的除法5-2010. 请把如图竖式中空缺的数字补上,其中的商是多少?分析:1 7 则除数个位是7,商的十位数字是=6.........6□□×□□除数的十位数3=×□□□61 则商的个位数字是,7.........6□8 字是更多精品文档.学习-----好资料11. 请把图5-21中的除法竖式补充完整。

高思导引 四年级第二十一讲 排列组合教师版

高思导引  四年级第二十一讲 排列组合教师版

第21讲 排列组合内容概述了解排列、组合公式的来由及含义,掌握具体的计算方法;辨析排列、组合之间酌区别与联系,并能够合理应用.典型问题兴趣篇1. 计算:24(1)A410(2)A3336(3)3A A ⨯+【答案】(1)12 (2)5040 (3)138【解析】根据排列公式 )1()1(+-⨯-⨯=n m m m A nm 计算 243341036(1)4312(2)109875040(3)3138A A A A =⨯==⨯⨯⨯=⨯+=2.费叔叔、小悦、冬冬和阿奇四个人站成一排照相,一共有多少种不同的排列方法? 【答案】24【解析】这种排列是有序的24123444=⨯⨯⨯=A3.体育课上,老师从10名男生中挑出4人站成一排,—共有多少种不同的排列方法? 【答案】5040【解析】先从10人中选出4人,再让4人全排列50402102444410=⨯=⨯A C4.费叔叔、小悦、冬冬、阿奇四个人一块乘公共汽车去公园,上车后发现有8个空座位,他们一共有多少种不同的坐法? 【答案】1680【解析】先让4人选座位,再让4人全排列168024704448=⨯=⨯A C5.用1至7这7个数字一共能组成多少个没有重复数字的三位数?如果把这些三位数从小到大排起来,312是其中第几个? 【答案】(1)210;(2)第61人【解析】第一个位置有7中选择第二个位置有6个选择第三个位置有5个选择个是第个,开头的有个,百位是开头的有百位是61312302301)2(210)1(151617=⨯⨯A A A6.计算:25(1)C47(2)C3366(2)A C ⨯【答案】(1)10 (2)35 (3)2400 【解析】根据组合公式24335766547654(1)10(2)35(3)120202*********n n m mn n A C C C A C A ⨯⨯⨯⨯=====⨯=⨯=⨯⨯⨯⨯7.图21-1中有六个点,任意三个点都不在一条直线上.请问:(1)以这些点为端点,一共可以连出多少条线段? (2)以这些点为顶点,一共可以连出多少个三角形? 【答案】(1)15条;(2)20个【解析】(1)不在同一直线两点确定一条直线2615C =(2)不在同一直线三点确定一个三角形3620C =个8.费叔叔把10张不同的游戏卡片分给冬冬和阿奇,并且决定给冬冬8张,给阿奇2张.一共有多少种不同的分法? 【答案】45【解析】先选出8张冬冬,剩下2张就是阿奇的81020C =9.小悦要从八门课程中选学三门,一共有多少种选法?如果数学课与钢琴课时间冲突,不能同时学,她一共有多少种选法? 【答案】50【解析】用排除法八门中任选三门,有56种,数学课与钢琴课同时上有6种,减去不符合题意的6种,318656650C C -=-=种10.象棋兴趣小组一共有9名同学,请问:(1)如果从中选3名同学在第二天的早上、中午、晚上分别做值日,共有多少种选法? (2)如果从中选3名同学去参加一次全市比赛,共有多少种选法? 【答案】(1)504种 ; (2)84种【解析】(1)先选出3人再全排列,39987504A =⨯⨯=种(2)这种选人是无序的3984C = 种拓展篇1. 计算:25(1)A37(2)A 4266(3)A A -【答案】(1)20;(2)210;(3)330 【解析】25(1)5420A =⨯=37(2)765210A =⨯⨯=4266(3)654365330A A -=⨯⨯⨯-⨯=2.如图21-2所示,有5面不同颜色的小旗,任取3面排成一行表示一种信号,用这5面小旗一共可以表示出多少种不同的信号?【答案】60【解析】先从5面旗选出3面旗,再让三面旗全排列3560A =种3.3名同学一块去图书馆借科幻小说,发现书架上只剩下9本,且各不相同.如果每人只借1本,那么共有多少种不同的借法? 【答案】504【解析】先从9本书选出3本书,再让3本书全排列39504A =种4.用1、2、3、4、5这五个数码可以组成多少个没有重复数字的四位数?将这些四位数从小到大排列起来,4125是第几个? 【答案】(1)120;(2)74个【解析】(1)第一个位置有5种选法,第二个位置有4种选法,第三个位置有三种选法,第四个位置有2种选法,45120A =(2)千位以1开头的有11143224A A A ⨯⨯=个千位以2开头的有11143224A A A ⨯⨯=个千位以3开头的有11143224A A A ⨯⨯=个千位以4开头第一个4123,第二个就是4125所以243274⨯+=个5. 计算:39(1)C321010(2)2C C -⨯ 45(3)C ,15C 710(4)C ,310C【答案】(1)84;(2)30;(3)5,5;(4)120,120 【解析】39(1)84C =;321010(2)21209030C C -⨯=-= ;45(3)5C =,155C =710(4)120C =,310120C =6.如图21-3所示,从端点O 出发的射线共有7条,图中一共有多少个锐角? 【答案】21【解析】夹角最大两条直线间夹角小于90度,所以这两条直线间的任两条直线组成的角小于90度,2776221C=⨯÷=个7.如图21-4所示,在一个圆周上有8个点,以这些点为顶点或端点,一共可以画出多少条线段?多少个三角形?多少个四边形?【答案】(1)28条;(2)56个;(3)70个;【解析】(1)不在同一直线两点确定1条直线,2828C=条(2)不在同一直线三点确定1个三角形,3856C=个(3)不在同一直线四点确定1个四边形,4870C=个8.9支球队进行足球比赛,实行单循环制,即每两队之间只比赛一场.每场比赛后胜方得3分,平局双方各得1分,负方不得分.请问:一共要举行多少场比赛?9支队伍的得分总和最多为多少?【答案】(1)36场(2)108分【解析】(1)9个队中每2个队比一场2936C=场(2)分总和最多,那就是全赢363108⨯=分9.学校十佳歌手大赛的10名获奖选手中,每3人都要照一张合影.问:需要拍多少张照片? 【答案】120张【解析】没有排序问题所以38120C=10.在新学期的班会上,大家要从11名候选人中选出班干部.请问:(1)选出三人组成班委会,那一共有多少种选法?(2)从剩下的候选人中,选出三人分别担任语文、数学、英语的课代表,一共有多少种选法?【答案】(1)165种(2)336种【解析】(1)从11人中选出3人311165C=种(2)从剩下3人选出3人全排列33 83566336C A⨯=⨯=种11.费叔叔带着小悦、冬冬、阿奇去参加一次聚会,主持人要求每个人从12个颜色不同的彩球中领取一个.请问:(1)小悦是第一个取球的人,她一共选出了4个球,准备回头分给大家,那一共有多少种选法?(2)小悦回到座位后,把这4个球分给大家,一共有多少种分法?(3)最后他们四人手中拿到的球一共有多少种可能?【答案】(1)495种;(2)24种;(3)11880种【解析】(1)从12个球中选出4个没有排序问题412495C=种(2)把四个不同色的球分给4个人4424A=种(3)先从12个不同色的球选出4个不同色的球,再分给4个人,44 1244952411880C A⨯=⨯=种12.周末大扫除,老师要从第一组的10名男生和10名女生中选出5人留下打扫卫生.请问:(1)如果老师随意选择,一共有多少种选择方法?(2)如果老师决定选出2名男生和3名女生,一共有多少种选择方法? 【答案】(1)15504种;(2)5400种【解析】(1)从20人中选出5人32015504C=种(2)从10名男生选2人,从10名女生选3人2310105400C C⨯=种超越篇1.有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字的和等于11.将所有这样的四位数从小到大依次排列,第20个是多少?【答案】5132【解析】因为由4个互不相同且不为零的数字组成,并且这4个数字的和等于11,只有数字1,2,3,5满足千位1开头有11326A A⨯=个,千位2开头有11326A A⨯=个,千位3开头有11 326A A⨯=个,千位5开头有第一个5123第二个5132 6+6+6+2=202.在身高互不相同的6个人中,选出3个人站成第一排,另外3个人站成第二排.请问:(1)如果可以随便站,那么一共有多少种排法?(2)如果要求第二排最矮的人也比第一排最高的人高,那么一共有多少种不同的排法? 【答案】(1)720种;(2)36种【解析】(1)先从6人中选出3个人为第一排,再全排列,剩下3人为一排再全排列333 633720C A A⨯⨯=种(2)最高三人为第二排,其余三人为第一排,让它们每排分别全排列,333336A A⨯=种3.小口袋中有4个球,大口袋中有6个球,这些球颜色各不相同.请问:(1)任意取4个球出来,那么共有多少种不同的结果?(2)取出4个球,而且恰好从每个口袋中各取2个球,共有多少种不同结果?【答案】(1)210种;(2)90种【解析】(1)从小口袋取出4个大口袋取0个,从小口袋取出3个大口袋取1个,从小口袋取出2个大口袋取2个,从小口袋取出1个大口袋取3个,从小口袋取出0个大口袋取4个41322314 44646466180902415210C C C C C C C C+⨯+⨯+⨯+=++++=种(2)每个袋子取两个,是无序的224661590C C⨯=⨯=种4. 在1至30这30个自然数中任意挑选出两个不同的数,使得它们的和是偶数,一共有多少种不同的挑选方法? 【答案】210种【解析】和为偶数,共2种情况:奇+奇 偶+偶。

高思导引-四年级-数阵图初步教师版汇编

高思导引-四年级-数阵图初步教师版汇编

学习-----好资料第4讲数阵图初步内容概述各种较为基本的数阵图问题,了解重数的概念,并以此进行分析;学会分析特殊位置上的数值;某些情况下还需要考虑对称性。

典型问题兴趣篇1. 在图4-1中的三个圆圈内填入三个不同的自然数,使得三角形每条边上的三个数之和都等于11.:【答案】【分析与解】:先如下图将空白处标上字母:根据题意:a=11-2-5=4;b=11-4-1=6;c=11-2-6=3.2. 请分别将1,2,4,6这四个数填在图4-2中的各空白区域内,使得每个圆圈里四个数之和都等于15.更多精品文档.学习-----好资料:【答案】【分析与解】:如下图,先将空白区域标上字母根据题意:上面圆内四个数之和等于15,可得a+d=15-5-7=3=1+2;同理,b+d=15-5-3=7=1+6;c+d=15-7-3=5=1+4。

由于d属于三个圆的公共部分,经对比发现可得:d=1;a=2;b=6;c=4.3. 如图4-3所示,请在三个空白圆圈内填入三个数,使得每条直线上三个数之和都相等。

:【答案】【分析与解】:如下图:因为8+9+a=b+a+7可得b=10;那么每条线的和=8+3+10=21;那么a=21-8-9=4;c =21-8-7=6.4. 把1至8分别填入图4-4的八个方格内,使得各列上两个数之和都相等,各行四个数之更多精品文档.学习-----好资料和也相等。

【答案】:1 7 6 45283【分析与解】:因为1+2+3+……+8=36;所以每行的和等于36÷2=18;每列的和=36÷4=9;从列入手,可将1~8这八个数分为和等于9的四组:1+8=2+7=3+6=4+5。

再调整使行和等于18:我们发现1+4=2+3;8+5=6+7.经过调整可得答案。

5. 把1至12分别填入图4-5的圆圈内,使图中三个小三角形三条边上的六个数之和相等。

【答案】:【分析与解】:经过观察发现,此图是个具有对称性的图案;若使三个小三角形的三边之和相等;只需要使得图中每条边上的两个数之和相等即可。

(四年级)小学数学奥数基础教程-30讲全

(四年级)小学数学奥数基础教程-30讲全

(四年级)小学数学奥数基础教程-30讲全小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

高斯小学奥数四年级上册含答案第21讲_等积变形

高斯小学奥数四年级上册含答案第21讲_等积变形

第二^一讲等积变形三角形和平行四边形的关系非常紧密. 回想它们的面积公式,如果我们把一个平行四边形沿对角线分成两块,那么每个三角形的面积正好是平行四边形的一半,如图:除了上面这种情形外,下图中的阴影三角形由于和平行四边形底、高都相同,所以面积也是平行四边形的一半.(注意:长方形也是平行四边形)乎讦四谄形翠堀幻戒号帚B. C\ ⑪个三角形,革均匀生怅,1草场的苹可使⑷头牛吃I氏,R草场的草可供祀%牛吃一天「【草场前龜可供⑷()其牛唏一天,I)堂埸堰?底AB底我们把这种“底相同,高相等”的情况简称为“同底等高”•“同底等高”是我们最早碰到的三角形等积变形的情形,而“等高”最常见的情况就是平行线间的距离相等.如果两个三角形同底等高,那么它们的面积相等.利用平行线间的距离相等,构造同底等高的三角形,是很常见的三角形等积变形.例题1如图,已知平行四边形 ABCD 的面积是100平方 厘米,E 是其中的任意一点,那么图中阴影部分面积 是多少平方厘米?「分析」辅助线把整个图形分成了左右两个平行 四边形,两个阴影三角形与它们分别有什么关 系呢?练习1如图,E 是平行四边形 ABCD 中的任意一点,已 知厶AED 与厶EBC 的面积和是40平方厘米,那么图 中阴影部分的面积是多少?下图中,两条平行线间有四个三角形:三角形 OAB 、三角形PAB 、三角形MAB 和三角形NAB ,它们的底相同,都是 AB ;高相等,都是两条平行线间的距离,所以这四个三角形 的面积是相等的•进一步,我们可以在直线ON 上任取若干个点,这些点分别与 A 、B 两点形成若干个同底等高的三角形,这些三角形的面积是相等的.ABCA DB C例题2如图,平行四边形ABCD的底边AD长20厘米, 高CH为9厘米;E是底边BC上任意的一点,那么两个阴影三角形的面积之和是多少平方厘米?「分析」能否通过等积变形,把两个三角形变成一个三角形呢?练习2如图,平行四边形ABCD的面积是100平方厘米,那么阴影部分的面积是多少平方厘米?例题3如图所示,ABFE和CDEF都是长方形,AB的长是4厘米, BC 的长是3厘米.那么图中阴影部分的面积是多少平方厘米?「分析」能否通过等积变形,把上层与下层的三角形分别变成一个三角形呢?练习3如图,ABCD和CDEF都是平行四边形,四边形ABFE面积为60平方厘米.请问:阴影部分面积是多少平方厘米?在利用同底等高三角形计算面积的题目中, 而寻找同底.等高.、面积相等的三角形. 最重要的一步就是去寻找其中的平行线,进A F HBE CA D例题4如图,梯形ABCD中,E是对角线AC上的一点, 已知DE和AB平行,那么与△ ADC面积相等的三角形一共有哪几个?「分析」要找同底等高面积相等的三角形,首先必须找到平行线哦!练习4如图,梯形ABCD中,共有几个三角形?其中面积相等的三角形共有哪几对?画辅助线是解决几何问题最常用、最重要的方法之一,一条好的辅助线,往往能把无从下手的复杂题目变得非常简单.一般我们习惯把辅助线画成虚线.在上一讲中,我们已经接触过了一些需要画辅助线解决的题目,在利用同底等高三角形计算面积的题目中,我们往往需要自己画出平行线.去构造、寻找同底等高的三角形进而进行面积转化.例题5如图,大正方形的边长是10厘米,小正方形的边长是「分析」图中的三角形底、高都是未知并且不可求的,能否通过等积变形,寻找与它们同底等高、面积相等的三角形呢?记得先找平行线哦!8厘米.求阴影部分的面积.A DO如右图,梯形ABCD中,对角线相交于0点,由于AD与BC平行,那么就有△ ABC与厶DBC同底等高、面积相等,△ ABD与厶ACD同底等高、面积相等.那么这个图中还有没有其他面积相等的三角形呢?我们观察一下,△ ABC与厶BCD都包含有厶OBC,而△ABC与厶BCD面积相等,那么就有△ ABO与厶CDO面积相等.我们把梯形中出现的这第三对三角形面积相等称作“梯形的两翼相等”,因为△ ABO与△ CDO恰好如同两片翅膀一般,有的时候我们也称其为“蝴蝶模型”“蝴蝶模型”在几何中应用非常广泛,尤其是在高年级学习比例之后,而且,应用蝴蝶模型,往往能够使得一些过去非常头疼的题目变得异常简单.例题6如图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD=15,四边形EFGO的面积是多少?「分析」能否应用“蝴蝶模型”,使得三块分离的三角形合并呢?课堂内外蝴蝶定理蝴蝶定理 (Butterfly theorem ),是古典欧式平面几何中最精彩的结果之一.这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开.这个定理最基本的叙述为:设M为圆内弦PQ的中点,过M作弦AB和CD,设AD和BC分别相交PQ于点X和Y,贝U M是XY的中点.从图中可以看出题目的图形像一只蝴蝶,该定理名字由此而得.实际上,在椭圆中,依然存在蝴蝶定理,把上图“压扁”即可.O实际上,在椭圆中,依然存在蝴蝶定理,把上图“压 扁”即可.与厶DBC 同底等高、面 积相等,△ ABD 与厶ACD 同底等高、面积相等.那么这个图中还有没有其他面积相等的三角形呢? 我们观察一下,△ ABC 与厶BCD 都包含有厶OBC ,而△ABC 与厶BCD 面积相等,那么就有△ ABO 与厶CDO 面积相等. 我们把梯形中出现的这第三对三角形面积相等称作“梯形的两翼相等”△CDO 恰好如同两片翅膀一般,有的时候我们也称其为“蝴蝶模型” “蝴蝶模型”在几何中应用非常广泛,尤其是在高年级学习比例之后, 模型,往往能够使得一些过去非常头疼的题目变得异常简单.例题 6如图所示, 长方形 ABCD 内的阴影部分的面 A 积之和为70, AB=8, AD=15,四边形 EFGO 的 面积是多少?「分析」 能否应用“蝴蝶模型” ,使得三块 分离的三角形合并呢?B课堂内外蝴蝶定理蝴蝶定理 ( Butterfly theorem ),是古典欧式平面几何中最精彩的结果之一. 这个命题最早出现在 1815 年,而“蝴蝶定理”这个名称最早出现在《美国数学 月刊》 1944 年 2月号, 1985 年,在河南省《数学教师》创刊号上,杜锡录同志以《平 面几何中的名题及妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地 到处传开.这个定理最基本的叙述为:设 M 为圆内弦 PQ 的中点,过 M 作弦AB 和CD ,设AD 和BC 分别相交 PQ 于点X 和Y ,贝U M 是XY 的中点.从图中可以看出题目的图形像一只蝴蝶,该定理名字 由此而得.,因为△ ABO 与而且,应用蝴蝶 O GEFO实际上,在椭圆中,依然存在蝴蝶定理,把上图“压 扁”即可.与厶DBC 同底等高、面 积相等,△ ABD 与厶ACD 同底等高、面积相等.那么这个图中还有没有其他面积相等的三角形呢? 我们观察一下,△ ABC 与厶BCD 都包含有厶OBC ,而△ABC 与厶BCD 面积相等,那么就有△ ABO 与厶CDO 面积相等. 我们把梯形中出现的这第三对三角形面积相等称作“梯形的两翼相等” △CDO 恰好如同两片翅膀一般,有的时候我们也称其为“蝴蝶模型”“蝴蝶模型”在几何中应用非常广泛,尤其是在高年级学习比例之后, 模型,往往能够使得一些过去非常头疼的题目变得异常简单.例题 6如图所示, 长方形 ABCD 内的阴影部分的面 A 积之和为70, AB=8, AD=15,四边形 EFGO 的 面积是多少?「分析」 能否应用“蝴蝶模型” ,使得三块 分离的三角形合并呢?B课堂内外蝴蝶定理蝴蝶定理 ( Butterfly theorem ),是古典欧式平面几何中最精彩的结果之一. 这个命题最早出现在 1815 年,而“蝴蝶定理”这个名称最早出现在《美国数学 月刊》 1944 年 2月号, 1985 年,在河南省《数学教师》创刊号上,杜锡录同志以《平 面几何中的名题及妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地 到处传开. 这个定理最基本的叙述为:设 M 为圆内弦 PQ 的中点,过 M 作弦AB 和CD ,设AD 和BC 分别相交 PQ 于点X 和Y ,贝U M 是XY 的中点.从图中可以看出题目的图形像一只蝴蝶,该定理名字 由此而得.,因为△ ABO 与 而且,应用蝴蝶 O GEFO实际上,在椭圆中,依然存在蝴蝶定理,把上图“压 扁”即可.如右图,梯形 ABCD 中,对角线相交于 O 点,由于AD 与BC 平行,那么就有△ ABC 与厶DBC 同底等高、面 积相等,△ ABD 与厶ACD同底等高、面积相等.那么这个图中还有没有其他面积相等的三角形呢? 我们观察一下,△ ABC 与厶BCD 都包含有厶OBC ,而△ABC 与厶BCD 面积相等,那么就有△ ABO 与厶CDO 面积相等. 我们把梯形中出现的这第三对三角形面积相等称作“梯形的两翼相等” △CDO 恰好如同两片翅膀一般,有的时候我们也称其为“蝴蝶模型”“蝴蝶模型”在几何中应用非常广泛,尤其是在高年级学习比例之后, 模型,往往能够使得一些过去非常头疼的题目变得异常简单.例题 6如图所示, 长方形 ABCD 内的阴影部分的面 A 积之和为70,AB=8,AD=15,四边形 EFGO 的 面积是多少?「分析」 能否应用“蝴蝶模型” ,使得三块 分离的三角形合并呢?B课堂内外蝴蝶定理蝴蝶定理 (Butterfly theorem ),是古典欧式平面几何中最精彩的结果之一. 这个命题最早出现在 1815 年,而“蝴蝶定理”这个名称最早出现在《美国数学 月刊》 1944 年 2月号, 1985 年,在河南省《数学教师》创刊号上,杜锡录同志以《平 面几何中的名题及妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地 到处传开.这个定理最基本的叙述为:设 M 为圆内弦 PQ 的中点,过 M 作弦AB 和CD ,设AD 和BC 分别相交 PQ 于点X 和Y ,贝U M 是XY 的中点. 从图中可以看出题目的图形像一只蝴蝶,该定理名字 由此而得.,因为△ ABO 与 而且,应用蝴蝶O GEF实际上,在椭圆中,依然存在蝴蝶定理,把上图“压 扁”即可.如右图,梯形 ABCD 中,对角线相交于 0 点,由于AD 与BC 平行,那么就有△ ABC 与厶DBC 同底等高、面 积相等,△ ABD 与厶ACD同底等高、面积相等.那么这个图中还有没有其他面积相等的三角形呢? 我们观察一下,△ ABC 与厶BCD 都包含有厶OBC ,而△ABC 与厶BCD 面积相等,那么就有△ ABO 与厶CDO 面积相等. 我们把梯形中出现的这第三对三角形面积相等称作“梯形的两翼相等”△ CD0 恰好如同两片翅膀一般,有的时候我们也称其为“蝴蝶模型”“蝴蝶模型”在几何中应用非常广泛,尤其是在高年级学习比例之后, 模型,往往能够使得一些过去非常头疼的题目变得异常简单.例题 6如图所示, 长方形 ABCD 内的阴影部分的面 A 积之和为70,AB=8,AD=15,四边形 EFGO 的 面积是多少?「分析」 能否应用“蝴蝶模型” ,使得三块 分离的三角形合并呢?B课堂内外蝴蝶定理蝴蝶定理 ( Butterfly theorem ),是古典欧式平面几何中最精彩的结果之一. 这个命题最早出现在 1815 年,而“蝴蝶定理”这个名称最早出现在《美国数学 月刊》 1944 年 2 月号, 1985 年,在河南省《数学教师》创刊号上,杜锡录同志以《平 面几何中的名题及妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地 到处传开.这个定理最基本的叙述为:设 M 为圆内弦 PQ 的中点,过 M 作弦AB 和CD ,设AD 和BC 分别相交 PQ 于点X 和Y ,贝U M 是XY 的中点.从图中可以看出题目的图形像一只蝴蝶,该定理名字 由此而得.,因为△ ABO 与而且,应用蝴蝶0 GEFO实际上,在椭圆中,依然存在蝴蝶定理,把上图“压扁”即可.如右图,梯形 ABCD 中,对角线相交于 O 点,由于 AD 与BC 平行,那么就有△ ABC 与厶DBC 同底等高、面 积相等,△ ABD 与厶ACD 同底等高、面积相等.那么这个图中还有没有其他面积相等的三角形呢?我们观察一下,△ ABC 与厶BCD 都包含有厶OBC ,而△ ABC 与厶BCD 面积相等,那么就有△ ABO 与厶CDO 面积相等. 我们把梯形中出现的这第三对三角形面积相等称作“梯形的两翼相等” △CDO 恰好如同两片翅膀一般,有的时候我们也称其为“蝴蝶模型” “蝴蝶模型”在几何中应用非常广泛,尤其是在高年级学习比例之后,模型,往往能够使得一些过去非常头疼的题目变得异常简单. 例题 6如图所示, 长方形 ABCD 内的阴影部分的面 A 积之和为70, AB=8, AD=15,四边形 EFGO 的 面积是多少?「分析」 能否应用“蝴蝶模型” ,使得三块 分离的三角形合并呢?B 课堂内外蝴蝶定理蝴蝶定理 ( Butterfly theorem ),是古典欧式平面几何中最精彩的结果之一.这个命题最早出现在 1815 年,而“蝴蝶定理”这个名称最早出现在《美国数学 月刊》 1944 年 2月号, 1985 年,在河南省《数学教师》创刊号上,杜锡录同志以《平 面几何中的名题及妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地 到处传开.这个定理最基本的叙述为:设M 为圆内弦 PQ 的中点,过 M 作弦AB 和CD ,设 AD 和BC 分别相交 PQ 于点X 和Y ,贝U M 是XY 的中点.从图中可以看出题目的图形像一只蝴蝶,该定理名字 由此而得.,因为△ ABO 与 而且,应用蝴蝶OGE F。

高思奥数导引小学三年级含详解答案第21讲.间隔与数列

高思奥数导引小学三年级含详解答案第21讲.间隔与数列

第21讲间隔与阵列兴趣篇1、社区门口有一条长为100米的马路,现在要在这条马路的一侧种树,每隔10米种一棵,而且马路的两端都要种。

一共需要种多少棵树?2、学校门前有条长100米的马路,马路两侧一共种了42棵树。

每侧相邻两棵树之间的距离都相等,而且马路的两端都种了。

请问:相邻两棵树之间的距离是多大?3、包包上楼,从第一层走到第三层需要上36级台阶。

如果各层楼之间的台阶数相同,那么包包从第一层走到第六层一共需要上多少级台阶?4、学校组织军训,教官让男生站一排,女生站一排。

请问:(1)包包和同班女生站成一排,她发现自己的左侧有7人、右侧有8人。

女生一共有多少人?(2)铮铮和同班男生站成一排,他发现自己是左起第7个、右起第9个。

男生一共有多少人?(3)昊昊也在男生队伍里。

他发现自己是左起第4个,他的右侧应该有几人?他应该是右起第几人?5、运动会闭幕式结束后,大家准备散场。

班长包包让全班同学站成一行清点人数(她自己并不在队伍中)。

她先从左往右数,发现铮铮是第25个;然后她又从右往左数,发现昊昊正好是第29个。

如果队伍里一共有31人,那么铮铮和昊昊之间有几个人?6、一整块大豆腐长40厘米,宽20厘米。

厨师准备把它切成一些长5厘米,宽4厘米的小块,而且每次只能沿着直线切。

如果不允许移动豆腐的位置,那么厨师至少要切几次?7、学校有一个圆形水池,水池的周长为40米。

如果绕着水池每隔4米种一棵树,一共要种几棵树?8、50个男生沿着300米的跑道站成一圈,并且相邻两人之间的距离都相等。

现在,每相邻两个男生之间又加入了两个女生,相邻两人之间的距离还是相等。

请问:一共加入了多少个女生?加入女生后,相邻两人之间的距离又是多少米?9、有100个人站成一个实心方阵,那么这个方阵的最外层共有多少人?从外向里算起的第二层有多少人?从里向外算起的第三层有多少人?10、一个实心方阵,最外层一共有20人。

请问:(1)最外层每边有多少人?这个方阵一共有多少人?(2)如果要组成一个更大的方阵,至少需要增加多少人?(3)如果给这个方阵最外面再增加一层,那么需要增加多少人?拓展篇1、刘老师想做一张木凳。

高思奥数导引小学五年级含详解答案第21讲:数字问题

高思奥数导引小学五年级含详解答案第21讲:数字问题

第21讲数字问题内容概述各种与数字有关的数字谜问题。

学会位值原理的分析方法;综合应用已学的数字谜技巧和数论知识。

兴趣篇1.一个两位等于它的数字和的6倍,求这个两位数。

2.今年是2008年,小王说:“我的年龄正好与我出生那年年份的四个数字之和相同”。

请问:小王今年多大?3.用3个不同的数字组成6个不同的三位数,这6个三位数的和是2886,求6个三位数中最小的一个。

4.有一个两位数,在它前面加上数字“3”可以得到一个三位数;在它后面加上数字“3”也得到一个三位数;在它前、后各加一个数字“3”得到一个四位数。

已知得到的三个数总和为3600,求原来的两位数。

5.有A B、两个整数,A的各位数字之和为35,B的各位数字之和为26,且两数相加时进位三次,求A B的各位数字之和。

6.有些三位数,如果它本身增加3,那么新的三位数的各位数字的和就减少到原来三位数各位数字之和的13,求所有这样的三位数。

7.一张卡片上写了一个五位数,李老师给学生看时拿倒了,这时卡片上还是一个五位数。

这个五位数比原来的五位数小71355。

问:原来卡片上写的五位数是多少?8.有一个四位数29M N ,它是由M 个2的积与N 个9的积相乘得到的,求这个四位数。

9.如果312333n 个是27的倍数,那么n 最小是几?10.从1至9这9个数中选出8个不同的数字,组成能被24整除的八位数。

试问:在这样的八位数中,最大的和最小的分别是多少?拓展篇1.在一个两位数的两个数字中间加一个0,所得的三位数比原数大8倍,求这个两位数。

2.把一个两位数的个位数字与十位数字交换后得到一个新数,新数与原数的和恰好是某个自然数的平方。

请问:这个和是多少?3.有一个三位数是8的倍数,把它的各位数字的顺序颠倒过来所得到的新三位数与原三位数的和恰好是1111。

请问:原来的三位数是多少?4.在等式“58⨯=⨯学习好勤动脑勤动脑学习好”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,“学习好勤动脑”所表示的六位数最小是多少?5.在一个三位数的百位和十位之间加入一个数字后,得到的四位数恰好是原三位数的9倍,在这样的三位数中最小的是多少?最大的是多少?6.用5、7、2、0、8这5个数字组成两个没有重复数字的五位数,这两个五位数的差是66663,这两个数中较大的一个可能是多少?7.有两个相邻的自然数,它们的各位数字之和均为7的倍数,这两个自然数中较小的数是多少?8.记号!n 表示前n 个正整数相乘,并且规定0!1=,例如:4!1234=⨯⨯⨯。

完整word版,高思导引四年级第六讲行程问题教师版

完整word版,高思导引四年级第六讲行程问题教师版

第6讲行程问题一内容概述掌握速度、路程、时间的概念,以及它们之间的数量关系,掌握基本相遇问题和基本追及问题的解法;学会用比较的方法分析同一段路程上不同的运动过程. 重点掌握画线段图的分析方法.典型问题兴趣篇1. A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时. 如果要按照原定的时间到达B城,汽车在后一半路程上每小时应该行驶多少千米?解:速度=路程÷时间(1)汽车速度:240÷6=40(千米)(2)6÷2=3(时)(240÷2)÷(3—1)=60(千米)2. A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1) 甲从A走到B需要多长时间?(2) 两个人从出发到相遇需要多长时间?解:(1)4800÷60=80(分)(2)时间=路程和÷速度和4800÷(60+100)=30(分)3. 在第2题中,如果甲、乙两人的速度大小不变,但甲出发时改变方向,即两个人同时、同向出发. 请问:乙出发后多久可以追上甲?解:路程差=速度差×时间时间=路程差÷速度差4800÷(100-60)=120(分)4. 甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地,2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地. 问:什么时候两车在途中相遇?解:40×2=80(千米)(350-80)÷(40+50)=3(时)8点+2小时+3小时=13点5. 小悦和冬冬分别从相距720米的两地出发同向而行,且冬冬比小悦先出发2分钟,已知小悦的速度是每分钟60米,冬冬的速度为每分钟50米,试问:当小悦追上冬冬的时候,冬冬已经走了多少米?解:追及时间:(720+50×2)÷(60-50)=82(分)冬冬走的路程:50×(82+2)=4200(米)6. 一辆公共汽车和一辆小轿车从相距350千米的两地同时出发,相向而行,公共汽车每小时行40千米,小轿车每小时行60千米,问:(1) 2小时后两车相距多少千米?(2) 经过几小时后两车第一次相距50千米?解:(1)350-(40+60)×2=150(千米)(2)(350-50)÷(40+60)=3(时)7.一辆公共汽车和一辆小轿车从相距300千米的两地同时出发,同向而行,公共汽车在前,每小时行40千米;小轿车在后,每小时行60千米,问:(1) 经过6小时后两车相距多少千米?(2) 经过几小时后两车第一次相距100千米?解:(1)300-(60-40)×6=180(千米)(2)(300-100)÷(60-40)=10(时)8. 甲、乙两人分别在A地和B地,甲从A地到B地需要20分钟,乙从B地到A地需要30分钟,如果两个人同时出发相向而行,多长时间可以相遇?解:假设AB两地相距60米,甲的速度:60÷20=3(米)乙的速度:60÷30=2(米)60÷(2+3)=12(分)9. 甲、乙两车分别从A、B两地同时出发相向而行,已知甲车每小时行驶40千米,两车6小时后相遇,相遇后它们继续前进,又过了3小时,甲车到达B地,问:乙车还要过多久才能到达A地?解:甲3小时走的路程与乙6小时走的路程相等,所以甲走6小时乙需要走12小时。

第10讲排列组合公式-高思数学_4年级下第十讲排列组合公式

第10讲排列组合公式-高思数学_4年级下第十讲排列组合公式

小高要想说对口诀还真不容易!大家学过乘法原理,口诀第一个字有6种说法,第二个字有5种说法,依次类推,口诀这六个字共有654321720×××××=(种)排法.我们也可以这样理解:只有把口诀这六个字按照正确的顺序排列好,才能练成高思神掌.把六个字排成一列,就是我们这一讲要学习的排列.排列公式:从m 个不同44的元素中取出n 个(n ≤m ),并按照一定的顺序排成一列,其方法数叫做从m 个不同元素中取出n 个的排列数,记作A n m,它的计算方法如下:A n m =比如,从1、2、3、4中挑两个数字组成一个两位数,十位上有1、2、3、4这4种选择,十位选定后,个位可以从剩下的三个数字中选,有3种选择.根据乘法原理可以知道,这样的两位数有4312×=(个).我们也可以这样理解,要组成两位数相当于从1、2、3、4中挑两个数字排成一行,有24A 4312=×=(种)排法,所以这样的两位数有12个.关于排列数的计算,再给大家举几个例子:45A 5432120=×××=(从5开始递减地连乘4个数);38A 876336=××=(从8开始递减地连乘3个数);1100A 100=(从100开始递减地连乘1个数). 分析 直接用公式计算,注意要从几开始乘,连乘几个数.练习1.计算:(1)25A ; (2)5277A A −.生活中的许多问题其实就是排列问题.例如,你回家后,发现桌上有牛奶糖、巧克力和水果糖各一颗,你会按照什么顺序来吃这三颗糖?先吃哪个再吃哪个,有多少种顺序呢?这其实就是一个排列问题.分析 本题要排成一行,顺序有没有影响?假设是红黄蓝绿白五种颜色的话,“黄红白”和“白红黄”表示的是一种信号还是两种信号呢?练习2.有4名同学,要选出3人从左往右排成一排,一共有多少种不同的排法?分析 本题要从五个数字中选出多少个数字排成一排?如何用排列进行计算?千位是多少的数肯定比4125小?练习3.从5、6、7、8、9这五个数字中选出四个数字(不能重复)组成四位数,共能组成多少个不同的四位数?其中比6957大的有多少个? 拍聚会照 赵项和童学是好朋友.一天,童学的父母带着童学和赵项出去游玩.赵项酷爱摄影,提出要给童学拍全家福,童学一家以为只拍一张照片,就同意了.结果赵项要求童学一家在6个不同景点,按照“爸爸、童学、妈妈”、“妈妈、童学、爸爸”等6种排列方式全拍一遍,且每次拍照时每个人的动作都不一样.童学一家非常厌烦,但既然同意拍照了就只能硬着头皮拍完这6张照片.一个月之后,班里有十人左右的同学聚会.童学说:“咱们让赵项来拍聚会照吧!”同学们应声附和,赵项一听,撒腿就跑,心想:“还不得累死我啊!”一共可以表示出多少种不同的信号?字的四位数?将它们从小到大排列起来,例题3与排列问题类似,生活中也存在着许多组合问题.例如,你回家后,还是发现桌上有牛奶糖、巧克力和水果糖各一颗,但现在要选两颗装进口袋,有多少种方式呢?这其实就是一个组合问题.组合公式:从m 个不同元素中取出n 个(n ≤m )作为一组(不计顺序),可选择的方法数叫做从m 个不同元素中取出n 个不同的组合数,记作C n m ,它的计算方法如下:()C A A [1n n n m m n m m =÷=×−×�()1]A n n m n ×−+÷….比如,要从1、2、3、4中挑两个数,这时挑出1、2与挑出2、1都是一样的,挑出1、3与挑出3、1也是一样的.换句话说,能组成的两位数有24A 个,但每两个数字对应的22A 2=个两位数,在这里只算作同一种挑法.因此,只是从1、2、3、4中挑两个数而不考虑顺序,有2242A A 1226÷=÷=(种)方法.例如222552C A A 10=÷=,333553C A A 10=÷=;333883C A A 56=÷=,555885C A A 56=÷=.在刚才的四个算式中,2355C C =,3588C C =.其实这个关系是可以推广的.比如,5277C C =,4599C C =,1822020C C =……大家能从组合数定义的角度,说出为什么会有这样的等量关系吗?分析 直接用公式计算,注意公式里每个数字的含义.练习4.(1)27C ; (2)22863C 2C ×−×; (3)1213C . 分析 要想画出一条线段,需要选出几个点?要想画出一个三角形呢?四边形呢?为顶点或端点,一共可以画出多少条线段?多少个三角形?多少个四边形?例题5练习5.在一个圆周上有7个点,以这些点为顶点,一共可以画出多少个五边形?在身高互不相同的如果可以随便站,那么一共有多少种排法?如果要求第二排最矮的人也比第一排最高的人高,那么一共有多少种不同的排法?题本一、A n m:从m个不同的元素中取出n个(n≤m)排成一列的方法数.()()A11nmm m m n=×−××−+.二、C n m:从m个不同的元素中取出n个(n≤m)的方法数.()()()C A A1111n n nm m nm m m n n n=÷=×−××−+÷×−××.三、C Cn m nm m−=.(n≤m)作业1.计算:(1)34A;(2)3255A A−.2.海军舰艇之间经常用旗语来互相联络,方式是这样的:在旗杆上从上至下升起3面颜色不同的旗帜,每一种排列方式就代表一个常用信号,如果共有6种不同颜色的旗帜,那么可以组成多少种不同的信号?3.从3、4、5、6、7这五个数字中选出三个数字(不能重复)组成三位数,共能组成多少个不同的三位数?其中比635小的有多少个?4.(1)38C;(2)32752C C×−;(3)211C.5.在平面上有10个点,以这些点为端点,一共可以连出多少条线段?。

高思导引-四年级-竖式问题教师版汇编

高思导引-四年级-竖式问题教师版汇编

学习-----好资料第5讲竖式问题内容概述以字母或汉字表示数字的竖式问题,学会选择适当的突破口,并逐步解决问题;能够将文字叙述的题目转化为数字谜形式,便于直观地解决问题。

典型问题兴趣篇1.如图5-1所示,每个英文字母代表一个数字,不同的字母代表不同的数字,其中“G”代表“5”,“A”代表“9”,“D”代表“0”,“H”代表“6”.问:“I”代表的数字是多少?分析:也一定有A+E=HC=4,A+D=D,所以,它们的和一定有进位,所以,、2、F分别是1没有用,所以1、2、3、8B,现在还剩进位,所以E=7I=3.的加法竖式中,不同的汉字代表不同的数字,相同的汉字代)在图5-22. (1 表相同的数字,那么每个汉字各代表什么数字?的减法竖式中,不同的汉字代表不同的数字,相同的汉字代表相在图5-3(2)同的数字,那么每个汉字各代表什么数字?分析:,卒=1(1)观察可得:车,马=卒,所以兵=5=0,兵+兵马,所炮=,+1=5,所以马=4炮+=2以炮5240+5210=10450=2=马,所以:兵,=12)观察可得:炮,兵—兵=马,一定有借位,所以马=9,炮—兵(292=929—1221的竖式中,相同的汉字代表相同的3. 在图5-4+如果23+解数字,不同的汉字代表不同的数字,”所代表的三,那么“字++谜=30 数数字谜位数是多少?更多精品文档.学习-----好资料不同的汉字代表不同的数字,每个汉字代表一个数字,图5-5所示的竖式中,4. ”代表的四位数是多少?那么“北京奥运分析:奥++京,北+奥=0,所以可得要进位,所以;京=8 观察可得:北=1,北+京=9 ,运位,所以:奥=0+运=8,所以要进2=1809 北京奥运ABCDE所示的乘法竖式成立,那么5. 已知图5-6是多少?相同的符号代5-7的竖式中,6. (1) 在图表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?的竖式中,相同的符号代表5-8(2) 在图不同的符号代表不同的数字,相同的数字,那么☆、△、○分别代表什么数字?分析:三种可能,因为是三位数5、9,×△=△,所以△=1、)(1△,○=1,☆乘一位数等于四位数,所以1排除,经分析:△=5=2=2 ,○,当△=5时,☆=4、)△=15、6三种可能,排除12 (=3○=5时,△当=6☆,更多精品文档.学习-----好资料7. 如图5-9,相同的字母表示相同的数字,不同的字母表示不同的数字,那么十个方框中数字之和是多少?分析:B×B=B,所以B=1、5、6,三种可能,经分析1排除,A×B=B,所以B=5,A为奇数,三位数乘B得三位数,所以第一个方格中添1,一百多乘一位数得四位数,所以A只能是7、9,当A=7时,C=7,矛盾不成立;当A=9时,C=7,成立;所以:195×95=18525 1+9+1+7+5+1+8+5+2+5=448. 在图5-10和图5-11中的方格内填入适当的数字,使下列除法竖式成立.分析:,所以除数9=783(1)除数×=6003 ,所以被除数×6=522=87,8787=69÷6003=2465 5=145,所以被除数8=232,所以除数=29,29×(2)除数×29=85÷2465所示的除法竖式中填入合适的数字,使得竖式成立,那么其中的商5-129.在图是多少?分析:三= 除数×7=两位数,除数×另一个一位数,所以除数只能是位数,且三位数的十位上是2 ,9=12614,14×7=98,14×=79所以除数更多精品文档.好资料学习-----后所得乘积恰好是将原来的四位数各位数字顺序910. 有一个四位数,它乘以.颠倒而得的新四位数,求原来的四位数拓展篇不同的汉字代表不同的数字,相同的汉字代表相同的数字,和5-14中,1. 在图5-13. 求出它们使竖式成立的值分析:,四个语、语=5 (1)观察得:巧=1,所以三个英相加得数,进2相加得20,所,向前进2的个位是8,所以英得6 以学=4 以学+学得数个位也是8,所1465+林=7,奥++=6,奥林+匹进2,所以林2 ()观察的奥+林有进1,所以奥6789=83,所以匹,克=9 匹+克进,在这个算式中,相2. 如图5-15不同的同的字母代表相同的数字,、A字母代表不同的数字,那么数字分别是多少?B、C分析:有借位,没有借位,C—BCA=A,—B=B,所以C—AC观察—A=4A=A,所以B=9,所以有借位且,C=8,已知C—B—B=B8、4、9不同的字母表示不同的数在图5-16的竖式中,相同的字母表示相同的数字,3. 字,并且A<B<C<D. 问:竖式中的和是多少?分析:D=5 C=4,,,观察得A=2B=3 2233+3344+4455=10032更多精品文档.学习-----好资料4. 在图5-17的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,那么“”所代表的七位数是多少?携手上海世博会分析:,个=9,手=0,上观察得,黄金三角:携=1,所=7位数的和肯定要进位,要使进1为,则博,=6位,办海=4,假设百位向前进2以会只能是2,,位,办=5,成立,1094382 ;假设百位向前进3=8当世=3时,在;,成立,1094872=8时,在=3当世小悦写了一个四位数,冬冬把这个四位数的个位抹掉,变成了一个三位数,5. 阿奇又把这个三位数的个位抹掉,变成了一个两位数,最后把这三个数加起来,小悦原来写的四位数是多少?结果刚好是7826.分析:利用位值原理ABCD+ABC+AB=78261000A+100B+10C+D+100A+10B+C+10A+B=1110A+111B+11C+D=7826D=1 56-55=1 则当则B=0 C=5时-时当A=778267770=56 7051即一个各位数字互不相同的三位数,用它的三个数字组成一个最大的三位数,6. 再用这三个数字组成一个最小的三位数,组成的这两个三位数之差正好是原来. 求原来的三位数的三位数.更多精品文档.学习-----好资料移到左边首位数字前面,所构成44,将这个7. (1) 一个自然数的个位数字是 4倍,那么原数最小是多少?的新数恰好是原数的一个五位数,将它的各位数字顺序颠倒就可以得到一个新的五位数,而且(2)/4倍,那么原来的五位数是多少这个新的五位数恰好是原数的)(1219782)(中的一个数字,不同的字母2,……908. 如图5-18,每一个英文字母代表,1 、RF分别代表什么数字?、、、代表不同的数字,则字母AQT更多精品文档.学习-----好资料分析:不QAQ×T=1符合题意,当Q=6时为5或6 当Q=5时A=2 .........QTAQ等于T=1 则........AQ×T=AQF=3R=7,Q=5,T=1,A=2,所以“美”三个汉字分别代表三个各不相同的“峡”、中的竖式里,“江”、9. 图5-19. 数字,请把这个竖式写出来分析:=6 ,所以美0,1,5,6中的一个,通过实验排除0,1,5先确定美是□□江,则=×江4或8之一,又因为江峡美或美通过确定江是2 排除,所以江=24或8=8=□□□峡,则峡由于江峡美×峡所示的除法5-2010. 请把如图竖式中空缺的数字补上,其中的商是多少?分析:1 7 则除数个位是7,商的十位数字是=6.........6□□×□□除数的十位数3=×□□□61 则商的个位数字是,7.........6□8 字是更多精品文档.学习-----好资料11. 请把图5-21中的除法竖式补充完整。

高思奥数导引小学四年级含详解答案第20讲 幻方与数阵图扩展部分

高思奥数导引小学四年级含详解答案第20讲  幻方与数阵图扩展部分

第20讲幻方与数阵图扩展兴趣篇1、把1,2,…,9填入图中9个空白圆圈内,使得三个圆周及三条线段上3个数之和都相等。

2、(1)如图1,在3×3的方格表的每个方格中填入恰当的数,使得每行、每列、每条对角线上所填数之和都相等。

(2)如图2,在4×4的方格表的每个方格中填入恰当的数,使得每行、每列、每条对角线上所填数之和都相等。

3、在图所示的3×4方格表的每个方格中填入恰当的数后,可以使各行所填的数之和相等,各列所填的数之和也相等。

现在一些数已经填出,标有符号“*”的方格内所填的数是多少?4、如图,请在空格中填入适当的数,组成一个三阶幻方。

5、请将图所示的5×5方格表补充完整,使得每个方格内都有一个数字,并且具有如下的性质:方格表中每行,每列和每条对角线的5个方格内所填的5个数中,1、2、3、4、5 恰好各出现一次。

请问:标有符号“△”,“▽”和“◯”的方格中所填的数分别是什么?6、请将1至9这9个数填入图中的方框内,使得所有不等号都成立。

所有满足要求的填法共有多少种?7、请在图所示的8个小圆圈内,分别填入1至8这8个数字,使得图中用线段连接的两个小圆圈内所填的数的差(大减小)恰好是1、2、3、4、5、6、7。

8、将1至5这5个数字填入图中的圆圈内,使得横线、竖线、大圆周上所填数之和都相等。

9、请在图中的六块区域内填入1、2、3、4、5、6,使得对每一个小圆圈来说,与它相邻的区域内的数之和都相等。

10、将0至9填入图的10块区域中(阴影区域除外),使得每个圆内的三个数之和都是相等的。

请问:这个和最小是多少?最大是多少?拓展篇1、将1,2,3,…,24,25分别填入图的各个方格中,使得每行、每列及两条对角线上的数的和相等。

现在已经填入了一些数,标有符号“*”的方格内所填的数是多少?2、请在图的每个空格内填入一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等。

四年级数学上册第4单元运算律_第01讲_带括号的运算(学生版)(北师大版)

四年级数学上册第4单元运算律_第01讲_带括号的运算(学生版)(北师大版)

高思爱提分演示(KJ)初中语文学生辅导讲义学员姓名寒假班年级初一辅导科目初中语文学科教师李红娟上课时间2020-02-05 07:00:00-09:00:00知识图谱括号知识精讲1.含有小括号的混合运算的运算顺序:先算小括号里面的,再算小括号外面的.2.含有中括号的混合运算的运算顺序:中小括号混合算,运算顺序要体现.小括号里要优先,中括号里紧接算.括号里面全算完,中括号外最后算.3.在以后的学习中,随着综合算式运算步骤的增多,还会用到大括号“{}”,又称花括号.大括号用在中括号外面.典型例题(1)计算,说一说运算的顺序.(2)在的基础上加上小括号,变成,运算顺序怎样?(3)在的基础上加上中括号“[]”,变成另一个算式,运算顺序怎样?名师学堂(1)“”中既含乘、除法,又含加法,要先算乘、除法,再算加法.正确解答,.(2)“()”叫小括号,它的作用是改变运算顺序,算式里有小括号的,要先算小括号里面的,再算小括号外面的.即正确解答,加上小括号后,运算顺序发生改变,要先算小括号里面的,再算小括号外面的.(3)“[]”叫中括号,它与小括号的作用相同,都是改变运算顺序.混合运算中,如果加了小括号仍需改变运算顺序,就用中括号,中括号一般在小括号的外面.一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的.正确解答,先算加法,再算乘法,最后算除法.三点剖析重点:通过比较,理解并掌握含有小括号或中括号的混合运算的顺序,正确计算三步算式.难点:能正确进行整数四则混合运算.易错点:过早去掉中括号,导致运算顺序错误.不含括号的混合运算顺序例题例题1、小方家的西厅用的木地板如下图。

(1)用了多少块木地板?(想一想可以怎样算)(2)每块地板25元,准备3000元够吗?例题2、在学校举办的读书比赛中,四(1)班的同学取得了优异的成绩(获奖人数见下表)。

为此,班主任老师准备用400元给他们购买图书作奖品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21讲 排列组合内容概述了解排列、组合公式的来由及含义,掌握具体的计算方法;辨析排列、组合之间酌区别与联系,并能够合理应用.典型问题兴趣篇1. 计算:24(1)A410(2)A3336(3)3A A ⨯+【答案】(1)12 (2)5040 (3)138【解析】根据排列公式 )1()1(+-⨯-⨯=n m m m A nm 计算 243341036(1)4312(2)109875040(3)3138A A A A =⨯==⨯⨯⨯=⨯+=2.费叔叔、小悦、冬冬和阿奇四个人站成一排照相,一共有多少种不同的排列方法? 【答案】24【解析】这种排列是有序的24123444=⨯⨯⨯=A3.体育课上,老师从10名男生中挑出4人站成一排,—共有多少种不同的排列方法? 【答案】5040【解析】先从10人中选出4人,再让4人全排列50402102444410=⨯=⨯A C4.费叔叔、小悦、冬冬、阿奇四个人一块乘公共汽车去公园,上车后发现有8个空座位,他们一共有多少种不同的坐法? 【答案】1680【解析】先让4人选座位,再让4人全排列168024704448=⨯=⨯A C5.用1至7这7个数字一共能组成多少个没有重复数字的三位数?如果把这些三位数从小到大排起来,312是其中第几个? 【答案】(1)210;(2)第61人【解析】第一个位置有7中选择第二个位置有6个选择第三个位置有5个选择个是第个,开头的有个,百位是开头的有百位是61312302301)2(210)1(151617=⨯⨯A A A6.计算:25(1)C47(2)C3366(2)A C ⨯【答案】(1)10 (2)35 (3)2400 【解析】根据组合公式24335766547654(1)10(2)35(3)120202*********n n m mn n A C C C A C A ⨯⨯⨯⨯=====⨯=⨯=⨯⨯⨯⨯7.图21-1中有六个点,任意三个点都不在一条直线上.请问:(1)以这些点为端点,一共可以连出多少条线段? (2)以这些点为顶点,一共可以连出多少个三角形? 【答案】(1)15条;(2)20个【解析】(1)不在同一直线两点确定一条直线2615C =(2)不在同一直线三点确定一个三角形3620C =个8.费叔叔把10张不同的游戏卡片分给冬冬和阿奇,并且决定给冬冬8张,给阿奇2张.一共有多少种不同的分法? 【答案】45【解析】先选出8张冬冬,剩下2张就是阿奇的81020C =9.小悦要从八门课程中选学三门,一共有多少种选法?如果数学课与钢琴课时间冲突,不能同时学,她一共有多少种选法? 【答案】50【解析】用排除法八门中任选三门,有56种,数学课与钢琴课同时上有6种,减去不符合题意的6种,318656650C C -=-=种10.象棋兴趣小组一共有9名同学,请问:(1)如果从中选3名同学在第二天的早上、中午、晚上分别做值日,共有多少种选法? (2)如果从中选3名同学去参加一次全市比赛,共有多少种选法? 【答案】(1)504种 ; (2)84种【解析】(1)先选出3人再全排列,39987504A =⨯⨯=种(2)这种选人是无序的3984C =种拓展篇1. 计算:25(1)A37(2)A 4266(3)A A -【答案】(1)20;(2)210;(3)330 【解析】25(1)5420A =⨯=37(2)765210A =⨯⨯=4266(3)654365330A A -=⨯⨯⨯-⨯=2.如图21-2所示,有5面不同颜色的小旗,任取3面排成一行表示一种信号,用这5面小旗一共可以表示出多少种不同的信号?【答案】60【解析】先从5面旗选出3面旗,再让三面旗全排列3560A =种3.3名同学一块去图书馆借科幻小说,发现书架上只剩下9本,且各不相同.如果每人只借1本,那么共有多少种不同的借法? 【答案】504【解析】先从9本书选出3本书,再让3本书全排列39504A =种4.用1、2、3、4、5这五个数码可以组成多少个没有重复数字的四位数?将这些四位数从小到大排列起来,4125是第几个? 【答案】(1)120;(2)74个【解析】(1)第一个位置有5种选法,第二个位置有4种选法,第三个位置有三种选法,第四个位置有2种选法,45120A =(2)千位以1开头的有11143224A A A ⨯⨯=个千位以2开头的有11143224A A A ⨯⨯=个千位以3开头的有11143224A A A ⨯⨯=个千位以4开头第一个4123,第二个就是4125所以243274⨯+=个5. 计算:39(1)C321010(2)2C C -⨯ 45(3)C ,15C 710(4)C ,310C【答案】(1)84;(2)30;(3)5,5;(4)120,120【解析】39(1)84C =;321010(2)21209030C C -⨯=-= ;45(3)5C =,155C =710(4)120C =,310120C =6.如图21-3所示,从端点O 出发的射线共有7条,图中一共有多少个锐角? 【答案】21【解析】夹角最大两条直线间夹角小于90度,所以这两条直线间的任两条直线组成的角小于90度,2776221C=⨯÷=个7.如图21-4所示,在一个圆周上有8个点,以这些点为顶点或端点,一共可以画出多少条线段?多少个三角形?多少个四边形?【答案】(1)28条;(2)56个;(3)70个;【解析】(1)不在同一直线两点确定1条直线,2828C=条(2)不在同一直线三点确定1个三角形,3856C=个(3)不在同一直线四点确定1个四边形,4870C=个8.9支球队进行足球比赛,实行单循环制,即每两队之间只比赛一场.每场比赛后胜方得3分,平局双方各得1分,负方不得分.请问:一共要举行多少场比赛?9支队伍的得分总和最多为多少?【答案】(1)36场(2)108分【解析】(1)9个队中每2个队比一场2936C=场(2)分总和最多,那就是全赢363108⨯=分9.学校十佳歌手大赛的10名获奖选手中,每3人都要照一张合影.问:需要拍多少张照片? 【答案】120张【解析】没有排序问题所以38120C=10.在新学期的班会上,大家要从11名候选人中选出班干部.请问:(1)选出三人组成班委会,那一共有多少种选法?(2)从剩下的候选人中,选出三人分别担任语文、数学、英语的课代表,一共有多少种选法?【答案】(1)165种(2)336种【解析】(1)从11人中选出3人311165C=种(2)从剩下3人选出3人全排列33 83566336C A⨯=⨯=种11.费叔叔带着小悦、冬冬、阿奇去参加一次聚会,主持人要求每个人从12个颜色不同的彩球中领取一个.请问:(1)小悦是第一个取球的人,她一共选出了4个球,准备回头分给大家,那一共有多少种选法?(2)小悦回到座位后,把这4个球分给大家,一共有多少种分法?(3)最后他们四人手中拿到的球一共有多少种可能?【答案】(1)495种;(2)24种;(3)11880种【解析】(1)从12个球中选出4个没有排序问题412495C=种(2)把四个不同色的球分给4个人4424A=种(3)先从12个不同色的球选出4个不同色的球,再分给4个人,44 1244952411880C A⨯=⨯=种12.周末大扫除,老师要从第一组的10名男生和10名女生中选出5人留下打扫卫生.请问:(1)如果老师随意选择,一共有多少种选择方法?(2)如果老师决定选出2名男生和3名女生,一共有多少种选择方法? 【答案】(1)15504种;(2)5400种【解析】(1)从20人中选出5人32015504C=种(2)从10名男生选2人,从10名女生选3人2310105400C C⨯=种超越篇1.有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字的和等于11.将所有这样的四位数从小到大依次排列,第20个是多少?【答案】5132【解析】因为由4个互不相同且不为零的数字组成,并且这4个数字的和等于11,只有数字1,2,3,5满足千位1开头有11326A A⨯=个,千位2开头有11326A A⨯=个,千位3开头有11 326A A⨯=个,千位5开头有第一个5123第二个5132 6+6+6+2=202.在身高互不相同的6个人中,选出3个人站成第一排,另外3个人站成第二排.请问:(1)如果可以随便站,那么一共有多少种排法?(2)如果要求第二排最矮的人也比第一排最高的人高,那么一共有多少种不同的排法? 【答案】(1)720种;(2)36种【解析】(1)先从6人中选出3个人为第一排,再全排列,剩下3人为一排再全排列333 633720C A A⨯⨯=种(2)最高三人为第二排,其余三人为第一排,让它们每排分别全排列,333336A A⨯=种3.小口袋中有4个球,大口袋中有6个球,这些球颜色各不相同.请问:(1)任意取4个球出来,那么共有多少种不同的结果?(2)取出4个球,而且恰好从每个口袋中各取2个球,共有多少种不同结果?【答案】(1)210种;(2)90种【解析】(1)从小口袋取出4个大口袋取0个,从小口袋取出3个大口袋取1个,从小口袋取出2个大口袋取2个,从小口袋取出1个大口袋取3个,从小口袋取出0个大口袋取4个41322314 44646466180902415210C C C C C C C C+⨯+⨯+⨯+=++++=种(2)每个袋子取两个,是无序的224661590C C⨯=⨯=种4. 在1至30这30个自然数中任意挑选出两个不同的数,使得它们的和是偶数,一共有多少种不同的挑选方法? 【答案】210种【解析】和为偶数,共2种情况:奇+奇 偶+偶。

1至30有15个奇数与15个偶数,所以共2×C 152=210种5. 如图21-5所示,两条直线上分别有6个点和4个点.以这些点为顶点,可以连出多少个三角形?【答案】96个【解析】 三角形构成共两类:上2下1, 上1下2. C 62×C 41+C 61×C 42=96个6. 从15名同学中选出5人,上场参加篮球比赛.请问:(1)如果甲、乙两人必须人选,共有多少种选法?(2)如果甲、乙两人中至少有一人人选,共有多少种选法? (3)如果甲、乙、丙三人中恰好入选一人,共有多少种选法? (4)如果甲、乙、丙不能同时都人选,共有多少种选法?【答案】(1)286种;(2)1716种;(3)1458种;(4)2937种 【解析】(1)甲乙必入选,则剩下13人内选3人, 共C 133=286种 (2)对立事件,减去都不如选的情况 共C 155-C 135=1716种(3)恰好入选1人,另12人中选4人 共 C 31×C 124=1485种 (4)不能同时入选的对立事件为同时入选 共C 155-C 122=2937种7.一体育课上,老师将冬冬、阿奇和另7名同学分成3组做游戏,每组3人.一共有多少种分组方法?如果要求冬冬和阿奇分到同一组,有多少种分组方法? 【答案】(1)280种(2)70种【解析】2285(1)2810280C C ⨯=⨯=种1275(2)71070C C ⨯=⨯=种8. 大、小两个口袋中,装有一些同样的小球.大口袋里装有9个小球,分别编号为l ,2,3,…,9;小口袋里装有6 个小球,分别编号为1,2,3,…,6.从这两个口袋中分别摸出3 个小球,这6个小球的编号一共有多少种可能情况? 【答案】764种【解析】共有球 编号为 7 8 9的各一个,1 2 3 4 5 6 的各两个。

相关文档
最新文档