因数和倍数 教案1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二因数和倍数

1、因数和倍数

第一课时:因数和倍数

教学内容:因数与倍数(P12-13例1及P15题1、2)

教学要求:①从操作活动中理解因数与倍数的意义,会判断一个数是不是另一个数的因数或倍数。②培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。③培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:理解因数和倍数的意义

教学难点:因数和倍数等概念间的联系和区别。

教学过程:

一、认识因数与倍数

1、观察主题图,根据主题图的不同情况写出乘法算式和除法算式。

1×12=12 2×6=12 3×4=12

12×1=12 6×2=12 4×3=12

12÷1=12 12÷2=6 12÷3=4

12÷12=1 12÷6=2 12÷4=3

2、观察并回答。

(1)这三组乘法、除法算式中,都有什么共同点?

(2)像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?看书第12页。

(3)这样的三个数,我们也可以怎样说?(2和6是12的因数),请大家也像这样把其余的两组数也说一说。

请看教材12页,2和6与12的关系还可以怎么说?

(4)也就是说2和6与12的关系是因数和倍数的关系,这几组数中,谁和谁还有因数和倍数的关系?

(5)提问:能不能说12是12的因数呢?

(6)小结:上面这三组算式中,我们知道:1、2、3、4、6、12都是12的因数。

3.讨论:23÷4=5……3,提问:23是4的倍数吗?为什么?

谁能举一个算式例子,并说说谁是谁的倍数,谁是谁的因数?

4.讨论:0×3 0×10 0÷3 0÷10

提问:通过刚才的计算,你有什么发现?

5.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2)这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

二、巩固新知

1.下面每一组数中,谁是谁得因数,谁是谁得倍数?

16和2 4和24 72和8 20和5

2.下面得说法对吗?说出理由。

(1)48是6的倍数

(2)在13÷4==3……1中,13是4的倍数

(3)因为3×6=18,所以18是倍数,3和6是因数。

3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

4.游戏。记住自己的学号,听老师说要求,符合要求的同学请举手。

(1)()是4的倍数

(2)()是60的因数

(3)()是5的倍数

(4)()是36的因数

第二课时:一个数的因数的求法

教学内容:一个数的因数的求法(P13页例题1及P15练习题2)

教学要求:①通过学习,使学生掌握用不同的方法求一个数的因数的方法。②通过求一个数的因数方法,知道一个数的因数的个数是有限的。③通过不完全归纳法得出一个数的因数的特点,体现从具体到一般的解题思路。

教学重点:学会求一个数的因数

教学难点:弄清为什么一个数的因数的个数是有限的。

教学过程:

一、复习旧知:

1.根据算式:4×8=32说说谁是谁的因数?谁是谁的倍数?

2.根据算式:63÷7=9说说谁是谁的因数?谁是谁的倍数?

3.判断:1.2÷0.2=6,我们能说0.2和6是1.2的因数吗?1.2是0.2的倍数,也是6的倍数吗?

4.注意:本单元讲的因数和前面讲的乘法方式各部分名称的因数有所不同,这里讲的的倍数,也和前面讲的“倍”有所不同。

二、探究新知

1.出示P13例题1:18的因数有哪几个?

(1)提问:怎样去求18的因数呢?同位同学互相讨论,要求不能遗漏,看谁找得又对又快?

(2)汇报:第一种方法,列出积是18的乘法算式,得到18得因数有:1、2、3、6、9、18。第二中方法,列出被除数是18的除法算式,得到18的因数有:1、2、3、6、9、18。

(3)无论是乘法算式还是除法算式,在思考时要注意什么?(要从最小的数找起,都时非0的整数)

我们把18的因数也可以像这样表示。如图:

18的因数

1、2、3、

6、9、18

这个圈我们称它为集合圈,这种表示方法就是用集合圈表示因数。

2.完成P13做一做

(1)同学们找出30的因数,找出36的因数

独立完成后,汇报自己找因数的方法。

30的因数有:1、2、3、5、6、10、15、30

36的因数有:1、2、3、4、6、9、12、18、36

(2)观察,18的最小因数是(),最大因数是()

30的最小因数是(),最大因数是()

36的最小因数是(),最大因数是()

提问:通过观察,你发现了什么?大家再数一数这三个数的因数的个数,你又发现了什么?

(3)一个数的因数有什么特点?

特点:最大的因数是它本身,最小的因数是1;一个数的因数的个数是有限的

三、巩固新知

1.完成P15第2题

学生自己独立完成,讲评时让学生说一说,是怎么想的?

2.判断

(1)12的因数有:1、2、3、4、6、12。

(2)整数32的因数共有4个。

(3)自然数a的最大因数是a,最小因数是1。

(4)一个数的因数都小于这个数。

第三课时:一个数的倍数的求法

教学内容:一个数的倍数的求法(P14例题2及P15题3~6)

教学要求:①通过学习,使学生掌握求一个数的倍数的方法。②使学生掌握一个数的倍数的特点。③通过不完全归纳法得出一个数的倍数的特点,培养学生抽象的概括能力。

教学重点:掌握求一个数的倍数的方法

教学过程:

一、复习引入

1.求一个数的因数,你想怎样求?

2.一个数的因数有什么特点?

3.求下列各数的因数。25的因数有(),49的因数有(),17的因数有(),60的因数有()。

4.根据3×5=15,请你说出谁是谁的倍数?

二、探究新知

1.教学一个数的倍数的求法

(1)出示P14例2:你能找出多少个2的倍数?

提问:你想怎样找2的倍数?(同桌互相讨论,然后汇报)

(2)只要把2与一个非0自然数相乘,所得的积就是2的倍数。

全班一起找2的倍数,得出2的倍数有:2、4、6、8、10……

你能找出多少个2的倍数?(无数个)因为2的倍数有无数个,写不完,所以后面用省

相关文档
最新文档