数字图像处理课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
山东建筑大学
课程设计说明书
¥
题目:图像人脸区域隐私保护系统设计课程:数字图像处理课程设计
院(部):信息与电气工程学院
专业:通信工程
班级:
学生姓名:
学号:
指导教师:
~
完成日期: 2013年12月
目录
,
摘要 (3)
1 本课程设计的目的 (4)
2 本课程设计的基本要求 (5)
3 本次系统的基本原理 (6)
系统的简介
如何识别人脸 (6)
4 具体设计内容 (7)
软件流程 (7)
-
图像数据的读取与处理 (9)
人脸颜色建模膨胀与腐蚀 (11)
人脸区域定位 (12)
人脸识别及处理 (13)
总结与致谢 (17)
参考文献 (18)
附录:系统设计程序 (19)
(
.
摘要
生物特征识别技术在近几十年中飞速发展。作为人的一种内在属性,并且具有很强的自身稳定性及个体差异性,生物特征成为了自动身份验证的最理想依据。人脸识别由于具有直接,友好,方便的特点,使用者易于为用户所接受,从而得到了广泛的研究与应用。除此之外,我们还能够对人脸识别的结果作进一步的分析,得到有关人的性别,表情,年龄等诸多额外的丰富信息,扩展了人脸识别的应用前景。
人脸是准确鉴定一个人的身份,推断出一个人的种族、地域,地位等信息的重要依据。科学界从图像处理、计算机视觉等多个学科对人脸进行研究。人脸识别在满足人工智能应用和保护信息安全方面都有重要的意义,是当今信息化时代必须解决的问题。
本设计用MATLAB对图像的读取,在识别前,先对图像进行处理,再通过肤色获得可能的脸部区域,最后根据人脸固有眼睛的对称性来确定是否就是人脸,同时采用高斯平滑来消除图像的噪声,再进行二值化,二值化主要采用局域取阈值方法,接下来就进行定位、提取特征值和识别等操作。经过测试,图像预处理模块对图像的处理达到了较好的效果,提高了定位和识别的正确率。为保护当事人或行人的隐私权,需要将图像中当事人的人脸区域作模糊,实现图像中人脸区域隐私保护。
关键词:人脸识别;图像处理;图像模糊
#
…
1 设计目的
作为人的一种内在属性,并且具有很强的自身稳定性及个体差异性,生物特征成为了自动身份验证的最理想依据。人脸识别由于具有直接,友好,方便的特点,使用者易于为用户所接受,从而得到了广泛的研究与应用。除此之外,我们还能够对人脸识别的结果作进一步的分析,得到有关人的性别,表情,年龄等诸多额外的丰富信息,扩展了人脸识别的应用前景。
对于人脸识别(Face Recognition),分析人脸图像,从中提取有效的识别信息,用来辨别身份的一门技术。即,对己知人脸进行标准化处理后,通过某种方法和数据库中的人脸标本进行匹配,寻找库中对应人脸及该人脸的相关信息。人脸识别技术应用背景十分广泛,可用于公安系统刑侦破案的罪犯身份识别、身份证及驾驶执照等证件验证、银行及海关的监控、自动门卫系统、视频会议、机器人的智能化研究以及医学等方面。
对于人身辨别方法主要是通过人身标识物品和人身标识知识两种方式来实现的。常见的人身标示物品有钥匙、证件等各种标识,人身标示知识有用户名、密码等。众周知,像钥匙、证件标识等人身标识物品很容易丢失或被伪造,而标识知识容易遗忘或记错,更为严重的是传统身份识别系统往往无法区分标识物品真正的拥有者和取得标识物品的冒充者,一旦他人获得标识物品,也可以拥有相同的权力,电视采访、街景地图等应用中,为保护当事人或行人的隐私权,需要将图像中当事人的人脸区域作模糊或马赛克处理。
(
2 设计要求
1.根据已知设计要求分析人脸区域隐私保护系统设计功能,确定人脸区域隐私保护系统设计的方法,
2.画出流程图,编写实现程序,并进行调试,完成系统软件设计。
3.基本教学要求:每人一台计算机,计算机安装matlab、visio等软件。
"
,
—
3 人脸识别系统的基本原理
系统概述
人脸识别包括人脸检测、人脸图像预处理、人脸特征提取和人脸识别等过程。人脸检测是指在输入图
像中确定人脸的位置与大小。人脸检测的质量影响人脸识别的其他过程以及整个人脸识别的效果,在人脸识别过程中显得尤为重要。近年来,电子商务等网络资源的利用使得可视电话、视频会议、多媒体教学等快捷便利的交流方式成为时尚,如何实时实现复杂背景下对人脸检测和识别已成为人脸识别研究的热点[1]。目前,已有神经网络算法、基于Hough变换或可适应的Hough变换逼近、小波变换、镶嵌图方法、颜色纹理规则等多种人脸检测方法[2~6]。这些方法是针对静态图像的基于人脸特征的统计与结构分析方法,虽具有一般性,但分析计算量大,对噪声敏感,性能不稳定,难以实时检测。
如何识别人脸
、
1、基于几何特征的人脸正面图像识别方法
通过人脸面部拓扑结构几何关系的先验知识,利用基于结构的方法在知识的层次上提取人脸面部主要
器官特征,将人脸用一组几何特征矢量来表示,识别归结为特征矢量之间的匹配,基于欧氏距离的判决是最常用的识别方法。
2、基于统计的人脸正面自动识别方法
基于统计的人脸正面自动识别方法包括特征脸方法和隐马尔科夫模型方法。统计的识别方法将人脸用代数特征矢量来表示。代数特征是由Hong等首先提出的,由图像本身的灰度分布决定,它描述了图像的内存信息,它是通过对图像灰度进行各种代数变换和矩阵分解提出的。
将人脸看作一个二维的灰度变化的模板,从整体上捕捉和描述人脸的特征,所运用的主要是一些标准的数据统计技巧,运算比较复杂
4 具体设计内容
《
软件流程
人脸识别系统的方法,软件流程如图所示
接下来将按照上面的流程图,对系统进行介绍,在介绍系统的同时对一些常用图像,图形处理的基本方法做介绍,这包括了图像,图形学上的一些基本的概念和处理手段,也根据图像需要进行简单的处理。
对人脸的定位处理流程图如下