第一章机器人运动学(1)
机器人实验指导书
实验一机器人运动学实验一、基本理论本实验以SCARA四自由度机械臂为例研究机器人的运动学问题。
机器人运动学问题包括运动学方程的表示,运动学方程的正解、反解等,这些是研究机器人动力学和机器人控制的重要基础,也是开放式机器人系统轨迹规划的重要基础。
机械臂杆件链的最末端是机器人工作的末端执行器(或者机械手),末端执行器的位姿是机器人运动学研究的目标,对于位姿的描述常有两种方法:关节坐标空间法和直角坐标空间法。
关节坐标空间:末端执行器的位姿直接由各个关节的坐标来确定,所有关节变量构成一个关节矢量,关节矢量构成的空间称为关节坐标空间。
图1—1是GRB400机械臂的关节坐标空间的定义。
因为关节坐标是机器人运动控制直接可以操纵的,因此这种描述对于运动控制是非常直接的。
图1-1 机器人的关节坐标空间图1-2 机器人的直角坐标空间法直角坐标空间:机器人末端的位置和方位也可用所在的直角坐标空间的坐标及方位角来描述,当描述机器人的操作任务时,对于使用者来讲采用直角坐标更为直观和方便(如图1-2).当机器人末端执行器的关节坐标给定时,求解其在直角坐标系中的坐标就是正向运动学求解(运动学正解)问题;反之,当末端执行器在直角坐标系中的坐标给定时求出对应的关节坐标就是机器人运动学逆解(运动学反解)问题.运动学反解问题相对难度较大,但在机器人控制中占有重要的地位。
机器人逆运动学求解问题包括解的存在性、唯一性及解法三个问题。
存在性:至少存在一组关节变量来产生期望的末端执行器位姿,如果给定末端执行器位置在工作空间外,则解不存在.唯一性:对于给定的位姿,仅有一组关节变量来产生希望的机器人位姿。
机器人运动学逆解的数目决定于关节数目、连杆参数和关节变量的活动范围。
通常按照最短行程的准则来选择最优解,尽量使每个关节的移动量最小。
解法:逆运动学的解法有封闭解法和数值解法两种.在末端位姿已知的情况下,封闭解法可以给出每个关节变量的数学函数表达式;数值解法则使用递推算法给出关节变量的具体数值,速度快、效率高,便于实时控制。
第1章 机器人运动学优秀课件
第1章 机器人运动学 (Kinematics of Robots)
➢ 引言 ➢ 机器人位置与姿态的描述 ➢ 机器人运动学正问题 ➢ 机器人运动学逆问题 ➢ 机器人的雅可比矩阵
§1.1 引 言(The Introduction)
➢ 机器人运动学 正问题:定义 逆问题:定义
➢ 机器人动力学
为,
cosφ 0 sinφ
Ry, φ = 0
10
- sinφ 0 cosφ
cosθ -sinθ 0
Rz, θ = sinθ cosθ 0
0
01
矩阵Rx, α、Ry, φ和Rz, φ称为基本旋转矩阵。
任何旋转变换可以由有限个基本旋转变换合成得到。
依次左乘(如果uvw对xyz旋转)
依次右乘(如果uvw绕自己的坐标轴旋转) R=Rz,θRy,φRx,α
ix ˙iu ix ˙jv ix ˙kw 1 0 0
Rx, α = iy˙iu iy ˙jv iy ˙kw = 0 cosα - sinα
iz˙iu iz ˙jv iz ˙kw
0 sinα cosα
向量点乘:a· b=|a|·|b| · cos(a)
类似地,绕Oy 轴转动φ角和绕Oz 轴转θ角的3×3旋转矩阵分别
当Ouvw坐标系绕一轴线转动后,
均可通过一个3x3旋转矩阵R
将原坐标Puvw变换到Oxyz系中 的坐标Pxyz ,
即: Pxyz=R Puvw
由矢量分量的定义有:Puvw= pu iu + pv jv + pw kw
pu、pv、pw分别表示P沿Ou、Ov、Ow 轴的分量
Px = ix˙P = ix ˙iu pu+ ix ˙jv pv+ix ˙kw pw Py = iy˙P = iy˙iu pu+ iy ˙jv pv+iy ˙kw pw Pz = iz˙P = iz˙iu pu+ iz ˙jv pv+iz ˙kw pw
第一章机器人运动学(1)解析
点的齐次坐标(补充)
一般来说,n维空间的齐次坐标表示是一个(n+1)维空间 实体。有一个特定的投影附加于n维空间,也可以把它看作 一个附加于每个矢量的特定坐标—比例系数。
v
ai
bj
ck
式中i, j, k为x, y, z 轴上的单位矢量,
列矩阵 x
a= x
, b= y
规定,一般情况:41列阵[a b c w]T 中 w 为 零,且满足 a2 + b2 + c2 = 1,则[a b c 0]T 中 的 a、 图1.2 坐标轴的方向表示 b、c 表示某轴的方向; w不为零,则[a b c w]T 表 示空间某点的位置。
图示的矢量 u 的方向用可表达为: u = [a b c 0]T
B A
R
A B
R
1
A B
R
T
坐标变换
2)平ቤተ መጻሕፍቲ ባይዱ坐标变换 坐标系{A}和{B}
具有相同的方位,但 原点不重合.则点P在 两个坐标系中的位置 矢量满足下式:
A P B P A PB0
Robotics 数学基础
坐标变换
3).复合变换 一般情况原点既
不重和,方位也不同. 这时有:
A
P
A B
RB
矩阵描述.
二、齐次坐标表示
将一个 n 维空间的点用 n+1 维坐标表示,则该 n+1 维坐标即为 n 维坐标的齐次坐标。记为:
P = [a b c w]T
w 称为该齐次坐标中的比例因子,当取w=1 时, 其表示方法称为齐次坐标的规格化形式,即:
P = [PX PY PZ 1]T
当 w 不为1时,则相当于将该列阵中各元素同时 乘以一个非零的比例因子w,仍表示同一点P,即: a = wPX;b = wPY;c = wPZ。
机器人运动学
机器人运动学(培训教材)(总49页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第2章机器人位置运动学引言本章将研究机器人正逆运动学。
当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。
如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。
首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。
实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。
根据实际应用,用户可为机器人附加不同的末端执行器。
显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。
在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。
如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。
机器人机构机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。
在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。
如图所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。
然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。
机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。
图 具有单自由度闭环的四杆机构如果机器人要在空间运动,那么机器人就需要具有三维的结构。
虽然也可能有二维多自由度的机器人,但它们并不常见。
机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。
机器人运动学
机器人运动学随着科技的不断发展,机器人已经逐渐成为了人们生活中不可或缺的一部分。
机器人的出现不仅改变了人们生活的方方面面,还为工业、医疗等领域带来了巨大的变革。
作为机器人领域的核心技术之一,机器人运动学是机器人技术中的重要组成部分。
本文将从机器人运动学的基本概念、运动学分析、运动规划等方面进行详细的阐述。
一、机器人运动学的基本概念机器人运动学是研究机器人运动的学科,主要研究机器人的运动规律、运动学模型、运动学分析和运动规划等问题。
机器人运动学的基本概念包括机器人的自由度、坐标系、位姿等。
1. 机器人的自由度机器人的自由度是指机器人能够自由运动的方向和数量。
机器人的自由度通常是由机器人的关节数量决定的。
例如,一个具有6个关节的机器人,其自由度就是6。
机器人的自由度越大,机器人的运动能力就越强。
2. 坐标系坐标系是机器人运动学中的重要概念,用于描述机器人的位置和姿态。
机器人通常使用笛卡尔坐标系或者极坐标系来描述机器人的位置和姿态。
在机器人运动学中,通常使用基座坐标系和工具坐标系来描述机器人的运动。
3. 位姿位姿是机器人运动学中的另一个重要概念,用于描述机器人的位置和姿态。
位姿通常由位置和方向两个部分组成。
在机器人运动学中,通常使用欧拉角、四元数或旋转矩阵来描述机器人的位姿。
二、机器人运动学分析机器人运动学分析是指对机器人的运动进行分析和计算,以确定机器人的运动规律和运动学模型。
机器人运动学分析通常涉及到逆运动学、正运动学和雅可比矩阵等内容。
1. 逆运动学逆运动学是机器人运动学分析中的重要内容,用于确定机器人关节的运动规律。
逆运动学通常包括解析解法和数值解法两种方法。
解析解法是指通过数学公式来计算机器人关节的运动规律,数值解法是指通过计算机模拟来计算机器人关节的运动规律。
2. 正运动学正运动学是机器人运动学分析中的另一个重要内容,用于确定机器人末端执行器的位置和姿态。
正运动学通常包括前向运动学和反向运动学两种方法。
机器人运动学
58
斯坦福机器人反向运动学方程求解
• 已知斯坦福机器人的运动学方程为T6=A1A2A3A4A5A6, 以及T6 矩阵与各杆参数a、α、d,求关节变量θ1~θ6 , 其中θ3= d3。
• 求θ1:
59
斯坦福机器人反向运动学方程求解
• 求θ1:
• “+”号对应右肩位姿,“-”号对应左肩位姿。60
斯坦福机器人反向运动学方程求解
2 机器人运动学
• • • • 齐次坐标及动坐标系、对象物位姿的描述 齐次变换 机器人连杆坐标系及其齐次变换矩阵 机器人运动学方程及其求解
1
齐次坐标及动坐标系、对象物位姿的描述 • • • • • 点的直角坐标描述 点的齐次坐标描述 坐标轴方向的齐次坐标描述 动坐标系位姿的齐次坐标描述 对象物位姿的齐次坐标描述
n cos30 cos60 cos90 0 T 0.866 0.500 0.000 0
P 2 1 cos90 0 T 0.500 0.866 0.000 0 a 0.000 0.000 1.000 0
2
点的直角坐标描述
式中:Px、Py、Pz是点P在坐标 系{A}中的三个位置坐标分量。
点的直角坐标描述
3
点的齐次坐标描述
• 齐次坐标的表示不是惟一的,将其各元素同 乘一非零因子ω后,仍然代表同一点P,即
4
坐标轴方向的齐次坐标描述
坐标轴方向的描述
5
• 4 1列阵[a b c w]T中第四个元素不为零,则表示空 间某点的位置; • 4 1列阵[a b c w]T 中第四个元素为零,且满足 a2 + b2 + c2 = 1,则表示某轴(矢量)的方向。
44
正向运动学方程求解
工业机器人运动学-1数学基础
则可得到如图1.8所示的点向量n.变换过程如下
1 00 4 2
6
0 1 0 -3 7
4
n = Trans <4, -3, 7> w = 0 0 1 7 3 = 10
0 00 1 1
1
z
z
•n
•v
0
2
y
2
w•
u•
•w
x
-7
•v
图1.7 Rot ( z, 90°) Rot ( y, 90°)
0•
•
7
y
x
已知两个向量
a = ax i + ay j + az k
b = bx i + by j + bz k
〔1.1〕
向量的点积是标量.用" ·"来定义向量点积,即
a ·b = ax bx + ay by + az bz
〔1.2 〕
向量的叉积是一个垂直于由叉积的两个向量构成的平面的向量.用"×" 表示叉积,即
1.2.1 点向量〔Point vectors〕 点向量描述空间的一个点在某个坐标系的空间位
置.同一个点在不同坐标系的描述及位置向量的值也不同.如图 1.1中,点p在E坐标系上表示为 Ev,在H坐标系上表示为 Hu,且v ≠ u.一个点向量可表示为
v = ai + bj + ck 通常用一个〔n + 1〕维列矩阵表示,即除 x、y、 z 三个方向上的分量外,再加一个比例因子 w ,即
01
0 001
1
0
0
1
如果按着逆序旋转,首先绕y轴旋转90°,然后再绕z轴旋转90°,其结果为
工业机器人的运动学
工业机器人运动学的展望
未来工业机器人运动学将与人工智能、机器视觉等技 术进一步融合,实现更智能化的运动控制和决策。
输入 标题
应用拓展
随着技术的进步,工业机器人运动学的应用领域将进 一步拓展,如微纳操作、深海/空间探索等高精度、高 可靠性要求的领域。
技术融合
理论深化
随着工业机器人运动学的不断发展,对相关领域的人 才需求将进一步增加,未来将需要更多的专业人才进
运动学逆问题
定义
给定机器人末端执行器的 位置和姿态,求解实现该 位置和姿态所需的关节角 度。
计算方法
通过逆向运动学模型,将 末端执行器的笛卡尔坐标 代入机器人结构参数方程, 反解出关节角度。
应用
根据目标位置和姿态,规 划机器人的关节运动轨迹, 实现精确控制。
雅可比矩阵
定义
描述机器人末端执行器速度与关节速 度之间关系的线性映射矩阵。
03 工业机器人运动学原理
运动学正问题
01
02
03
定义
给定机器人的关节角度, 求解机器人末端执行器的 位置和姿态。
计算方法
通过正向运动学模型,将 关节角度代入机器人结构 参数方程,求解末端执行 器的笛卡尔坐标。
应用
根据已知的关节角度,预 测或验证机器人的末端位 置和姿态,为机器人控制 提供基础。
基于运动学的轨迹规划
轨迹规划
基于运动学的轨迹规划是工业机器人运动学优化与控制的 重要环节,它涉及到机器人在空间中运动的路径和速度的 规划。
路径规划
路径规划是轨迹规划的基础,它通过寻找起点和终点之间 的最优路径,确保机器人在移动过程中能够安全、高效地 完成任务。
速度规划
速度规划是在路径规划的基础上,对机器人在各个运动阶 段的速度进行优化,以达到最佳的运动效果和效率。
机器人第一章讲义
第一章概述1.1 机器人的由来与发展一、机器人的由来“机器人”(robot)一词来自1920年捷克作家卡雷尔·查培克的剧本《罗萨姆的万能机器人》。
剧中叙述了一个叫罗萨姆的公司把机器人它的名字叫罗伯特,也就是我们英文中的Robot,作为人类生产的工业品推向市场,让它充当劳动力代替人类劳动的故事,引起了人们的广泛关注。
后来,这个故事就被当成了机器人的起源。
机器人学(robotics)出自1942年美国科幻作家Jsaac Asimov的科幻小说“Runaround”。
1942年,科学家兼作家Isaac Asimov首次提出了机器人三大定律:第一:机器人必须不危害人类,也不允许它眼看人将受危害而袖手旁观;第二:机器人必须绝对服从人类,除非这与第一原则矛盾;第三:机器人必须保护自身不受伤害,除非这与第一或第二原则相矛盾。
机器人一词虽出现得较晚,然而这一概念在人类的想象中却早已出现,人类希望制造一种像人一样的机器,以便替人类完成各种工作。
西周时期,我国的能工巧匠偃师就研制出了能歌善舞的伶人,这是我国最早记载的具备有机器人概念的文字资料。
春秋后期,鲁班曾制造过一只木鸟,能在空中飞行“三日不下”体现了我国劳动人民的聪明智慧。
东汉时代,著名科学家张衡不仅发明了地动仪、计里鼓车,而且发明了指南车,这些发明都是具有机器人构想的装置。
据记载,指南车行驶于前方,车厢正中间有个平放着的大齿轮,即一个四十八齿的轮子。
大齿轮中央有一平台,金童仙子立于此台上,左手拢于胸前,右手平平举起,指向正南方。
当车向左或向右转弯时,金童仙子也徐徐地转身,但右手所指的方向却始终不变。
张衡指南车是一种装有特殊的差速齿轮装置和指向器的单辕双轮车。
关于记里鼓车:计里鼓车每行一里,车上木人击鼓一下,每行十里击钟一下。
原理是,车轱辘直径三尺二寸,张衡当时计算出的圆周率为3.1466,车轱辘转一周,所走路程是一丈,也就是民间说的两步。
自上古以来,里程就有明确的规定,三百步为一里,也就是一百五十丈,车轱辘转动一百五十圈就是一里。
机器人学导论--ppt课件可编辑全文
关节变量
ppt课件
2
1.2 描述:位置、姿态和坐标系
位置描述
一旦建立坐标系,就能用一
个3*1的位置矢量对世界坐标 系中的任何点进行定位。因 为在世界坐标系中经常还要 定义许多坐标系,因此在位 置矢量上附加一信息,标明 是在哪一坐标系中被定义的。
例如:AP表示矢量P在A坐标系中的表示。
BP 表示矢量P在B坐标系中的表示。
c os90
c os120 c os30 c os90
XB XA
X
B
YA
X B Z A
c os90 c os90 cos0
]
YB X A YB YA YB Z A
ZB XA
ZB
YA
ZB Z A
ppt课件
5
坐标系的变换
完整描述上图中操作手位姿所需的信息为位置和姿态。机器人学中
在从多重解中选择解时,应根据具体情况,在避免碰撞的前 提下通常按“最短行程”准则来选择。同时还应当兼顾“多 移动小关节,少移动大关节”的原则。
ppt课件
23
4 PUMA560机器人运动学反解-反变换法
❖ 由于z4 , z5, z6 交于一点W,点W在基础坐标系中的位置仅与 1,2,3
有关。据此,可先解出 1,2,3 ,再分离出 4 ,5,6 ,并逐
PUMA560变换矩阵
ppt课件
21
将各个连杆变换矩阵相乘便得到PUMA560手臂变换矩阵
06T 01T (1)21T (2 )23T (3 )34T (4 )45T (5 )56T (6 )
什么是机器人运动学正解? 什么是机器人运动学反解?
ppt课件
22
操作臂运动学反解的方法可以分为两类:封闭解和数值解、 在进行反解时总是力求得到封闭解。因为封闭解的计算速度 快,效率高,便于实时控制。而数值法不具有些特点为。 操作臂的运动学反解封闭解可通过两种途径得到:代数解和 几何解。 一般而言,非零连杆参数越多,到达某一目标的方式也越多, 即运动学反解的数目也越多。
第1章 机器人运动学
• 答:①左上角3X3矩阵表示新坐标系在旧坐 标系中的旋转方向。 • ②左上角3X3矩阵中的各列表示新坐标系的 各坐标轴的单位矢量在旧坐标系的各坐标 轴上的投影;各行表示旧坐标系的各坐标 轴的单位矢量在新坐标系的各坐标轴上的 投影;P表示新坐标系相对旧坐标系的平移 量,其各分量表示平移后新坐标系在旧坐 标系中的矢量。
• 例1.3 图1.7表示手部抓握物体Q,物体是 边长为2个单位的正立方体,写出表达该手 部位姿的矩阵表达式。
• 解 因为物体Q形心与手部坐标系OXYZ的坐标原点 O相重合,则手部位置的 4 1列阵为 • 手部坐标系X轴的方向可用单位矢量n来表示:
• 同理,手部坐标系Y轴与Z轴的方向可分别用单位矢 量o和a来表示:
• 1.1.2 动系的位姿表示 • 一、连杆的位姿表示 • 设有一个机器人的连杆,若给 定了连杆PQ上某点的位置和 该连杆在空间的姿态,则称该 连杆在空间是完全确定的。 • 如图1.4所示,O为连杆上任 一点,OXYZ为与连杆固接 的一个动坐标系,即为动系。 连杆PQ在固定坐标系OXYZ 中的位置可用一齐次坐标表示 为 • (1.5)
1.1.1 齐次坐标
• 二、齐次坐标表示 • 将一个n维空间的点用n + 1维坐标表示,则该 n + 1维坐标即为n维坐标的齐次坐标。一般情况 下w称为该齐次坐标中的比例因子,当取w = 1 时,其表示方法称为齐次坐标的规格化形式,即 • P = [PX PY PZ 1]T (1.2) • 当w不为1时,则相当于将该列阵中各元素同时乘 以一个非零的比例因子w,仍表示同一点P,即 • P = [a b c w]T(1.3) • 式中:a = wPX;b = wPY;c = wPZ。
第1章 机器人运动学
第1章 机器人运动学
机器人工程 机器人运动学(一) (1)
Ti = Rot ( z, θi ) ⋅ Trans( z, d i ) ⋅ Trans( x, ai ) ⋅ Rot ( x, αi )
cθ i sθ = i 0 0 − sθi cθ i 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 d i 0 0 0 1 0 0 0 0 0 ai 1 0 1 0 0 0 cα i 0 1 0 0 sαi 0 0 1 0 0 0 − sα i cα i 0 0 0 0 1
ai-1 到 ai 的转角,沿关节轴i 沿关节轴i ,与ai-1 的交点到与 ai 的 交点的距离
D-H坐标系的建立
关节 i 连杆 i-1 连杆 i
坐标系后置
αi
关节 i+1
zi −1
ai −1 ai di
zi
xi
xi −1
θi
坐标系设置后,D-H参数的意义
ai
θi
di
沿xi方向,测得的zi-1 到zi 的距离
0 1
i −1
n −1
如何使坐标系合理设置,以方便求解过程? 1955年Denavit和Hartenberg 的贡献
运动学正问题的D-H方法 (以坐标系后置模型为例)
连杆的描述: • 从运动学角度,“确定 两相邻关节轴的相 互关系”的参数, 称为连杆参数 • 连杆长度 ai • 扭转角
关节 i
αi
连杆 i
关节 i+1
αi
ai
沿ai方向,右手法则
相邻连杆的关系描述
关节 i 连杆 i-1
di
αi
连杆 i
关节 i+1
04-机器人课程-运动学
1、机器人运动学
1.5机器人微分运动及速度
机器人的微分运动是研究机器人关节变量的微小变化与机器人手部位姿的微小变化 之间的微分关系。如果已知两者之间的微分关系,就可以解决机器人微分运动的两 类基本问题:一类是在已知机器人各个关节变量的微小变化时求机器人手部位姿的 微小变化;另一类是在已知机器人手部位姿的微小变化时求机器人各个关节变量相 应的微小变化。机器人的微分运动对机器人控制、误差分析、动力分析和保证工作 精度具有十分重要的意义。
1、机器人运动学
1.3齐次变换及运算
1.3.1 直角坐标变换 在机器人中建立直角坐标系后,机器人的手部和各活动杆件之间相对位 置和姿态就可以看成是直角坐标系之间的坐标变换。
1、机器人运动学
1.3齐次变换及运算
平移变换 设坐标系{i}和坐标系{j}具有相同的姿态,但两者的坐标原点不重合,如图3-7所 示。 若用矢量Pij表示坐标系{i}和坐标系{j}原点之间的矢量,则坐标系{j}就可以看成 是由坐标系{i}沿矢量Pij平移变换而来的,所以称矢量Pij为平移变换矩阵,它是一个 3×1的矩阵
1.1、机器人位姿描述
机器人的位姿主要是指机器人手部在空间的位置和姿态,有 时也会用到其他各个活动杆件在空间的位置和姿态。需要先 了解的与机器人运动相关的一些基础知识。 机器人的机构运动简图、机器人的自由度、机器人的坐标系、 机器人的工作空间、机器人的位姿
1、机器人运动学
1.2机器人的位姿
所谓机器人的位姿主要就是指机器人手部在空间的位置和姿态。有了机器 人坐标系,机器人手部和各个活动杆件相对于其他坐标系的位置和姿态就 可以用一个3×1的位置矩阵和一个3×3的姿态矩阵来描述。如图3-2所示, 机器人手部的坐标系{H}相对于机座坐标系{O}位置就可以用坐标系{H}的 原点OH在坐标系{O}三个坐标分量xOH、yOH、zOH、组成3×1的位置矩阵来 表示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、坐标轴的方向表示
i、j、k 分别表示直角坐标系中X、
Y、Z坐标轴的单位矢量,用齐次坐 标表示之,则有
X = [1 0 0 0 ]T Y = [0 1 0 0]T Z = [0 0 1 0]T
空间任一点的坐标表示
位置和姿态的表示(延伸):
1.位置描述
在直角坐标系A中,空间任意一点p的位置 (Position)可用3x1列向量(位置矢量)表示:
2.方位描述
AP [ px
py
p ]T z
空间物体B的方位(Orientation)
可由某个固接于此物体的坐标系{B}
的三个单位主矢量[xB,yB,zB]相对于 参考坐标系A的方向余弦组成的3x3
一、连杆的位姿表示 连杆的位置表示:
设有一个机器人的连杆,O为连杆上 任一点,OXYZ 为与连杆固接的一个 动系。
连杆PQ在固定坐标系 OXYZ 中的位置 可用P点一齐次坐标表示为:
P = [X0 Y0 Z0 1]T
(注:P点为连杆坐标系的原点)
图 连杆的位姿表示
连杆的姿态表示
d [n o
由此,连杆的位姿可用齐次矩阵表示。
a
nX
P]
nY
nZ
0
oX aX oY aY oZ aZ 00
X0
Y0
Z
0
1
由此,连杆的位姿可用齐次 矩阵表示为:
nX oX aX X0
d [n o a
P]
nY
nZ
oY aY oZ aZ
1.1 齐次坐标与动系位姿矩阵
空间任意点的坐标表示
在 直 角 坐 标 系 {A} 中 , 空间任一点P的位置可以用
31的位置矢量AP表示(写
为列矩阵形式) ,其左上
标表示坐标系{A},有:
AP = [PX PY PZ]T
式中: PX 、PY 、PZ是点P在 坐标系{A}中的三个位置坐
标分量。
a=cos,b=cos,c= cos ( u 的方向余弦)
[例1.1] 用齐次坐标表示右图矢量u、v、w的方向。
解: u = [0 0.866 0.5 0]T v = [0.866 0 0.5 0]T w = [0.866 0.5 0 0]T
1.1.2 动系的位姿表示
在机器人坐标系中,运动时相对于基座不动的坐标系 称为静坐标系,简称静系;跟随连杆运动的坐标系称为动 坐标系,简称为动系。动系位置与姿态的描述称为动系的 位姿表示,是对动系原点位置及各坐标轴方向的描述,实 质是对连杆的位置与姿态的描述。
矩阵描述.
二、齐次坐标表示
将一个 n 维空间的点用 n+1 维坐标表示,则该 n+1 维坐标即为 n 维坐标的齐次坐标。记为:
P = [a b c w]T
w 称为该齐次坐标中的比例因子,当取w=1 时, 其表示方法称为齐次坐标的规格化形式,即:
P = [PX PY PZ 1]T
当 w 不为1时,则相当于将该列阵中各元素同时 乘以一个非零的比例因子w,仍表示同一点P,即: a = wPX;b = wPY;c = wPZ。
或 V=[6 8 10 2]T 或 V=[-12 -16 -20 -4]T
齐次坐标与三维直角坐标的区别
V点在ΣOXYZ坐标系中表 示是唯一的(x、y、z)
而在齐次坐标中表示可 以是多值的。不同的表 示方法代表的V点在空间 位置上不变。
z
z
V
o x
z y
x
图2-2
几个特定意义的齐次坐标:
[0, 0, 0, n]T—坐标原点矢量的齐次坐标,n为 任意非零比例系数
解:XB、 YB 、ZB的方向列阵
n cos 30 cos 60 cos 90 0T 0.866 0.500 0.000 0T
o cos120 cos 30 cos 90 0T 0.500 0.866 0.000 0T
a 0.000 0.000 1.000 0T
z , c=
,w为比例系数
w ww
V
y z
x
y
z
wT
显然,齐次坐标表达并不是唯一的,随
w
w值的不同而不同。在计算机图学中,w
作为通用比例因子,它可取任意正值,但
在机器人的运动分析中,总是取w=1 。
[例]:
V 3i 4 j 5k
可以表示为: V=[3 4 5 1]T
连杆的姿态可由动系的坐标轴方向来
表示。令n、o、a分别为X、Y、Z坐标
轴的单位矢量,各单位方向矢量在静系 上的分量为动系各坐标轴的方向余弦, 以齐次坐标形式分别表示为
n [nX o [oX
nY oY
nZ oZ
0]T 0]T
图 连杆的位姿表示
a [aX
aY
aZ
0]T
规定,一般情况:41列阵[a b c w]T 中 w 为 零,且满足 a2 + b2 + c2 = 1,则[a b c 0]T 中 的 a、 图1.2 坐标轴的方向表示 b、c 表示某轴的方向; w不为零,则[a b c w]T 表 示空间某点的位置。
图示的矢量 u 的方向用可表达为: u = [a b c 0]T
坐标系{B}的位置列阵
P 2 1 0 1T
则动坐标系{B}的44矩阵表达式为
0.866 0.500 0.000 2.0
T 0.500
0.866
0.000
1.0
0.000 0.000 1.000 0.0
点的齐次坐标(补充)
一般来说,n维空间的齐次坐标表示是一个(n+1)维空间 实体。有一个特定的投影附加于n维空间,也可以把它看作 一个附加于每个矢量的特定坐标—比例系数。
v
ai
bj
ck
式中i, j, k为x, y, z 轴上的单位矢量,
列矩阵 x
a= x
y
, b=Βιβλιοθήκη Y0 Z0
0 0 0 1
图 1.4连杆的位姿表 示
[例1.2] 图示固连于连杆的坐标系{B}位于OB点,XOB = 2,YOB = 1, ZOB = 0。在 XOY 平面内,坐标系{B}相对固定坐标系{A}有一个30°的 偏转,试写出表示连杆位姿的坐标系{B}的44矩阵表达式。