免疫比浊法测C反应蛋白

免疫比浊法测C反应蛋白
免疫比浊法测C反应蛋白

免疫比浊法是抗原抗体结合动态测定方法。其基本原理是:当抗原与抗体在特殊稀释系统中反应而且比例合适(一般规定抗体过量)时,形成的可溶性免疫复合物在稀释系统中的促聚剂(聚乙二醇等)的作用下,自液相析出,形成微粒,使反应液出现浊度。当抗体浓度固定时,形成的免疫复合物的量随着检样中抗原量的增加而增加,反应液的浊度也随之增加。通过测定反应液的浊度与一系列标准品对照,即可计算出检样中抗原的含量。

抗体(Ab)与可溶性抗原(Ag)反应,形成一定结构的免疫复合物,成为悬浮于反应溶液中的微粒。在沉淀反应中形成的复合物微粒具有特殊的光学性质,可用仪器检测,提高了检测的速度、灵敏度和易操作性。

免疫比浊测定注意事项:

1、抗原或抗体量大大过剩,可出现可溶性复合物,造成误差。

2、应维持反应管中抗体蛋白始终过剩。

3、易受到脂血的影响。

分类

1.免疫透射比浊法抗原抗体结合后,形成免疫复合物,在一定时间内复合物聚合出现浊度。当光线通过溶液时,可被免疫复合物吸收。免疫复合物量越多,光线吸收越多。光线被吸收的量在一定范围内与免疫复合物的量成正比。利用比浊计测定光密度值,复合物的含量与光密度值成正比,同样当抗体量一定时,光密度值也与抗原含量成正比。本法较单向琼脂扩散试验和火箭电泳等一般免疫化学定量方法敏感、快速简便,但要求免疫复合物的数量和分子量达到一定高度,否则就难以测出。

2.免疫散射比浊法一定波长的光沿水平轴照射,通过溶液使遇到抗原抗体复合物粒子,光线被粒子颗粒折射,发生偏转,光线偏转的角度与发射光的波长和抗原抗体复合物颗粒大小和多少密切相关。散射光的强度与复合物的含量成正比,即待测抗原越多,形成的复合物也越多,散射光也越强。散射光的强度还与各种物理因素,如加入抗原或抗体的时间、光源的强弱和波长、测量角度等密切相关。散射比浊法又分为速率散射比浊法和终点散射比浊法。

3.免疫胶乳比浊法胶乳比浊法即是将待测物质相对应的抗体包被在直径为15-60nm的胶乳颗粒上,使抗原抗体结合物的体积增大,光通过之后,透射光和散射光的强度变化更为显著,从而提高试验的敏感性。

实验八免疫比浊法测定C-反应蛋白

【原理】

血清C反应蛋白(CRP)与试剂中抗人CRP抗体结合,形成免疫复合物,一起吸光度增加,在波长340nm和700nm处测定免疫复合物浊度。根据吸光度增加

量,即可定量检测血清中CRP的含量。

【试剂】

1.0.1 mol/L的Tris缓冲液。

2.羊抗人CRP抗血清。

3.CRP定标液。

【操作步骤】见表8-1。

表8-1 免疫比浊法测定C反应蛋白操作步骤加入物空白管标准管测定管

血清标本(μl) --15

CRP定标液(μl) -15 -

生理盐水(μl) 15 --

缓冲液(μl) 350 350 350 混合,于37℃保温5 min,在波长340nm和700nm处

读各管吸光度(A1

340、A1

700

)

抗人CRP抗血清 (μ

l)

50 50 50

混合,于37℃保温5 min,在波长340nm和700nm处

读各管吸光度(A2

340、A2

700

)

【计算】

HDL-C含量 (mmol/L)=×标准液浓度

⊿A=(A2

340-A2

700

)-(A1

340

-A1

700

)

【参考范围】

血清C反应蛋白<4mg/L(各实验室应有自己的参考范围)

【注意事项】

1.使用新鲜血清,并尽可能快地检测。

2.试剂不能冷冻保存。

【临床意义】

CRP是一种急性相蛋白,肝脏是其主要的合成器官。最近研究表明,人体其他部位如冠状动脉平滑肌细胞、神经元细胞、血管内皮细胞、脂肪细胞、肾小管上皮细胞等在炎症刺激或病理状态下都能合成和分泌CRP。正常情况下,CRP以微量存在于健康人的血清中,但在机体有细菌感染、组织损伤、肿瘤形成等急性相刺激时,CRP水平可升至正常的100倍甚至更高。测定CRP对于鉴别感染、监测疾病活动情况及严重程度、器质性疾病的筛检、监测器官移植受体排斥反应及疗效观察、冠心病等急性血管意外事件的预测与诊治等有很好的导向作用。【评价】

CRP的检测方法从灵敏度较低的免疫扩散法、火箭电泳法、胶乳凝集试验到高灵敏度、高精密度的放射免疫、酶免疫、免疫比浊等定量试验。多数情况下,

半定量的胶乳凝集试验适合于筛查,但其影响因素多、灵敏度较差和不能精确定量。对于需作较精确的CRP定量测定,免疫浊度法较为合适。其他方法如ELISA、免疫发光法和化学发光法虽然灵敏度和精确度都较高,但其成本也较高,故不是理想的临床实验室的常规方法。

1材料与方法

1.1兔抗人白蛋白免疫羧化胶乳的制备

1.1.1兔抗人白蛋白抗体的制备采用25%人血浆白蛋白注射液,按常规免疫新西兰纯种白兔,获得兔抗人白蛋白免疫血清(效价1:32),经饱和硫酸铵沉淀后,过DE-52层析柱,IgG峰部洗脱液用Follin酚法于540nm处定量测定IgG 蛋白含量,并用聚丙烯酰胺凝胶圆盘电泳鉴定,仅出现一条区带。

1.1.2兔抗人白蛋白免疫羧化胶乳的制备取10%羧化聚苯乙烯胶乳悬液(军事医学科学院动物中心产品,Φ=0.6μm),用pH8.2甘氨酸缓冲液(GBS)稀释成1%浓度,将其于兔抗人白蛋白IgG按适当比例混合,以常规物理吸附法致敏胶乳[2]。

1.2敏感性试验

取25%人血浆白蛋白20μl,加入生理盐水180μl,再经系列稀释成10个浓度,其浓度范围在25mg/ml~3.125ng/ml之间,用兔抗人免疫羧化胶乳做3次重复检测。

1.3特异性试验

将牛、马、羊、豚鼠血清分别稀释至5%、2.5%和1.25%,用兔抗人白蛋白免疫羧化胶乳检测。

1.4重复性试验

用四批兔抗人白蛋白免疫羧化胶乳,对5份粪微量白蛋白阳性粪便标本和2份已知浓度白蛋白溶液平行检测,并在有效期内用同一批免疫羧化胶乳先后7次重复检测,同时设阴性对照。

3讨论

兔抗人白蛋白免疫羧化胶乳试剂对粪微量白蛋白的检测,是针对粪便中由于病变部位出血后的血浆蛋白,或组织渗出液中的白蛋白。而检测粪微量白蛋白作为大肠肿瘤的筛检手段之一,最早是在1987年,日本中山拓郎等曾用ELISA

法对粪潜白蛋白(Occultalbmin)进行定量检测,并认为其敏感性优于便潜血。1993年,我们制备和建立了兔抗人白蛋白免疫羧化胶乳试剂和反向胶乳凝集试验,检测了378例已知患者和正常人粪便标本,其临床结果显示:56例大肠癌诊断敏感性55.4%,特异性82.6%;132例正常人阳性率17.4%。近来我们增加了已知患者数量,重新检测了161例正常人粪微量白蛋白,结果表明:在增加受检人数后,提高了大肠癌的诊断敏感性(76.8%),而特异性则无显著差别(80.0%);161例正常人阳性率为19.2%,比原来的132例正常人阳性率高1.8%。实验结果显示:在受检人数增多的情况下,用该试剂检测粪微量白蛋白可能会达到提高诊断敏感性,保持特异性的良好效果。

C-反应蛋白检测试剂盒(全量程)试制工作总结

一、概述

C反应蛋白(C-reactive protein)是一种能与肺炎链球菌C多糖体反应形成复合物的急性时相反应蛋白,半衰期19小时;血清CRP由肝脏合成,白细胞介素1b、6以及肿瘤坏死因子是其合成的最重要的调节因子;CRP的分子量为105 500,由含有五个相同的未糖基化的多肽亚单位组成,每个亚单位含有187个氨基酸,这些亚单位间通过非共价键连结成环状的五聚体,并有一个链间二硫

键。

1930年,Tillett和Francis首次在急性大叶性肺炎患者的血清中发现一种能在Ca2+存在时与肺炎球菌细胞壁中的C-多糖发生特异性沉淀反应的物质。1941年,Avery等测知它是一种蛋白质,故称为C反应蛋白(CRP)。1944年,Jones 将其作为临床风湿热诊断标准的次要指标之一。后来,人们在非感染性疾病和感染性疾病患者的急性期血清中都测到了CRP,于是人们认为,CRP是组织损伤的一种非特异性反应。进一步研究发现:病毒或细菌感染、梗塞、免疫复合物沉积等因素都可导致组织损伤。在组织损伤的急性期,肝脏合成的一些血浆蛋白显著增加,这些蛋白质通称为急性时相蛋白,其中CRP是急性时相蛋白中变化最显著的一种。CRP在正常人血清中其含量极微;在组织受到损伤、炎症、感染或肿瘤破坏时CRP可以在数小时内急剧上升,可增高数倍或数百倍,2-3天达峰值,待病情改善时逐渐下降,恢复正常。CRP被广泛应用于临床疾病的早期诊断及鉴别诊断,其升高可见于:1、组织损伤、感染、肿瘤、心肌梗塞及一系列急慢性炎症性疾病,如风湿性关节炎、全身性血管炎、多肌痛风湿病;2、术后感染及并发症的指标:手术后病人CRP升高,术后7—10天CRP水平应下降,如CRP不降低或再次升高,提示可能并发感染或血栓栓塞;3、可作为细菌性感染和病毒性感染的鉴别诊断:大多数细菌性感染会引起患者血清CRP升

高,而病毒性感染则多数不升高。

超敏C反应蛋白(High sensitivity C-reactive protein)与CRP并不是两种蛋白,只是从灵敏度上加以区分, 超敏C反应蛋白(Hs-CRP)最低检测限达0.1 mg/l; 原先认为CRP是正常的血清却发现同未来发生心血管疾病密切相关,大量研究资料表明,动脉粥样化的血栓去除了是脂肪堆积的过程外也是一个慢性炎症过程,;Hs-CRP轻度升高与冠状动脉事件、中风及周围血管病相关,是一项独

立的危险因素;HS-CRP已被证实是由慢性炎症引发心血有较高的灵敏度但线性较低,这样就出现了一种试剂两种名称,用途也有所区别;近几年来,随着检验技术的发展,开始出现了一种全量程CRP,这种CRP即能满足较高的灵敏度,又能满足较高的线性,如日本一化,申索佑福等,我公司通过与中科院上海生物研究所合作,近期已完成全量程CRP的试制,经公司自检与医院试用,结果表明与免疫散射比浊法一致性好;公司已计划于近期完成临床与注册,正式推向市

场;

二、国内外研究情况

2.1临床研究

CRP作为一种急性时相反应蛋白,被广泛应用于临床。

2.1.1用于细菌和病毒感染的鉴别诊断

当细菌感染引发炎症,在炎症进程开始4~7小时就可开始升高,且升高的幅度与细菌感染的严重程度相一致,病毒感染时CRP不增高,以此鉴别感染的性质,指导临床治疗,减少不管疾病的独立危险因素,检测其浓度对心血管疾病的干预及预后起重要作用而被临床重视。流行病学调查也显示,hs-CRP 水平升高者发生急性脑卒中的几率是正常健康人的2 倍, 发生心肌梗死的几率是正常者的3 倍。2003 年欧洲高血压防治指南( ESH/ESC) 正式推荐, 高血压患者

需检测hs-CRP 水平。

目前国内用于全自动生化仪的免疫透射比浊法试剂CRP出现了两种(普通CRP与超敏CRP),普通CRP有较高的线性但灵敏度不好,超敏CRP必要的抗生素治疗,有效防止抗生素的滥用。这些感染临床上常见于肺炎、支气管炎、咽喉炎、细菌性脑膜炎、伤寒、化脓性关节炎、尿路感染、骨盆炎、阑尾炎等等。在鉴别细菌或病毒感染方面,比白细胞计数及分类计数更准确,特别是老年人,免疫系统反应顺应性下降,可能有感染发生但临床上并无发热、白细胞升高等情况,此时检测CRP有助于检出细菌感染。

2.1.2肿瘤监测

CRP的测定用于肿瘤的治疗和预后:CRP术前上升,术后下降,不受放疗、化疗和皮质激素治疗的影响,有助于临床评估肿瘤的进程。

2.1.3监控病情变化及术后感染,并用于抗生素疗效观察

CRP在血中升高的幅度与感染的程度正相关。有研究表明,术后6小时左右,CRP开始升高,如无并发症应在术后三天下降直至正常,如术后出现感染,则CRP长时间不下降;术前CRP升高者,术后感染率也远高于术前CRP不高者。对于烧伤病人,可检测CRP以警示是否发生败血症,以便及时应对治疗。对疑有败血症的新生儿,在24~48小时内作CRP的动态监测,可作为是否停止抗生素治疗的可靠依据,而血培养的时间则需更长,培养结果出来之前无法排除败血症。对细菌感染作抗生素治疗时,动态检测CRP是必要的,它比临床体征更早作出并发症警报和治疗效果的判定,在粒细胞缺乏症或机体免疫状态抑制

时更有临床意义。

2.1.4用于评估急性胰腺炎的严重程度

入院时CRP>110mg/l,可能是出血性胰腺炎(临床灵敏度88%,特异性94%);当CRP>250mg/l时,可提示为广泛性坏死性胰腺炎。

2.1.5风湿病

类风湿性关节炎患者CRP与疾病相关性较大,比临床症状出现要早4-6周。

2.1.6肺部感染

肺炎在年老人群中较难诊断,通常不大有发热。在许多情况下CRP

>100mg/l,提示细菌感染,如肺炎或化脓性支气管炎。典型的病毒性肺炎不会

超过50mg/l。

2.1.7儿科感染性疾病:

在儿童急性淋巴细胞白血病常发性细菌败血症,CRP超过100mg/ L,则视为有细菌感染;儿童CRP细菌性脑膜炎时平均195mg/L,而病毒性脑膜炎则低得

多。

2.1.8肾脏移植排异

移值后8天CRP下降至正常,如发生排斥反应则血清肌酐、尿氮、CRP皆升高。CRP升高在排斥反应发生之前4天出现。但是,感染也可发生CRP升高,要注

意两者鉴别。

2.1.9 心血管疾病

随着检验技术的发展,原先认为CRP是正常的血清却发现同未来发生心血管疾病密切相关,大量研究资料表明,动脉粥样化的血栓去除了是脂肪堆积的过程外也是一个慢性炎症过程,;CRP轻度升高与冠状动脉事件、中风及周围血管病

相关,是一项独立的危险因素;

①未来发生心血管疾病发病率和死亡率的预测指标

Hs-CRP是健康人未来发生心血管事件一个有价值的预测指标,许多研究证实Hs-CRP能预测首次心肌梗死和疾病的发作,内科健康研究(PHS)显示,Hs-CRP位于最高四分位数的病人未来发生卒中危险增加2倍,未来发生心肌梗死危险增加3倍,未来发生周围血管疾病的危险增加4倍。这种预测作用长期稳定存在于吸烟和非吸烟者中,且独立于其他危险因素。Hs-CRP是已知CHD 病人未来心血管病发病和死亡的预测指标,欧洲ECTA研究组的资料显示,稳定性心绞痛(SAP)和不稳定性心绞痛(UAP)病人Hs-CRP浓度每升高一个标准差,非致命性心肌梗死或心脏性猝死的相对危险增加45%。

②急性冠脉综合症(ACS)的预后指标

Hs-CRP测定对ACS的预后价值,首先是在急性局部缺血和不稳定心绞痛

的病人中提出的,

重度不稳定型心绞痛(UAP)病人入院时若Hs-CRP≥3mg/l 比Hs-CRP﹤3mg/l 者心绞痛复发、冠状动脉血管置换术、心肌梗死和心血管疾病致死等心血管事件发生率高;出院时测Hs-CRP比入院时测能更好的预测90天的不良后果;检测Hs-CRP有助于鉴别心肌钙蛋白(cTn)阴性而病死率增高的病人,应联合合使用cTn与Hs-CRP来评估ACS危险程度,ACS病人入院时

Hs-CRP≥5mg/l 与半年内严重心脏病发病率升高相关,而不管cTn值如何。

③与TC/HDL-C联合预测冠心病危险

在冠心病的危险性研究评估时, Hs-CRP与血脂指标是独立的变量,将两者同时检测并联合分析,在诸多变量分析过程中,记录诸多冠心病危险因素如肥胖\高血压\糖尿病\冠心病家族史等,各种生化指标中仅Hs-CRP与TC/HDL-C有单独

的预测价值,两者联合意义更大。

2.2国内外试剂盒发展

CRP的测定方法较多,一般分为定性与定量两种。定性方法有:用纯化了

的肺

炎球菌C-组分与病人血清反应的沉淀法、肺炎球菌荚膜肿胀试验、特异性

抗血

清与CRP反应的毛细管沉淀试验、补体结合试验、乳胶凝集试验、乳胶扩

散沉

淀试验等,但它们的灵敏度低,只用于定性检测。定量检测的有:放射免疫

(RIA)、

荧光免疫(FIA)、酶标免疫(ELISA) 、速率散射比浊法(INA)、胶乳增强透

射比

浊法(ITA);定性与定量相结合的方法有:快速检测卡结合仪器法;其中

放射

法对人伤辐射伤害较大,已较少使用,荧光免疫(FIA)或化学发光需专用仪

器且

成本高,ELISA法多数为半自动操作,出结果慢,不适合批量检测;速率散

射比

浊法(INA)需与比浊仪搭配使用,增加了仪器成本;快速检测卡结合仪器

法只

是半定量试剂,不能准确定量;胶乳增强透射比浊法(ITA)是目前医院较

多使

用的方法之一。目前国内有两种试剂,即普通CRP与超敏CRP,一个项目,

两种

试剂,给用户带来了不便;随着检验技术的发展,近几年已出现了一种即有

高线

性又有高灵敏度的试剂,即全量程CRP,目前国外已有Orion公司、日本

一化,申

索佑福等公司推出了此种试剂,我公司通过与中科院上海生物研究所合作,

近期已完成全量程CRP的试制,经公司自检与医院试用,结果表明与免疫

射比浊法一致性好;公司已计划于近期完成临床与注册,正式推向市场;全

量程

CRP即有普通CRP的高线性,又有超敏CRP的高灵活敏度,因此,CRP

即可

作炎症标志物,也可用作Hs-CRP用于心血管疾病的预测与预后。

三、试制过程

目前,测定CRP的方法有很多,定性或半定量方法由于不是准确定量,已

较少

使用;定量方法放射免疫(RIA)、荧光免疫(FIA)、酶标免疫(ELISA) 、速率散射比浊法(INA)、胶乳增强透射比浊法(ITA)等中以后两种使用较多;

目前国外已有Orion公司、日本一化,申索佑福等推出了胶乳增强透射比浊

法试

剂,国内大多为进口试剂,我公司通过与中科院上海生研所合作,已完成小

样制

备,并计划于近期报批上市。

3.1原理与试剂成份

血浆中的CRP与试剂中胶乳包被的特异性抗体相结合,形成抗原抗体复合物产生混浊;在一定的抗体浓度范围内,其浊度高低与血清CRP含量成正比。通过测定特定波长的吸光度值,查标准曲线即可求出血清中CRP的含量。

试剂成份:磷酸盐100mM 表面活性剂复合抗体

当光线通过个浑浊介质溶液时,由于溶液中存在混浊颗粒,光线被吸收了一部分,吸收的多少与混浊颗粒的量成正比,这种测定光吸收量的方法称为透射比浊法。因有抗原抗体反应,固称为免疫透射比浊法,为增强灵敏度,采用胶乳增强免疫比浊法。抗原与抗体在一定条件下才能形成复合物,一定条件包括:

①抗体的要求

抗体要求效价高(保持高线性),纯度高(如不纯,则有可能含其它抗体而有非特反应从而导致结果偏高),亲和力要强(亲和力强生成的抗原抗体复合物

才稳定,不易解离)

②抗原抗体比例要求

免疫复合物形成有三个阶段,第一阶段是形成抗原抗体复体物,第二阶段是复合物交联形成大网格结构,第三阶段是复合物聚合而形成沉淀。只有在抗体过量时,其浊度才会随着CRP的增加面增加,若抗原过剩则会出现HOOK效应而

导致结果偏低而不准;

③促进剂与稳定剂

一般要求溶液中有非离子性亲水性多聚体促进免疫复合物的形成,如

PEG6000,含量3-4%。

④PH一般在6.5-8.0之间,过酸过碱均会破坏试剂中抗体与样本中的抗原。

3.2 胶乳的选择与制备

由于测定用的波长与粒径大小有关,因此粒径的均一性是影响测量精密度与均确度的一个重要因素。公司选用聚苯乙烯胶乳,聚苯乙烯胶乳用乳液聚合法制备小分子纳米(25-50nm),采用微孔过滤技术,保证颗粒大小的一致性,小分子纳米颗粒较一般颗粒(100-300nm)颗粒更小,不易发生自沉;过滤后的胶乳进行羧化,使羧基均匀分布于胶乳的表面。再把羧化的胶乳与D-二聚体抗体结合,结合方式包含物理吸附与化学交联两种,以增强抗原捕获能力,缩短反应时间,整过反应过程在3-5分钟内结束,且化学交联后形成的抗原抗体复合物更紧密,不易解离,结果更准确,精密度更好。

表一、小分子纳米技术与化学交联技术应用后的D-二聚体的精密度与准确

X SD Cv(%)

1.5 0.06 4.00

批内(n=20)

123 2 2.44

1.4 0.05 3.57

批间(n=20)

123 1.6 1.30

靶值测量值偏差相对偏

质控1 2.0 2.15 0.15 7.5%

质控2 10 9.62 0.38 3.8%

质控3 136 138.5 2.5 1.84% 胶乳粒子在100-300nm时,胶乳颗粒易自沉,造成瓶间差批间差过大,而且由于粒径过大,造成反应为非均相反应,CV变异较大,我公司采用创新的小分子纳米技术,大大的延长了定标有效期,缩小了瓶间差与批间差,为真正意义

上的均相反应。

表二、胶乳粒径与定标有效期、瓶间CV、批间CV等关系

是否均相反应是否自沉胶乳粒径(nm)定标有效期

(天)

100-300 7-14 非均相自沉

25-50 28 均相均相分布,不自

批内CV(%),N=20 瓶间CV(%),

N=20

批间CV(%),N=20

100-300 4.5 5.5 6.8

25-50 2.8 3.0 4.1

普通胶乳只通过物理吸附抗体,形成共价交联,共价交联结合相对不牢靠,而且吸附的抗体较少,会造成试剂线性偏或灵敏度低;我公司采用物理吸附的共价交联与化学交联相结合技术(化学交联通过缩合剂炭化二亚胺将胶乳上的羧基与交联物上的氨基缩合在一起),大大提高了试剂的稳定性与灵敏度;

表三、不同交联胶乳试剂灵敏度与试剂稳定性

共价交联稳定6个月灵敏度较

反应慢,复合物不太稳定

化学交联稳定9个月灵敏度高反应快,复合物稳定

共价+化学交联

稳定12个

灵敏度高反应快,复合物很稳定

3.3抗体的选择与纯化

抗体的纯度对测定的特异性有直接影响。不纯的抗体将导致非特异反应,引起结果假性升高,测量值不准等情况。因此必须采用单克隆抗体与亲和层析技术纯化的抗体,并用SDS-PAGE鉴定纯度,如出现多条电泳带,则多明杂蛋白较

多,需更进一步纯化;

公司CRP抗体采用羊抗人多克克隆抗体与鼠抗人单克隆抗体的复合抗体,采用山羊或鼠体内诱生法产生,产生的腹水用滤纸过滤,去除脂质与大颗粒,再用离心的方法去除细胞碎片和大的蛋白质,制成粗抗体;将粗抗原或纯化抗原交联到琼脂糖珠SEPHAROSE 4B制成亲和层析柱,将粗抗体通过亲和层析柱,洗去未结合的非特异性蛋白,再用硫氰酸钾洗脱,洗脱流出液即为纯的多克隆抗

体。

抗体的效价:要求效价至少大于1:16,效价为抗体能引起浊度变化的最大稀释倍数,公司采用的复合抗体中羊抗人多克克隆抗体效价大于1:16, 鼠抗人单克隆抗体效价大于1:128;多抗保证线性与高值,单抗保证灵敏度与低值;

抗体的保存:冻干抗体具有稳定性好,保质期长等特点,适合于长期保存,配成试剂后可加适量甘油与BSA作稳定剂;

多克隆抗体、单克隆抗体等复合抗体技术即保证了灵敏度与高线性,与普通CRP与超敏CRP两种试剂等效,方便了医院操作;亲和层析技术的应用,大大提高了抗体的纯度与效价,最大限度避免了非特异性反应,使结果准确性有了较

大提高,精密度更好;

表四、亲和层析与复合抗体技术应用后D-二聚体的精密度与准确度

X SD Cv(%)

1.5 0.05 3.33

批内(n=20)

123 2.6 2.11

1.4 0.06 4.0

批间(n=20)

125 3.0 2.4

靶值测量值偏差相对偏

质控1 2 2.08 0.08 4%

质控2 10 10.3 0.3 3%

质控3 136 134 -2 1.5%

3.4微孔滤膜孔径的选择

试剂的稳定性因素主要有胶乳抗体的纯度,缓冲液的品质,试剂中的悬浮小颗粒,此小颗粒肉眼看不到,漂浮于试剂中,影响光的吸收,且用常规过滤无法去除,其主要成份为杂质、短纤维和细菌,这是导致瓶间与批间差大的原因之一。

由于普通胶乳颗粒采用100-300nm,所以只能用常规过滤,无法去除杂质,我公司由于采用小分子纳米(20-50nm)技术,可以采用特殊微膜过滤,通过过滤膜孔径的研究发现,小孔径过滤可以显著改善试剂的精密度,延长定标稳定

期,缩小批间差;

表五、滤膜孔径与变异系数,定标有效期的关系(n=20)孔径(μm)0.25 0.45 0.6 0.8 1.0 1.2 CV(%) 3.2 4.5 5.1 5.6 7.5 8.2

28 14 10 8 7 5

定标有效期

(天)

当孔径在1μm 时,基本可以除去一般的杂质微粒,当孔径在0.45μm 时,基本可以除去短小纤维,当孔径在0.25μm 时,基本可以除细菌等微生物;实验表明当孔径在0.22μm时延长定标稳定期,缩小批间差,可能与去除细菌有关,试剂

更稳定;

3.5稳定剂、保护剂的选择与优化

胶乳溶液介于小分子离子溶液与粗分散体系之间,胶乳抗体颗粒作布朗运动,不易受重力影响而下沉。但胶乳抗体溶液不是稳定体系,当颗粒相互碰撞时,有时会自动合并为较大、较重颗粒而引起自沉;影响自沉的原因如下:

①胶乳颗粒间的相互引力,可能引起合并变成大颗粒;

②胶粒带电情况,一种胶乳的粒子都带有相同电荷,同性相斥,胶粒带电量

越大,排斥越大,越不易自沉;

③胶粒之间的溶剂膜,这种液膜有反抗二固体接近的排斥力,这种排斥力与

缓冲液、合适的PH,稳定剂等相关;

我公司选择CC+PEG作为促进剂与稳定剂,与明胶、PEG,葡聚糖相比稳

定时间更长,提升了试剂的有效期

表六、稳定剂与有效期(以测量结果与靶值偏差≦10%为依据)的关系稳定剂CC+PEG 葡聚糖PEG 明胶

12 5 10 6

稳定时间

(月)

偏差(%) 4.3 6.9 5.6 8.5

四、创新点

目前我公司已完成全量程CRP的小试、中试阶段。已经小规模投入生产,产品性能符合产品标准要求(产品标准要求不低于国家标准要求),产品经自检与送检均符合产品标准要求,医院实验结果表明此试剂也符合临床使用要求,可以正式投入市场。目前国外已有此类胶乳比浊试剂,我公司与中科院上海生化研

究所合作,作出了以下几点创新:

1、采用鼠抗人单克隆抗体与羊抗人多克隆抗体相结合的复合抗体技术,即保

证了高线性,又保证了产品的灵活敏度;

2、采用了亲和层析纯化技术,使得抗体更纯,亲和力更好,效价更高;

3、采用共价交联与化学交联相结合的抗体包被技术,使得线性与灵敏度有

了较大提高,复合物的稳定性有所增强;

4、采用小分子纳米技术与微孔过滤技术,使得试剂更稳定,不易发生自沉,有效的延长了定标有效期;有效的提高了试剂的均一性,成为真正意义上的均相反应;有效的去除了非反应杂质颗粒,提升了试剂的精密度与准确度;

5、加入了PEG+CC作为促进剂与稳定剂,有效的延长的试剂的有效期;

6、采用二级反渗水作为试剂配制用水,有效的避免了水中杂质颗粒带来的干

扰;

研究结果表明,2种检测方法在3~5、5—10和>10 mg/L范围内测定hs-CRP浓度的相关系数分别为0、996、0.995、0.982,表明2种检测方法的相关性较好。而在<1及l一3 mg/L的测定中,2种方法的相关系数分别为0.928和0.930。由于在乳胶增强透射免疫比浊法检测中,如果抗原抗体复合物的数量太少,则阻挡不了光线的通过,因此在血清hs-CRP浓度太低时测定的敏感性会有所影响。而速率散射免疫比浊法是测定抗原抗体反应复合物形成速度最快时间段的信号值,可测到最大速率散射信号峰值,因此该测定不受本底散射信号的干扰,

检测快速,敏感性高,对检测微量的hs-CRP更为理想p1。本研究还发现,在高浓

度的hs—CRP测定中,如hs-CRP浓度>10 mg/L,由于抗原过量,乳胶增强透射免疫比浊法测定时,hs-CRP浓度明显超出了检测限上限,会发生测定结果显著低于实际含量或无法测出的现象。而在速率散射免疫比浊法中,为保证准确性和精确性,仪器设计有抗原过量检测系统。提示应将待测标本进一步稀释,重新进行检测。以获取全部抗原的真实浓度,本研究通过5倍稀释标本,得到了较高浓度hs-CRP的精确值。由此看来,速率散射免疫比浊法在低值和高值测定中优于乳胶增强透射免疫比浊法。

免疫比浊法工艺模板

纤维蛋白(原)降解产物测定试剂盒(胶乳增强免疫比浊法) 主要生产工艺及反应体系的研究 一、实验目的 研究合适的纤维蛋白(原)降解产物的生产工艺和最佳反应体系。二、实验设计思想 纤维蛋白(原)降解产物测定试剂盒(胶乳增强免疫比浊法)原理是样本中的FDP抗原与试剂中的抗体结合,形成抗原抗体复合物,产生吸光度变化,胶乳试剂可特异性的增大该吸光度的变化,增大试剂的灵敏度。该吸光度变化的高低与样本中的FDP的含量成正比,测定该吸光度,采用与校准品比较,即能得出样本FDP的含量。 三、主要仪器及试剂材料 1.D240全自动生化分析仪/雷杜420全自动生化分析仪 生产商:南京神州英诺华医疗科技有限公司/深圳雷杜生命科学股份有限公司 2.纤维蛋白(原)降解产物校准品 FDP含量:84μg/mL 生产商:上海捷门生物技术合作公司 批号:S2814-1 四、实验内容及程序 纤维蛋白(原)降解产物测定试剂盒主要生产工艺过程的研制及试剂盒反应体系的建立分为三个部分:生产工艺的研制、试剂盒组成的研制、试剂盒反应体系的建立。 产品拟定标准: 线性范围:在拟定线性范围内,相关系数r≥0.99; 准确度:测定已知溯源的FDP质控品,相对偏差(Bias%)≤±25%; 灵敏度:测定已知溯源的FDP质控品12次,结果CV≤20%; 精密度:测定已知溯源的FDP质控品20次,结果CV≤15%。 1.主要工艺描述

1.1原液的准备 购进商品化的高效价纤维蛋白(原)降解产物抗体致敏胶乳,将其稀释成合适的倍数,作为试剂2备用。选择合适的缓冲体系,加入一定量的增浊剂和稳定剂作为试剂1备用。 1.2原液的验证 购进有溯源的定值校准品,在生化分析仪上,将适量的校准品加入试剂1中,在适宜的条件下,和试剂2反应,根据校准品浓度和吸光度做剂量/响应曲线,得出一条持续上升的平滑曲线,即得到合格的原液。 2.反应体系的组成及其研究 2.1购进有溯源并标示有定值的校准品; FDP含量:84μg/ml 生产商:上海捷门生物技术合作有限公司 批号:? 2.2致敏胶乳的准备 抗体致敏胶乳:上海捷门生物技术合作有限公司提供 用实验室PBS缓冲液(0.1mol/L,PH=7.4)将其倍半稀释,分别稀释成:3.5倍、3倍2.5倍、2倍、1.5倍。用上述已准备好的不同稀释倍数FDP抗体致敏胶乳和稀释好的校准品在生化仪上进行操作。 2.2.1实验方法 2.2.2实验结果

甘胆酸测定试剂盒(胶乳免疫比浊法)产品技术要求baiding

甘胆酸测定试剂盒(胶乳免疫比浊法)适用范围:用于体外定量测定人血清中甘胆酸的含量。 1.1规格 校准品(选配):1×1mL; 质控品(选配):1×1mL。 1.2组成

注:校准品靶值、质控品质控范围详见包装标签。 2.1 外观 2.1.1试剂1:无色至淡黄色液体,无浑浊,无未溶解物。 2.1.2试剂2:乳白色液体。 2.1.3校准品:无色至淡黄色液体。 2.1.4质控品:无色至淡黄色液体。 2.1.5包装外观应整洁,标签字迹清晰,不易脱落。 2.2 净含量 液体试剂的净含量不低于标示体积。 2.3 试剂空白吸光度 试剂空白吸光度≤1.5。 2.4 分析灵敏度 样本浓度为20 mg/L时,△A≥0.003。

2.5 线性区间 在[0.7,80] mg/L范围内,线性相关系数r≥0.990;测试浓度在[0.7,10] mg/L时,绝对偏差不超过±1.0 mg/L,测试浓度在(10,80] mg/L时,相对偏差不超过±10%。 2.6 精密度 2.6.1 批內精密度 用高、低2个浓度的样本测试试剂盒,各重复测试10次,其变异系数(CV)应不大于10%。 2.6.2批间差 用样本分别测试3个不同批次的试剂盒,每个批次测试3次,其相对极差(R)应不大于10%。 2.7 准确度 回收率在85%-115%范围内。 2.8 质控品赋值有效性 检测结果在质控范围内。 2.9 瓶内均匀性 校准品和质控品瓶内均匀性(CV)应不大于10%。 2.10 量值溯源 校准品量值溯源至公司内部工作校准品,并与北京世纪沃德生物科技有限公司生产的甘胆酸测试试剂盒(胶乳免疫比浊法)比对验证。 2.11 稳定性 2.11.1校准品开瓶稳定性

胶乳增强免疫比浊反应原理

胶乳增强免疫比浊反应原理: 免疫比浊反应原理: 当样本中的待测抗原与试剂中的特异性多克隆抗体相遇后,即可发生特异性的结合反应(一个抗原具有多个不同的抗原决定簇(反应位点),可以连接多个不同的对应位点抗体;而抗体具有两个相同的抗原结合位点,可以同时结合两个待测抗原;),从而形成网状的抗原-抗体分子复合物,引起溶液中浊度的变化,通过测试溶液中透射或散射的吸光度变化,从而确定样本中待测抗原的浓度; 胶乳增强免疫反应比浊原理: 基于免疫反应原理,和纳米颗粒的特殊效应(表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应),不只可以检测样本中的完全抗原,也可以检测样本中的半抗原、抗体,从而引起浊度变化,此时浊度与空白样本的不同作为待测物浓度的检测依据。 免疫透射比浊法 原理: 可溶性抗原与相应抗体反应后形成的免疫复物,使介质浊度发生改变,光线通过抗原抗体反应后的溶液时,被其中的免疫复合物微粒吸收,在保持抗体过量的情况下,吸光度(A 值)与免疫复合物量呈正相关。透射光强度和形成的免疫复合物呈反比。 优点:透射比浊法灵敏度比单扩高5-10倍,重复性好,结果准确,操作简便,且能用全自动或半全自动生化分析仪进行检测。 不足: ①抗体用量较大; ②溶液中存在的抗原-抗体复合物分子应足够大(35-100nm),分子太小则阻挡不了光线的通过;数量要足够多,如果数量太少,则溶液浊度变化太小,对光通量影响不大。灵敏度较散射比浊法低; ③透射比浊测定在抗原-抗体反应的第二阶段,需在抗原抗体反应达到平衡后进行检测,耗时较长。 胶乳增强免疫比浊法 在一般的透射比浊法中,少量小分子免疫复合物极难形成浊度,要形成较大的免疫复合物,参与反应的抗原、抗体量应较大(浓度高),这无法满足高灵敏度检测项目的要求。胶乳增

铁蛋白(FER)测定试剂盒(胶乳免疫比浊法)产品技术要求sainuopu

铁蛋白(FER)测定试剂盒(胶乳免疫比浊法) 适用范围:用于体外定量测定人体血清中的铁蛋白的含量。 1.1试剂盒包装规格 试剂1:1×20ml,试剂2:1×10ml;试剂1:2×36ml,试剂2:2×18ml; 试剂1:1×400ml,试剂2:1×200ml。 校准品(可选):4×0.5ml(四水平),4×1ml(四水平)。 1.2试剂盒主要组成成分

2.1 外观 液体双试剂:试剂1无色澄清液体;试剂2 乳白色悬浊液。 校准品:浅黄至棕红色液体。 2.2 净含量 液体试剂的净含量不得低于标示体积。 2.3 试剂空白吸光度 在37℃、660nm波长、1cm光径条件下,试剂空白吸光度应不大于2.0。 2.4 分析灵敏度 测定浓度为400ng/ml样本时,吸光度变化绝对值(|ΔA|)应不小于0.03。2.5 线性范围 在(6,450)ng/ml范围内,线性相关系数r不小于0.996,在(50,450)ng/ml 区间内线性相对偏差不大于±15%,(6,50]ng/ml区间内线性绝对偏差不大于±7.5ng/ml。 2.6 重复性 重复测试两份高低浓度的样本,所得结果的变异系数(CV%)应不大于8%。 2.7 批间差 不同批号试剂测试同一份样本,测定结果的批间相对极差应不大于10%。 2.8 准确度 相对偏差:相对偏差应不超过±10%。 2.9 校准品溯源性 依据GB/T 21415-2008《体外诊断医疗器械生物样品中量的测量校准品和控制物质赋值的计量学溯源性》的要求,校准品溯源至NIBSC生产的有证参考物质(WHO 94/572)。

2.10 稳定性 效期稳定性:试剂盒在2℃~8℃下有效期为12个月。取失效期的试剂盒进行检测试验结果满足2.3、2.4、2.5、2.6、2.8的要求。

体外诊断试剂胶乳比浊法学习.

胶乳免疫比浊法相关知识 很多公司开展了荧光胶乳免疫层析做定量分析及胶乳增强免疫比浊分析项目,关注胶乳标记技术的技术人员越来越多。本人总结了部分胶乳微球标记技术,并加以分类,以便朋友们查阅: 胶乳微球物理吸附: 反应微球带磺酸基、羧基、醛基表面的都是疏水微球,都可以用来设计被动吸附蛋白。磺酸基微球表面含带有负电荷的磺酸基团,pka大约为2,因此在酸性pH保持稳定。醛基微球表面也带有磺酸基团,但能和蛋白行程共价键。羧基微球表面含带负电荷的羧基基团,在pH5.0以上时保持稳定。 带有疏水基团的蛋白的吸附和配位结合,是最简单和直接的标记方法。这种方法中,微球溶液和含目标蛋白的溶液混合,反应后,未结合的游离蛋白通过清洗步骤除去,从而获得胶体蛋白复合物。疏水吸附方法只能用于疏水微球(硫酸盐、羧基、醛基表面修饰的微球)。醛基表面修饰微球是一个特例,其疏水吸附结果取决于后来的共价结合。虽然物理吸附是不依赖pH的,但反应缓冲液的pH对蛋白的结构有非常大的影响,从而影响蛋白吸附到微球上的反应效率。一般,在被吸附蛋白等电点附近pH时,物理吸附效率会很高。 反应步骤: 1.用反应缓冲液系数蛋白到10mg/ml; 2.用反应缓冲液系数胶乳微球到1%; 3.将蛋白溶液加入到胶乳微球溶液中,10ml胶乳中加入1ml蛋白溶液。室温搅拌孵育2hr; 4.离心或超滤,除去未结合蛋白; 5.将微球蛋白复合物用储存缓冲液溶解。 注意事项: 1.最优蛋白标记量影响因素 1)有效比表面积:粒径减小时,比表面积/mg微球值得增加; 2)胶体稳定性:蛋白对胶乳有稳定和去稳定作用; 3)免疫反应:最近标记量由免疫反应需要决定。 2.胶乳微球中加入蛋白后,快速搅拌混合,利于反应均衡。反应体积是1ml时,可用移液器吸取蛋白加入微球中,并吹打数次。如果反应体积较大时,用烧杯,边搅拌边加入蛋白, 3.储存缓冲液和反应缓冲液不同时,抗体有脱落的可能; 4.表面活性剂能使得抗体从胶乳中脱落,所以应避免加入。 微球共价结合抗体方法: 一、一步法 1.准备50mM pH 6.0的reaction buffer,醋酸或MES buffer更合适 2.用reaction buffer溶解抗体,使其浓度为1mg/mL。 3.用reaction buffer 悬浮微球,使其浓度为1% w/v 4.边搅拌边将一倍体积的抗体溶液加入到10倍体积的微球悬液中,室温下持续搅拌20分钟 5.准备浓度为10mg/ml(52umol/mL)的EDC溶液,用前准备,现配现用。 6.将计算需求量的EDC溶液加入到上述微球悬液中。(Note 6). 7.室温下,立即调节pH (Note 7). 8.移除未结合的蛋白,并将包被微球用storage buffer重悬。(Note 3 and 4) B. 两步法 为了避免EDC将相邻微球之间的蛋白偶联导致微球聚集或者蛋白之间交流,两步法偶联抗体更合适。两步法中,在蛋白加入之前,多余的EDC被移除。两步法中,蛋白也可以使用更高pH的buffer来溶解,从蛋白的稳定性方面和加速蛋白和活化微球之间的交联速度方便考虑,是非常有利的。

类风湿因子测定试剂盒(胶乳免疫比浊法)产品技术要求jiuqiang

类风湿因子测定试剂盒(胶乳免疫比浊法) 适用范围:用于体外定量测定人血清中类风湿因子的含量。 1.1 包装规格 表1 包装规格 试剂1:3×20mL、试剂2:1×20mL 试剂1:1×60mL、试剂2:1×20mL 试剂1:8×3.8mL、试剂2:4×2.6mL 试剂1:2×15mL、试剂2:1×10mL 试剂1:6×50mL、试剂2:2×50mL 试剂1:12×4.2mL、试剂2:6×2.9mL 试剂1:1×45mL、试剂2:1×15mL 试剂1:1×15mL、试剂2:1×5mL 320测试/盒(试剂1:3×20mL、试剂2:1×20mL) 400测试/盒(试剂1:3×20mL、试剂2:1×20mL) 480测试/盒(试剂1:3×20mL、试剂2:1×20mL)校准品(液体,4水平或5水平):4×1mL;5×1mL;5×2mL 质控品(液体,水平1):1×3mL;1×1mL 质控品(液体,水平2):1×3mL;1×1mL 1.2 主要组成成分 表2 主要组成成分 试剂成分浓度试剂1: 氨基乙酸缓冲液 0.17mol/L 试剂2: 乳胶颗粒超敏化的变性IgG悬浮液 0.17%(w/v) 校准品(液体):人血清基质 类风湿因子 ≥10% 4水平: 水平1:0~20 IU/mL

水平2:20~60 IU/mL 水平3:50~100 IU/mL 水平4:100~140 IU/mL 5水平: 水平1:0~15 IU/mL 水平2:15~30 IU/mL 水平3:30~60 IU/mL 水平4:60~100 IU/mL 水平5:100~140 IU/mL 质控品(液体):人血清基质 类风湿因子 ≥10% 水平1: 10~30 IU/mL 水平2: 25~50 IU/mL 试剂中含有防腐剂。 2.1 外观 试剂1为无色澄清液体,目测不得有任何沉淀及絮状悬浮物; 试剂2为乳白色液体,目测不得有任何沉淀; 校准品为无色或淡黄色液体,目测不得有任何沉淀及絮状悬浮物; 质控品为无色或淡黄色液体,目测不得有任何沉淀及絮状悬浮物; 试剂盒标签标识清晰,外包装完整无损。 2.2试剂的净含量应不少于表1中的标称量。 2.3 测定项目 2.3.1 试剂空白吸光度 试剂空白:A570nm下测定空白吸光度应≤ 1.0000。 2.3.2 准确度 用国际标准物质NIBSC/W1066,对试剂盒进行测试,其测量结果的相对偏差应不超过±15%。 2.3.3 分析灵敏度 样本浓度为40.0 IU/mL时,其吸光度变化在0.0100~0.1000之间。 2.3.4 线性区间

免疫比浊法检测免疫球蛋白

免疫比浊法检测免疫球蛋白 一、实验目的 利用免疫比浊法绘制标准曲线,并检测样品中免疫球蛋白的浓度。(本小组检测的为IgG样品) 二、实验原理 1.抗原抗体反应(Antigen-antibody reaction):抗原与其刺激机体产生的相应抗体在体内或体外发生特异性结合的反应。反应特点有:特异性、比例性、可逆性、敏感性。影响因素有:电解质、温度、酸碱度。 2.免疫比浊法:合适比例的抗原抗体形成的免疫复合物,在PEG作用下形成微粒,使样品浊度发生变化。当一束光线通过溶液受到光散射和光吸收两个因素的影响而使光的强度减弱,根据光的强度改变可测得微粒浓度。 分类:①透射比浊法(Transmission tubidimetry)当一定波长光线通过浊度发生变化的反应混合物时,由于被不溶性免疫复合物吸收而减弱,故在一定范围内吸光度与免疫复合物量呈正相关。当抗体浓度固定(过量),样品的浊度与其中所含抗原量成正比。(特点)透射比浊操作简便,适用于普通的自动生化分析仪和普通的分光光度计,几乎所有的实验室均能开展。不足的是灵敏度和精密度均不够理想,所需的抗血清量大,检测的时间较长。②散射比浊法(Nephelometry)光线通过检测溶液时,被其中所含的抗原抗体复合物折射而部分偏转,产生散射光,其强度与复合物的数量和散射夹角成正比,与光的波长成反比。(特点)优点是灵敏度、精密度均较高,检测快速。其缺点是需特定的分析仪器,试剂价格高。 本实验采用透射法。 3.聚乙二醇PEG的作用:在免疫反应中,为增强抗原抗体反应常使用增聚剂,3~4%的聚乙二醇,可破坏抗原抗体的水化层,促进抗原抗体靠近反应,但如浓度不适合,会影响其它溶质或产生非特异性聚集影响结果。 三、实验材料 免疫球蛋白A,G(IgA,IgG)测定试剂(试剂1[PEG],试剂2[羊抗人IgA, IgG])(1管/每组) 免疫球蛋白A, G(IgA,IgG)校准品,蒸馏水,血清样本(1管) 微量加样枪、ep管(1.5mL离心管) 酶标仪、水浴箱 四、实验步骤 1.在7个EP管中各加250μL IgG试剂1(PEG)。 2.7管分别加入蒸馏水、校准品原液、1:2校准品、1:4校准品、1:8校准品、1:16校准品、样本各2μL。 3.混匀后37℃水浴5min。 4.7管各加入85μL IgG试剂2(羊抗人IgG)。 5.混匀后37℃水浴10min。 6.分别吸取200μL至96孔酶标板中,用酶标仪在700nm处读取OD值。 五、实验结果与数据处理 2.标准曲线

胶乳透射免疫比浊法-国家食品药品监督管理总局

附件 5 胱抑素C测定试剂(胶乳透射免疫比浊法) 注册技术审查指导原则 本指导原则旨在指导技术审评部门对胱抑素C测定试剂(胶乳透射免疫比浊法)的技术审评工作,同时也为注册申请人注册 申报资料的准备及撰写提供参考。 本指导原则是对胱抑素C测定试剂(胶乳透射免疫比浊法)的一般要求,申请人应依据产品的具体特性确定其中内容是否适 用,若不适用,需具体阐述理由及相应的科学依据,并依据产品的具体特性对注册申报资料的内容进行充实和细化。 本指导原则是供申请人和审查人员使用的指导文件,不涉及注册审批等行政事项,亦不作为法规强制执行,如有能够满足法规要求的其他方法,也可以采用,但应提供详细的研究资料和验 证资料。应在遵循相关法规的前提下使用本指导原则。 本指导原则是在现行法规、标准体系及当前认知水平下制定的,随着法规、标准体系的不断完善和科学技术的不断发展,本指导原则相关内容也将适时进行调整。 一、适用范围 胱抑素C测定试剂(胶乳透射免疫比浊法)是指基于透射 免疫比浊法原理,利用半自动生化分析仪、全自动生化分析仪对人血清、血浆中的胱抑素C进行体外定量分析的试剂。 目前胱抑素C含量的测定方法主要是基于抗原抗体反应的 — 1 ——

免疫方法,如胶乳免疫比浊法、胶体金免疫比色法、单向免疫扩散法、酶联免疫吸附法、放射免疫测定法、荧光免疫测定法等, 免疫比浊法可分为透射免疫比浊法和散射免疫比浊法。其中透射免疫比浊法可适用于半自动生化分析仪、全自动生化分析仪,散射免疫比浊法需特定蛋白分析仪。 从方法学上讲,本指导原则仅适用于胶乳透射免疫比浊法,不适用于散射免疫比浊法。 依据《体外诊断试剂注册管理办法》(国家食品药品监督管 理总局令第5号)和《食品药品监管总局关于印发体外诊断试剂 分类子目录的通知》(食药监械管〔2013〕242号),胱抑素C测定试剂(免疫比浊法)管理类别为二类,分类代号为6840。 二、注册申报资料要求 (一)综述资料 综述资料主要包括产品预期用途、产品描述、方法学特征、 生物安全性评价、研究结果总结以及同类产品上市情况介绍等 内容,应符合《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号)和《关于公布体外诊断试剂注册申报资 料要求和批准证明文件格式的公告》(国家食品药品监督管理总 局公告2014年第44号)的相关要求。相关描述应至少包含如 下内容: 1.产品预期用途及辅助诊断的临床适应证背景情况 (1)胱抑素C的生物学特征、结构与功能、在体内正常和 病理状态下的代谢途径和存在形式。 胱抑素C(Cystatin C, CysC)是一种半胱氨酸蛋白酶抑制剂,也被称为γ—微量蛋白及γ—后球蛋白,广泛存在于各种组织的—— 2 —

α1-微球蛋白测定试剂盒(胶乳免疫比浊法)产品技术要求baiding

α1-微球蛋白测定试剂盒(胶乳免疫比浊法)适用范围:用于体外定量测定人血清中α1-微球蛋白的含量。 1.1 规格 校准品(选配):1×1mL; 质控品(选配):水平1:1×1mL,水平2:1×1mL。 1.2 组成:

注:校准品靶值、质控品质控范围详见包装标签。 2.1 外观 2.1.1试剂1:无色液体,无浑浊,无不溶物。 2.1.2试剂2:乳白色液体。 2.1.3校准品:冻干粉,复溶后为无色至淡黄色液体,无可见不溶物。 2.1.4质控品:冻干粉,复溶后为无色至淡黄色液体,无可见不溶物。

2.1.5包装外观应整洁,标签字迹清晰,不易脱落。 2.2 净含量 液体试剂的净含量不低于标示体积。 2.3 试剂空白吸光度 试剂空白吸光度≤1.2。 2.4 分析灵敏度 样本浓度为30mg/L时,吸光度差值应≥0.008。 2.5 线性 在[10,110] mg/L的范围内,线性相关系数r≥0.990。测试浓度在[10,30] mg/L 时,绝对偏差应不超过±3 mg/L;测试浓度在(30,110] mg/L 时,相对偏差应不超过±10%。 2.6 精密度 2.6.1重复性 用高、低2个浓度的样本测试试剂盒,各重复测试10次,其变异系数(CV)应不大于10%。 2.6.2批间差 用样本分别测试3个不同批次的试剂盒,每个批次测试3次,其相对极差(R)应不大于10%。 2.7 准确度 与已上市产品进行对比试验,在[10,110] mg/L的范围内,线性相关系数r≥0.975。测试浓度在[10,30] mg/L 时,绝对偏差应不超过±3 mg/L;测试浓度在(30,110] mg/L时,相对偏差应不超过±10%。

免疫透射比浊法

免疫透射比浊法 一、原理 当光线通过一个浑浊介质溶液时,由于溶液中存在混浊颗粒,光线被吸收一部分,吸收的多少与混浊颗粒的量成正比,这种测定光吸收量的方法称为透射比浊法。这一方法早于1959年Schultre和Schuick 等报道应用于血浆蛋白与其抗体结合后形成复合物,导致浊度的改变,再进行透射比浊测定,一般采用抗体对抗原定量的透射比浊法,称为免疫透射比浊法。其原理是,利用抗原和抗体的特异性结合形成复合物,通过测定复合物形成量的多少对抗原或抗体进行定量的方法。在介质溶液中,抗原与特异性抗体在一定条件下才能形成复合物,一定的条件包括:①对抗体的要求,作为体液或组织中蛋白质种类很多,若要快速特异检测,要求有单价特异抗体才能与抗原形成复合物。某一种蛋白质,有其特异抗体才能与该抗原结合,形成免疫复合物进行定量,若抗体不纯混杂有另一种或两种少量的抗体,这种免疫复合物就不是单一复合物而是大杂烩,结果偏高;②抗原抗体比例适当,因免疫复合物形成有三个阶段,第一阶段是复合物形成抗原抗体复合物;第二阶段是初步形成抗原抗体复合物,此阶段是复合物交联成大的网格状结构;第三阶段是复合物聚合产生絮状沉淀。只有在抗原与抗体等价时即无过剩抗体,此时,复合物的结合与解离处于平衡状态,其混浊程度达高峰。在抗体过量时,随抗原量的增加而复合物形成也增加,其测定只能在反应曲线的左侧进行(见图18-4);③一般要求溶液中有非离子性亲水多聚体促进免疫复合物的形成,如聚二乙醇6000等。溶液pH为6.5~8.0之间为宜。载脂蛋白有形成两性螺旋片(amphipathic helix)的特性,对脂质(特别是磷脂)有高度亲和力,与脂质结合后有时会掩盖抗原位点或构象改变,可以部分或完全丧失对抗血清的特异反应。为此,载脂蛋白检测过程中有必要先暴露抗原位点,所用试剂有表面活性剂,尿素,盐酸胍和吐温等解离蛋白剂,或用四甲基脲脱脂或有机溶剂脱脂等暴露抗原决定簇等方法,血清脂蛋白颗粒中的载脂蛋白,能在短时间内形成抗原抗体复合物进行定量;④抗原不能过量,因为抗原过量,抗原抗体复合物形成不但不增加,反而会减少,光散射或光吸收减少,检测结果反而偏低。

免疫比浊胶乳颗粒使用资料

免疫比浊胶乳颗粒使 用

胶乳微球使用中常见问题及解答 问:产品说明书中给出的胶乳粒径是平均粒径吗? 答:产品说明书中给出的胶乳粒径(Diameter)是平均粒径。 问:如何选择胶乳微球的粒径? 答:一般选择粒径小的胶乳微球,则需要的抗体量就多,精密度和线性相对较好,而选择粒径大的胶乳微球性,则所需抗体少,精密度和线性相对较差,相对于小球,大球的灵敏度较好。 问:一般情况下我们所使用的微球的浓度大概是多少? 答:整个测定体系中,微球的浓度大约在 0.01%左右,当然这与试剂本身规定的线性有关系。 问:在使用离心方法偶联乳胶微球,一般需要多大的(相对)离心力? 答:需要多大的离心力和所使用的乳胶微球有关,一般 70nm 左右的微球大概13000g/min 30min 以上,粒径越小所需时间越长,离心力越大。 问:蛋白(抗体)与微球偶联前,是不是微球的活化时间越长,效率越好?答:羧基微球的活化所需时间很短,一般以 10-20 分钟为宜,长时间的活化反而会降低偶联效率。 问:由于抗体不只是 FC 的氨基酸上有 NH2,是不是表示它可以在任何方向与EDCA 活化微球偶联呢?如果是这样,是不是会影响抗体与抗原的特异性反应?答:事实的确如此,当然由于抗体的空间折叠方式和 FC 端疏水性强,因此偶联反应的绝大多数发生在 Fc 端,对抗体与抗原的结合的影响不大。 问:胶乳微球与抗体偶联后,当时没发现有凝集,但隔夜后发现有凝集,这是什么原因?如何控制和避免? 答:这种情况一般是偶联效率低的原因。当体系中蛋白不足或是其它原因,使微球表面在交联后还空出许多反应基团时,这些基团又可以与相连微球上的蛋白反应,结果是把球又拉在一起了,所以有聚集。可以加一些阻断剂解决,常见的是 BSA,另外,也可提高微球的交联率。但为什么是过一段时间后才出现凝集呢,这是因为微球偶联上蛋白后,相互之间由于携带同种电荷的关系,比较稳定(所以能以胶体样存在),只有当偶尔相互碰撞,遇上彼此的反应基团时才能结合。 3、胶乳的自凝现象如何控制和避免? 答:胶乳自凝与许多因素有关,如高电解质浓度、表面价电荷被中和、或置于某些不利环境如冷冻时。如果电解质浓度升高到某一水平,使得表面的价负荷被掩蔽,胶乳微球之间发生接触,于是便产生凝集,故高离子强度的缓冲溶液不应使用,缓冲溶液的的浓度不要超过 50mM,但有些 CML 胶乳微球具有高电荷密度,则也能够耐受较高的离子强度。对负电荷胶乳微球,不能使用阳电荷的缓冲溶液如 Tris 缓冲溶液,因为能使电荷中和而凝集。在长期贮藏时,悬浮

胶乳透射免疫比浊法

附件5 胱抑素C测定试剂(胶乳透射免疫比浊法) 注册技术审查指导原则 本指导原则旨在指导技术审评部门对胱抑素C测定试剂(胶乳透射免疫比浊法)的技术审评工作,同时也为注册申请人注册申报资料的准备及撰写提供参考。 本指导原则是对胱抑素C测定试剂(胶乳透射免疫比浊法)的一般要求,申请人应依据产品的具体特性确定其中内容是否适用,若不适用,需具体阐述理由及相应的科学依据,并依据产品的具体特性对注册申报资料的内容进行充实和细化。 本指导原则是供申请人和审查人员使用的指导文件,不涉及注册审批等行政事项,亦不作为法规强制执行,如有能够满足法规要求的其他方法,也可以采用,但应提供详细的研究资料和验证资料。应在遵循相关法规的前提下使用本指导原则。 本指导原则是在现行法规、标准体系及当前认知水平下制定的,随着法规、标准体系的不断完善和科学技术的不断发展,本指导原则相关内容也将适时进行调整。 一、适用范围 胱抑素C测定试剂(胶乳透射免疫比浊法)是指基于透射免疫比浊法原理,利用半自动生化分析仪、全自动生化分析仪对人血清、血浆中的胱抑素C进行体外定量分析的试剂。 目前胱抑素C含量的测定方法主要是基于抗原抗体反应的 —1 —

免疫方法,如胶乳免疫比浊法、胶体金免疫比色法、单向免疫扩散法、酶联免疫吸附法、放射免疫测定法、荧光免疫测定法等,免疫比浊法可分为透射免疫比浊法和散射免疫比浊法。其中透射免疫比浊法可适用于半自动生化分析仪、全自动生化分析仪,散射免疫比浊法需特定蛋白分析仪。 从方法学上讲,本指导原则仅适用于胶乳透射免疫比浊法,不适用于散射免疫比浊法。 依据《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号)和《食品药品监管总局关于印发体外诊断试剂分类子目录的通知》(食药监械管〔2013〕242号),胱抑素C测定试剂(免疫比浊法)管理类别为二类,分类代号为6840。 二、注册申报资料要求 (一)综述资料 综述资料主要包括产品预期用途、产品描述、方法学特征、生物安全性评价、研究结果总结以及同类产品上市情况介绍等内容,应符合《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号)和《关于公布体外诊断试剂注册申报资料要求和批准证明文件格式的公告》(国家食品药品监督管理总局公告2014年第44号)的相关要求。相关描述应至少包含如下内容: 1.产品预期用途及辅助诊断的临床适应证背景情况 (1)胱抑素C的生物学特征、结构与功能、在体内正常和病理状态下的代谢途径和存在形式。 胱抑素C(Cystatin C, CysC)是一种半胱氨酸蛋白酶抑制剂,也被称为γ—微量蛋白及γ—后球蛋白,广泛存在于各种组织的—2 —

胶乳增强免疫比浊法检测血清脂蛋白脂肪酶的研究

胶乳增强免疫比浊法检测血清脂蛋白脂肪酶的研究 Tetsuo Machida等日本群马大学医学研究院临床医学实验部 摘要 背景脂蛋白脂肪酶(LPL)通过催化甘油三酯的水解在富含甘油三酯的脂蛋白代谢中起关键作用。血清脂蛋白脂肪酶的含量测定有利于脂类代谢紊乱的诊断,但目前在临床上没有快速测定LPL的方法。 方法使用胶乳颗粒固定化的LPL单克隆抗体,我们探索了一种快速灵敏的胶乳增强免疫比浊法(LTIA)测定LPL的方法。实验使用生化分析仪器日立7700P进行检测,同时进行了ELISA平行实验来评价实验数据的可靠性。 结果通过稀释实验得到0.5-800ng/ml的校准曲线。批内变异系数被控制在2.2-2.5%。含有潜在干扰物质胆红素F和C以及血红素、甘油三酯、类风湿因子的样本未观察到干扰性。LTIA与ELISA的结果具有很好的相关性(n=40,r=0.967,y=0.99x-1.86)。肝素处理前的血清LPL正常参考范围值为50-77 ng/ml,肝素处理后血浆LPL正常参考范围值为354-410 ng/ml。 结论本文LTIA法既可用于测定肝素处理前的血清LPL值,也可用于测定肝素处理后血浆LPL值。本方法与ELISA相比更为方便快捷,非常适合用于临床常规检查。 1前言 LPL在脂类与脂蛋白的转运和代谢中发挥关键性作用[1,2],此酶负责乳糜内甘油三酯(TG)和极低密度脂蛋白(VLDL)的水解,分别形成乳糜和极低密度脂蛋白的残渣。血浆中LPL的常规检测方法是在静脉注射肝素后进行ELISA实验测定其活性和浓度。据报道在肝素处理前血清LPL具有比较高的浓度(大约30-100ng/ml),但LPL活性无法检测到,表明大部分循环LPL没有催化活性,只是其受体的配体[3,6]。 肝素处理后血浆LPL的浓度与活性的测定已被用于临床LPL缺失的诊断[2],但通常不能用于脂类代谢紊乱或心血管疾病风险性的诊断。这是因为肝素的注射使LPL从血管内皮细胞分离出来,因此检测结果不能直接反映循环LPL的生理或病理浓度。 Brunzell等[7]和Ikeda等[8]等此前报道了运用特异性单克隆抗体的LPL-ELISA检测人血浆LPL的方法,在检测前需要给病人静脉注射肝素。从检测时间和操作步骤角度考虑,ELISA法不适合在临床实验室进行大规模的常规检查。 因此,仍需要一种可靠、快速的自动化检测LPL的方法,且具有高灵敏度和校准稳定性,尤其是在肝素处理前血清LPL浓度的测定可能具有临床参考价值的情况下。在过去数十年间Shirai及其同事以 LPL-ELISA法检测了肝素处理前血清LPL的浓度,揭示了肝素处理前血清LPL浓度在心血管疾病和糖尿病中的临床意义[9-16]。 我们近期通过比对研究发现肝素处理前血清中LPL的浓度与肝素处理后的血浆中LPL的浓度可以替换[17]。肝素处理前血清中LPL浓度的测定可以使用自动分析仪检测,不需要提前为病人注射肝素,在高甘油三酯病人的临床诊断方面的应用更具有可操作性。由于肝素处理前血清中LPL的浓度足以用胶乳检测系统测定,我们使用胶乳颗粒固定化的LPL单克隆抗体,研究出了一种快速灵敏的胶乳增强免疫比浊法(LTIA)测定LPL的方法。我们所使用的全自动生化分析仪是日立7700P。我们以本方法和已商业化的ELISA试剂[18]对肝素注射(或未注射的)正常志愿者进行了检测,并将两种方法的检测结果做了相应比较。 2材料与方法 2.1试剂 聚苯乙烯胶乳颗粒购买自日本腾仓公司,胎牛血清白蛋白购买自Sigma公司。干扰性试剂血红素、甘油三酯、类风湿因子和胆红素F、C购买自日本希森美康公司。所有化学药品或试剂均是最高纯度级别。 2.2血液样品制备

胶乳颗粒增强比浊法浅谈

胶乳颗粒增强比浊法浅谈 目前,体液标志蛋白的检测方法主要采用免疫学方法,以酶联免疫吸附测定(Enzyme-Linked ImmunosorbentAssay,ELISA)、放射免疫测定(Radioimmunoassay,RIA)和胶体金层析法(俗称“金标”)这几种方法为主。ELISA方法虽然在临床上使用了近二十年,但它依然存在一些致命缺点,定量准确性差、操作时间长、自动化程度低,一般只能用于定性检测。RIA灵敏度高,但不稳定,重复性比ELISA差,而且存在放射性污染的危险。金标方法虽然稳定性较好,但灵敏度较低,只能定性,不能定量。特别是重复性差这一缺点限制了这些检测技术在临床上的应用,尤其不适合用于需要通过准确定量来帮助对疾病进行诊断的体液标志蛋白的定量检测。因此,寻找更加稳定、准确的血浆蛋白定量检测方法一直是国际上近十年来的研究热点。 胶乳颗粒增强比浊法(particle-enhanced turbidimetric immunoassay, PETIA)是近年来出现的一种较为稳定、准确的体液蛋白均相免疫比浊检测方法。PETIA法大体分为两种。一种是散射比浊检测法;另一种是透射比浊检测法。这两种方法的基本原理非常相似,都是在高分子胶乳微球的表面交联单克隆抗体,当交联有抗体的微球与抗原结合后,在短时间内会迅速聚集在一起,改变了反应液的散光性能或透光性能。而且,反应液散光性能或透光性能(即吸光度)的改变与被测抗原的浓度有较强的相关性,在一定范围内可以反映被测抗原的浓度。PETIA检测方法是在均相反应体系中进行抗原、抗体反应及结果的测定。抗原、抗体反应后,直接测定反应液的吸光度值,省却了ELISA法反复孵育和洗板等烦琐操作步骤,几分钟就能获得结果,省时省力。此外,纳米免疫比浊法操作步骤的简化也相应地避免了许多人为操作因素和试剂、环境等外界因素的干扰,稳定性和重复性都较好,能较真实地反映被测物质的含量。免疫比浊法的灵敏度虽然比ELISA法差一些,但足于检测到健康人血浆中许多标志蛋白的下限值,可完全满足临床检测要求。

复旦大学免疫实验免疫比浊法检测免疫球蛋白

免疫比浊法检测免疫球蛋白 时间:地点:实验人: 1基本原理: 样本中的IgA、IgG与试剂中的抗IgA和抗IgG的特异性抗体结合,产生不溶性免疫复合物,使得反应溶液产生浊度。溶液浊度与样本中IgA、IgG的浓度成正比。在合适的nm处(700nm)测吸光度,通过计算可以得到IgA、IgG的浓度。 2实验材料: 免疫球蛋白A、G(IgA、IgG)测定试剂(试剂1、试剂2) 免疫球蛋白A、G(IgA、IgG)校准品 蒸馏水、血清样本 微量加样枪、ep管(1.5ml离心管) 酶标仪、水浴箱 3实验方法步骤 在酶标管内反应。 从左到右共做6管试剂: 1:IgG试剂1(125μl)+蒸馏水1μl 2:IgG试剂1(125μl)+校准品1μl 3:IgG试剂1(125μl)+样本1μl 4:IgA试剂1(150μl)+蒸馏水3μl 5:IgA试剂1(150μl)+校准品3μl 6:IgA试剂1(150μl)+样本3μl 混匀,37度水浴五分钟。 继续添加试剂,从左到右: 1、2、3:IgG试剂2(42.5μl) 4、5、6:IgA试剂2(50μl) 混匀,37度水浴五分钟。 在OD700nm测取吸光度,记录数据。 4.实验结果: 4.1 IgG蛋白: 空白管吸光度0.051 校准管吸光度1.155 样本管吸光度0.699 IgG校准浓度31.3g/L 待测血清样本中免疫球蛋白含量IgG浓度(g/L)= 0.699-0.051/1.155-0.051 ×31.3=18.4g/L 实验结果偏高,且误差为(18.4-16.0)/16.0 ×100% =15.0% 4.2 IgA蛋白: 空白管吸光度0.049 校准管吸光度0.372 样本管吸光度0.212 IgA校准浓度4.15g/L 待测血清样本中免疫球蛋白含量IgA浓度(g/L)=0.212-0.049/0.372-0.049

髓过氧化物酶测定试剂盒(胶乳免疫比浊法)产品技术要求baiding

髓过氧化物酶测定试剂盒(胶乳免疫比浊法)适用范围:用于体外定量测定人血清中髓过氧化物酶的含量。 1.1规格 校准品(选配):1×1mL; 质控品(选配):水平1:1×1mL,水平2:1×1mL。 1.2组成

注:校准品靶值、质控品质控范围详见包装标签。 2.1 外观 2.1.1试剂1:无色至淡黄色液体。 2.1.2试剂2:乳白色液体。 2.1.3校准品:无色至淡黄色液体。 2.1.4质控品:无色或淡黄色液体。 2.1.5包装外观应整洁,标签字迹清晰,不易脱落。 2.2 净含量 液体试剂的净含量不低于标示体积。 2.3 试剂空白吸光度 试剂空白吸光度≤2.0。 2.4 分析灵敏度 样本浓度为120 ng/mL时,△A≥0.01。 2.5 线性区间

在[25,1300] ng/mL范围内,线性相关系数r≥0.990;测试浓度在[25,200] ng/mL时,绝对偏差不超过±20 ng/mL,测试浓度在(200,1300] ng/mL 时,相对偏差不超过±10%。 2.6 精密度 2.6.1批內精密度 用高、低2个浓度的样本测试试剂盒,各重复测试10次,其变异系数(CV)应不大于10%。 2.6.2批间差 用样本分别测试3个不同批次的试剂盒,每个批次测试3次,其相对极差(R)应不大于15%。 2.7 准确度 回收率在85%-115%范围内。 2.8 质控品赋值有效性 测试结果在质控范围内。 2.9 瓶内均匀性 校准品和质控品瓶内均匀性(CV)应不大于10%。 2.10 量值溯源 校准品量值溯源至公司内部工作校准品,并与北京九强生物技术股份有限公司生产的髓过氧化物酶测定试剂盒(胶乳免疫比浊法)比对验证。 2.11 稳定性 2.11.1校准品开瓶稳定性 校准品开瓶后2℃~8℃避光保存可稳定3天。稳定期过后4小时内进行

免疫比浊法和免疫投射比浊法(修改版)

免疫比浊法和免疫投射比浊法 1.定义: (1)免疫比浊法:在一定量的抗体中分别加入递增量的抗原,经一定时间后形成抗原抗体复合物,用浊度计测量反应液体的浊度,并由此推算样品中的抗原含量。 (2)免疫投射比浊法:当光线通过一个浑浊介质溶液时,由于溶液中存在混浊颗粒,光线被吸收一部分,吸收的多少与混浊颗粒 的量成正比,这种测定光吸收量的方法称为透射比浊法。一般 采用抗体对抗原定量的透射比浊法,称为免疫透射比浊法。2.原理 (1)免疫比浊法是抗原抗体结合动态测定方法。其基本原理是:当抗原与抗体在特殊稀释系统中反应而且比例合适(一般规 定抗体过量)时,形成的可溶性免疫复合物在稀释系统中的促 聚剂(聚乙二醇等)的作用下,自液相析出,形成微粒,使 反应液出现浊度。当抗体浓度固定时,形成的免疫复合物的 量随着检样中抗原量的增加而增加,反应液的浊度也随之增 加。通过测定反应液的浊度与一系列标准品对照,即可计算 出检样中抗原的含量。 (2)免疫透射比浊法是抗原抗体结合后,形成免疫复合物,在一定时间内复合物聚合出现浊度。当光线通过溶液时,可被免 疫复合物吸收。免疫复合物量越多,光线吸收越多。光线被 吸收的量在一定范围内与免疫复合物的量成正比。利用比浊

计测定光密度值,复合物的含量与光密度值成正比,同样当抗体量一定时,光密度值也与抗原含量成正比。本法较单向琼脂扩散试验和火箭电泳等一般免疫化学定量方法敏感、快速简便,但要求免疫复合物的数量和分子量达到一定高度,否则就难以测出。 3.关系 4.免疫比浊法适用的仪器 紫外可见分光光度计 全自动生化仪 全自动生化仪常见的检测方法 终点法 连续检测法 比浊法 均相酶免疫分析

降钙素原测定试剂盒(胶乳免疫比浊法)产品技术要求baiding

降钙素原测定试剂盒(胶乳免疫比浊法)适用范围:用于体外定量测定人血清中降钙素原的含量。1.1 规格 校准品(选配):1×1mL; 质控品(选配):水平1:1×1mL,水平2:1×1mL。 1.2 组成:

校准品 质控 外 试剂 :无色液体,无浑浊,无不溶物。 2.1.2试剂2:乳白色液体。 2.1.3校准品:冻干粉,复溶后为无色至淡黄色液体,无可见不溶物。 2.1.4质控品:冻干粉,复溶后为无色至淡黄色液体,无可见不溶物。 2.1.5包装外观应整洁,标签字迹清晰,不易脱落。 2.2 净含量 液体试剂的净含量不低于标示体积。 2.3 试剂空白吸光度 试剂空白吸光度≤2.0。 2.4 分析灵敏度 样本浓度为10ng/mL时,吸光度差值应≥0.02。 2.5 线性

在[0.3,60] ng/mL的范围内,线性相关系数r≥0.990。测试浓度在[0.3,20] ng/mL 时,绝对偏差应不超过±2 ng/mL;测试浓度在(20,60] ng/mL 时,相对偏差应不超过±10%。 2.6 精密度 2.6.1重复性 用高、低2个浓度的样本测试试剂盒,各重复测试10次,其变异系数(CV)应不大于10%。 2.6.2批间差 用样本分别测试3个不同批次的试剂盒,每个批次测试3次,其相对极差(R)应不大于10%。 2.7 准确度 与已上市产品进行对比试验,在[0.3,60] ng/mL的范围内,相关系数r≥0.975。测试浓度在[0.3,20] ng/mL 时,绝对偏差应不超过±2 ng/mL;测试浓度在(20,60] ng/mL 时,相对偏差应不超过±10%。 2.8 质控品赋值有效性 测试结果在质控范围内。 2.9 校准品/质控品瓶内重复性 校准品/质控品瓶内重复性(CV)应不大于10%。 2.10 校准品/质控品批内瓶间差 校准品/质控品批内瓶间差(CV)应不大于10%。 2.11 溯源性

体外诊断试剂胶乳比浊法学习

胶乳免疫比浊法相关知识很多公司开展了荧光胶乳免疫层析做定量分析及胶乳增强免疫比浊分析项目,关注胶乳标记技术的技术人员越来越多。本人总结了部分胶乳微球标记技术,并加以分类,以便朋友们查阅: 胶乳微球物理吸附: 反应微球带磺酸基、羧基、醛基表面的都是疏水微球,都可以用来设计被动吸附蛋白。磺酸基微球表面含带有负电荷的磺酸基团,pka大约为2,因此在酸性pH 保持稳定。醛基微球表面也带有磺酸基团,但能和蛋白行程共价键。羧基微球表面含带负电荷的羧基基团,在以上时保持稳定。 带有疏水基团的蛋白的吸附和配位结合,是最简单和直接的标记方法。这种方法中,微球溶液和含目标蛋白的溶液混合,反应后,未结合的游离蛋白通过清洗步骤除去,从而获得胶体蛋白复合物。疏水吸附方法只能用于疏水微球(硫酸盐、羧基、醛基表面修饰的微球)。醛基表面修饰微球是一个特例,其疏水吸附结果取决于后来的共价结合。虽然物理吸附是不依赖pH的,但反应缓冲液的pH对蛋白的结构有非常大的影响,从而影响蛋白吸附到微球上的反应效率。一般,在被吸附蛋白等电点附近pH时,物理吸附效率会很高。 反应步骤: 1.用反应缓冲液系数蛋白到10mg/ml; 2.用反应缓冲液系数胶乳微球到1%; 3.将蛋白溶液加入到胶乳微球溶液中,10ml胶乳中加入1ml蛋白溶液。室温搅拌孵育2hr; 4.离心或超滤,除去未结合蛋白;

5.将微球蛋白复合物用储存缓冲液溶解。 注意事项: 1.最优蛋白标记量影响因素 1)有效比表面积:粒径减小时,比表面积/mg微球值得增加; 2)胶体稳定性:蛋白对胶乳有稳定和去稳定作用; 3)免疫反应:最近标记量由免疫反应需要决定。 2.胶乳微球中加入蛋白后,快速搅拌混合,利于反应均衡。反应体积是1ml时,可用移液器吸取蛋白加入微球中,并吹打数次。如果反应体积较大时,用烧杯,边搅拌边加入蛋白, 3.储存缓冲液和反应缓冲液不同时,抗体有脱落的可能; 4.表面活性剂能使得抗体从胶乳中脱落,所以应避免加入。 微球共价结合抗体方法: 一、一步法 1.准备50mM pH 的reaction buffer,醋酸或MES buffer更合适 2.用reaction buffer溶解抗体,使其浓度为1mg/mL。 3.用reaction buffer 悬浮微球,使其浓度为1% w/v 4.边搅拌边将一倍体积的抗体溶液加入到10倍体积的微球悬液中,室温下持续搅拌20分钟 5.准备浓度为10mg/ml(52umol/mL)的EDC溶液,用前准备,现配现用。 6.将计算需求量的EDC溶液加入到上述微球悬液中。(Note 6). 7.室温下,立即调节pH (Note 7). 8.移除未结合的蛋白,并将包被微球用storage buffer重悬。(Note 3 and 4)

相关文档
最新文档