长沙理工大学高等代数2017—2019年考研真题试题

合集下载

高数A(一)2017试卷1新(1) (1)

高数A(一)2017试卷1新(1) (1)

长沙理工大学考试试卷.....................................................................................课程名称(含档次) 高等数学A (一) 课程代号专 业 各专业 层次(本、专) 本科 考试方式(开、闭卷) 闭一.选择题(在每个小题四个备选答案中选出一个正确答案,本大题总分20分,每小题4分) 1. 201sinlim sin x x x x →的值为( ).A.1B.∞C.不存在D.02.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0x =处可导,则a ,b 的值应为( ).A.1,2==b aB.2,1==b aC.1,2=-=b aD.1,2-==b a3.设函数212xx y +=,在( ). A.()+∞∞-,单调增加 B.()+∞∞-,单调减少C.()1,1-单调增加,其余区间单调减少D.()1,1-单调减少,其余区间单调增加4.设()f x 连续,则()220x d tf x t dt dx -=⎰( ). A.()212f x B. ()2xf x C. ()22xf x D.()22xf x - 5.设线性无关的函数123,,y y y 都是二阶非齐次线性方程组()()()'''y p x y q x y f x ++=的解,12,C C 是任意常数,则该非齐次方程的通解是( )A.11223C y C y y ++B. ()1122123C y C y C C y +-+C. ()11221231C y C y C C y +---D. ()11221231C y C y C C y ++--二.填空题(本大题总分20分,每小题4分)1.已知函数()211f x x=+,则()()30f = . 2.微分方程''2'30y y y ++=的通解为y = .第 1 页(共 2 页)3. ()20ln cos limx x x →= . 4.22sin 1cos x x dx x ππ-⎛⎫+= ⎪+⎝⎭⎰ . 5.()21ln 1x dx x +∞=+⎰ .三.解答题(本大题总分60分,每小题10分)1.设函数()()()3ln 1sin ,f x x a x bx x g x kx =+++=.若()f x 与()g x 在0x →时是等价无穷小, 求,,a b k .2.设2arctan 25t x t y ty e =⎧⎨-+=⎩确定了函数()y y x =,求dy dx .3.计算1f x ⎰,其中()()1ln 1x t f x dt t +=⎰.4.证明:()21arctan ln 12x x x ≥+.5.过曲线)0y x =≥上点A 作切线,使该切线与曲线及x 轴围成的平面图形面积D 的面积为34. (1)求A 点的坐标;(2)求平面图形D 绕x 轴旋转一周所得旋转体的体积。

高代考研试题及答案

高代考研试题及答案

高代考研试题及答案一、单项选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 2C. 1/4D. 1答案:C2. 若向量α=(1,2,3)和向量β=(2,3,4),则向量α和向量β的点积为:A. 20B. 21C. 22D. 23答案:B3. 设函数f(x)=x^3-3x+1,求f'(x):A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+3答案:A4. 若矩阵B为3阶方阵,且B的秩为2,则矩阵B的零空间的维数为:A. 0B. 1C. 2D. 3答案:B二、填空题(每题5分,共20分)1. 设矩阵C为2阶方阵,其特征值为1和2,则矩阵C的特征多项式为________。

答案:λ^2 - (1+2)λ + 1*2 = λ^2 - 3λ + 22. 设向量a=(1,0),向量b=(0,1),则向量a和向量b的叉积为________。

答案:(0,0)3. 设函数g(x)=x^2+2x+1,则g''(x)=________。

答案:24. 设线性方程组Ax=b,其中A为3阶方阵,且A的秩为3,b为3维列向量,则该方程组的解集为________。

答案:非空集合三、解答题(每题10分,共60分)1. 求矩阵D=\[\begin{matrix}1 & 2 \\ 3 & 4\end{matrix}\]的逆矩阵。

答案:矩阵D的逆矩阵为\[\begin{matrix}2 & -1 \\ -3 &2\end{matrix}\]。

2. 设向量c=(3,-1)和向量d=(2,4),求向量c和向量d的夹角。

答案:向量c和向量d的夹角为cos^-1((3*2 + (-1)*4) / (sqrt(9+1) * sqrt(4+16))) = cos^-1(0.6)。

3. 设函数h(x)=x^3+3x^2-3x+1,求h'(x)和h''(x)。

长沙理工大学近年高数上期末考题(1)

长沙理工大学近年高数上期末考题(1)

长沙理工大学考试试卷………………………………………………………………………………………………………………………一、填空题:(本题总分16分,每小题4分)1.已知11xf x x =-()(),为使f x ()在0x =点连续,则应补充定义0f =() .2.已知225lim 232n a n bn n →∞++=-,则a = ,b = .3.设f x ()的一个原函数是cos x ,则f x '=() .4.已知220d sin d d x t t x =⎰ .二、选择题:(本题总分16分,每小题4分) 1.设f x ()在0x x =处可导,则000limx f x x f x x∆→-∆-=∆()()( )A .0f x '-()B .0f x '-()C .0f x '()D .02f x '()2.下列函数在1, e []上满足拉格朗日定理条件的是( )A .ln ln xB .1ln x C .ln xD .ln 2x -() 3.根据估值定理,积分201d 103cos x x+⎰π的值在区间( )内A .7, 13[]B .0, 2[]πC .11, 137⎡⎤⎢⎥⎣⎦D .22, 137⎡⎤⎢⎥⎣⎦ππ 4.函数3226187f x x x x =--+()的极大值是( )A .10B .11C .17D .9三、计算题:(本题总分64分,每小题8分) 1.求极限120lim 1xx x →+().2.若隐函数y y x =()由方程22ln arctanyx y x+=()确定,求y x '(). 3.设曲线C 的参数方程是()2e ee e t tt tx y --⎧=-⎪⎨=+⎪⎩,求曲线C 上对应于ln2t =的点的切线方程.4.求x . 5.求0x ⎰.6.求330+e e d lim2xx t x t tx-→∞⎰. 7.求2 cos d x x x ⎰.8.已知曲线22y x x =-与2g x ax =()围成的图形面积等于323,求常数a . 四、证明题:(本题总分4分,每小题4分)设f x ()在a b [,]上连续,在a b (,)可导,且0f x '≤(),记d xaf t tF x x a=-⎰()(),证明:在a b (,)内有0F x '≤().长沙理工大学考试试卷…………………………………………………………………………………………………………………一、选择题:(本题总分20分,每小题4分)1.极限201sinlimsin x x x x→的值为( ) A .1 B .∞ C .不存在 D .02.若函数e , 0sin 2, 0ax x f x b x x ⎧<=⎨+≥⎩()在0x =处可导,则a ,b 的值为( )A .21a b ==,B .12a b ==,C .21a b =-=,D .21a b ==-,3.设函数221xf x x =+(),则f x ()在( ) A .-∞+∞(,)上单调增加 B .-∞+∞(,)上单调减少 C .11-(,)上单调增加,其余区间单调减少 D .11-(,)上单调减少,其余区间单调增加4.设f x ()连续,则22d d d x tf x t t x -=⎰() ( ) A .212f x () B .2xf x () C .22xf x ()D .22xf x -() 5.设线性无关的函数123, y y y ,都是二阶非齐次线性方程y p x y q x y f x '''++=()()()的解,12C C ,是任意常数,则该非齐次方程的通解可以是( )A .11223C y C y y ++B .1122123C y C y C C y +-+() C .11221231C y C y C C y +---()D .11221231C y C y C C y ++--()二、填空题:(本题总分20分,每小题4分) 1.已知函数211f x x =+(),则0f '''=() . 2.微分方程230y y y '''++=的通解为 . 3.20ln cos limx xx →= .4.22sin d 1cos x x x x-⎛⎫+= ⎪+⎝⎭⎰ππ .5.21ln d 1xx x +∞=+⎰(). 三、解答题:(本题总分60分,每小题10分)1.求函数ln 1sin f x x a x bx x =+++()(),3g x kx =(),若f x ()与g x ()在0x →时是等价无穷小,求a ,b ,k .2.设2arctan 2e 5tx t y ty =⎧⎨-+=⎩确定了函数y y x =(),求y x '(). 3.计算1x ⎰,其中1ln 1d x t f x t t +=⎰()(). 4.证明:21arctan ln 12x x x ≥+().5.过曲线0y x =≥()上点A 做切线,使该切线与曲线及x 轴围成的平面图形D 的面积等于34. (1) 求A 点的坐标;(2) 求平面图形D 绕x 轴旋转一周所得旋转体的体积. 6.设0e d xx f x x t f t t =--⎰()()(),其中f x ()是连续函数,求f x ().长沙理工大学考试试卷…………………………………………………………………………………………………………………一、选择题:(本题总分16分,每小题4分)1.设函数 22f x x x =-<<(),,则1f x -()的值域为( )A .[0,2)B .[0,3)C .[0,2]D .[0,3] 2.当0x →时,要1cos x -与等价,则a 应等于( )A .14B .4C .12D .23.设f x ()在0x 点可导,则000limx f x x f x x∆→-∆-=∆()()( )A .0f x '-()B .0f x '-()C .0f x '()D .02f x '()4.设f x ()在[1,1]-上连续,在(1,1)-内可导,且00f x M f '≤=(),() ,则必有( ) A .f x M ≥() B .f x M >() C .f x M ≤()D .f x M <()二、填空题:(本题总分20分,每小题4分)1.设x f t y tf t f t '=⎧⎨'=-⎩(),()(),则1d d t y x == .2.设y f x y =+(),其中f 具有一阶导数,且其一阶导数不等于1,则d d yx= . 3.设ln y f x =()且f x ''()存在,则22d d yx= .4.当0a >时,反常积分0e d ax x +∞-=⎰ .5.微分方程2yy x'=的通解为 . 三、计算题:(本题总分30分,每小题6分)1.求极限11lim 1ln x x x x →⎛⎫- ⎪-⎝⎭. 2.求函数2ln x y x=的单调区间.3.求不定积分1d 1x x x -⎰().4.求定积分0a x x ⎰,其中0a >. 5.求一阶线性微分方程d 1cos d y y x x x +=满足条件21x y π==的特解. 四、解答题:(本题总分20分,每小题10分)1.已知一平面图形由曲线0, 1, x x y ===x 轴围成,求(1) 此平面图形的面积;(2) 此平面图形分别绕x 轴和y 轴旋转所成的旋转体的体积. 2.求微分方程e x y y ''+=的通解. 五、应用题:(本题9分)已知制作一个背包的成本为40元,如果一个背包的售出价为x 元,售出的背包数由8040an b x x =-+--()给出,其中a , b 为正常数,问什么样的售出价格能带来最大利润?六、证明题:(本题5分)设f x ()在[,]a b 上连续,在(,)a b 内可导,且0f x '≤(),记d xaf t t F x x a=-⎰()(),证明:在a b (,)内有0F x '≤().长沙理工大学考试试卷…………………………………………………………………………………………………………………一、选择题:(本题总分16分,每小题4分)1.极限lim 3x x →∞+的值为( )A .2B .2-C .2±D .不存在2.下列函数f x ()在12-[,]上满足罗尔中值定理条件的是( )A.f x =() B .2f x x x =() C .arccos f x x =() D .cot 2xf x π=()3.下列函数中,哪一个不是sin 2x 的原函数 ( )A .2sin xB .2cos x -C .cos2x -D .225sin 4cos x x + 4.设f x ()在a b [,]上连续,则d d d ba x f x x x ⎡⎤=⎢⎥⎣⎦⎰() ( ) A .d b af x x ⎰() B .bf b af a -()() C .[]d ba x fb f a f x x-+⎰()()()D .d baf x x xf x +⎰()()二、填空题:(本题总分16分,每小题4分) 1.函数1arcsin 3x f x -=()的定义域为 . 2.201cos 3limx xx→-= . 3.设x a y x π=+,则y '= . 4.若0a <,= .三、计算题:(本题总分50分,每小题10分)1.计算极限sin cos 30e e lim x x xx x→-. 2.设参数方程(ln sin x t y ⎧=⎪⎨⎪=⎩,求22d d y x .3.计算不定积分12ln d 1xx x x+-⎰,其中1x <. 4.计算定积分291x -⎰.5.求函数2ln xy x=的单调区间与极值.四、应用题:(本题10分)在曲线21y x =+上求一点M ,使它到点050M (,)的距离最小. 五、证明题:(本题8分)设f x ()在(,)a b 内连续,可导且f x '()单调递增,0x a b ∈(,),记00000 f x f x x x x x x f x x xϕ-⎧≠⎪-=⎨⎪'=⎩()(),()(),,证明:()x ϕ在(,)a b 内也单调递增.长沙理工大学考试试卷…………………………………………………………………………………………………………………一、填空题:(本题总分20分,每小题4分) 1.如果0x →时,1cos x -与2sin 2xa 是等价无穷小,则a = . 2.函数22132x f x x x -=-+()的可去间断点为 .3.函数e x y x -=的拐点为 .4.已知y =d x y = .5.微分方程8150y y y '''++=的通解为 . 二、求下列极限:(本题总分12分,每小题6分)1.1x →; 2.011lim ln 1x x x →⎛⎫- ⎪+⎝⎭().三、求下列导数:(本题总分12分,每小题6分)1.设e sin x y x -=,求y ''; 2.已知tan y x y =+(),求y '. 四、求下列积分:(本题总分18分,每小题6分)1.x ; 2.2e d 1e xx x x +⎰(); 3.0222d 22x x x x -+++⎰. 五、解答题:(本题总分30分,每小题10分)1.当a 为何值时,1sin sin 33y a x x =+在3x π=处有极值?求此极值,并说明是极大值还是极小值.2.求抛物线22y x =与其在点112⎛⎫⎪⎝⎭,处的法线所围成的图形的面积.3.求微分方程2ln xy y x x '+=满足条件119y =-()的解.六、证明题:(本题8分)设f x ()在[0, ]a 上连续,证明:0aaf x dx f a x dx =-⎰⎰()().。

长沙理工大学往高等数学试题及答案 (2)

长沙理工大学往高等数学试题及答案 (2)

长沙理工大学高等数学试题及答案一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x 2.()002lim 1cos t t x x e e dt x -→+-=-⎰( )A .0B .1C .-1D.∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A 。

不连续B 。

连续但左、右导数不存在 C.连续但不可导 D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分。

6.设函数f(x )在区间[0,1]上有定义,则函数f(x+14)+f (x —14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9。

已知某产品产量为g时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10。

函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________。

11。

长沙理工大学2018年数学与统计学院《高等代数》初试考试大纲_长沙理工大学考研网

长沙理工大学2018年数学与统计学院《高等代数》初试考试大纲_长沙理工大学考研网

长沙理工大学2018年数学与统计学院《高等代数》初试考试大纲一、考试要求1、掌握一元多项式相关概念,带余除法,能求两个多项式的最大公因式,因式分解定理,重因式,多项式的根在探讨多项式的整除性与不可约性中的应用,复系数与实系数多项式的因式分解,有理系数多项式的根及艾森斯坦因判别法。

2、理解行列式的概念和基本性质,掌握行列式展开定理及行列式的计算。

3、掌握向量组的线性相关与线性无关性、向量组的秩及矩阵的秩的概念,能进行相关的计算和证明,熟练掌握线性方程组有解的判别、线性方程组解的结构及线性方程组的解法及有关证明。

4、掌握矩阵的概念及矩阵的运算,矩阵乘积的行列式与秩的性质,矩阵可逆的充要条件,逆矩阵的求法,矩阵方程的求解,矩阵与分块矩阵的初等变换及(广义)初等矩阵在矩阵的行列式与秩的计算与证明中的应用。

5、理解二次型及其矩阵表示、标准形、规范形及矩阵合同的概念,掌握实二次型的标准形的求法、惯性定理、二次型(矩阵)正定的等价条件及其在相关计算和证明中的应用。

六、理解线性空间中关于维数、基与坐标、基变换与坐标变换、线性子空间、子空间的交与和及直和、线性空间的同构的概念,掌握相关的计算和证明。

七、理解线性变换的定义、线性变换的运算、线性变换的矩阵、线性变换(矩阵)特征值与特征向量、线性变换(矩阵)的对角化、线性变换的值域与核、不变子空间、最小多项式的概念及有关性质,掌握相关的计算和证明,掌握Hamlton-Cayley定理及其应用。

八、理解λ-矩阵、λ-矩阵在初等变换下的标准形、不变因子、行列式因子、初等因子、Jordan块与Jordan标准形、伴侣阵与有理标准形的概念及有关性质,掌握相关的计算和证明,掌握矩阵相似的条件,能求矩阵的若当标准形和矩阵的有理标准形。

九、理解欧氏空间、度量矩阵、标准正交基、正交变换、对称变换、子空间正交及正交补的概念及有关性质,掌握Schmit正交化标准正交基的方法,掌握实对称矩阵的性质、用正交变换化实二次型为标准形及实对称矩阵的正交对角化的相关计算与证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档