整式的乘法 ppt课件
合集下载
整式的乘法复习课件
![整式的乘法复习课件](https://img.taocdn.com/s3/m/b1b93f6ccdbff121dd36a32d7375a417866fc139.png)
04
整式乘法的常见错误与纠正
运算顺序的错误
总结词
详细描述
纠正方法
运算顺序错误是整式乘法中常见的问 题之一,主要表现在运算的先后顺序 不正确。
在进行整式乘法时,运算的顺序应该 是先乘方、再乘除、最后加减。如果 运算顺序不正确,会导致计算结果出 现偏差。例如,在进行(a+b)(a-b)的 计算时,应该先进行括号内的加减运 算,再进行乘法运算,得到的结果是 a^2 - b^2。如果先进行乘法运算, 得到的结果将是a^2 + ab - ab b^2,这是错误的。
整式的乘法复习ppt课 件
contents
目录
• 整式乘法的基本概念 • 整式乘法的运算技巧 • 整式乘法的应用实例 • 整式乘法的常见错误与纠正 • 整式乘法的练习题与解析
01
整式乘法的基本概念
整式的定义与表示
整式是由常数、变量、加法、减法、 乘法和乘方等运算构成的代数式。
整式中的字母表示变量,可以是实数 或复数。
在进行整式乘法时,要严格按照先乘 方、再乘除、最后加减的顺序进行运 算,避免因为运算顺序的错误导致结 果不正确。
符号处理的错误
总结词
符号处理错误是整式乘法中常见的问题之一,主要表现在对负号的处理不正确。
详细描述
在进行整式乘法时,负号的处理非常重要。如果对负号处理不当,会导致计算结果出现偏 差。例如,在进行(-a)(-b)的计算时,应该将两个负号相乘得到正号,得到的结果是ab。 如果对负号处理不当,得到的结果将是-ab,这是错误的。
纠正方法
在进行整式乘法时,要特别注意 同类项的合并,严格按照运算法 则进行计算,避免因为合并同类 项错误导致结果不正确。
05
整式乘法的练习题与解析
《整式的乘法》课件
![《整式的乘法》课件](https://img.taocdn.com/s3/m/d83e65b2760bf78a6529647d27284b73f2423632.png)
整式乘法的基本运算法则是单 项式与单项式的相乘,即系数 相乘、同类项的字母部分相加 。
整式乘法的结果是一个新的多 项式,其项数等于两个整式项 数的乘积。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
整式乘法的运算规则
单项式乘单项式
总结词
直接相乘,系数相乘,同类项的字母 和指数分别相加。
在整式乘法中,应正确使用乘法 公式,如平方差公式、完全平方
公式等。
掌握公式的形式和特点,理解公 式的推导过程和应用条件,以便
在解题时灵活运用。
注意公式的正误和适用范围,避 免使用错误或超出适用范围的公
式。
避免运算错误
在整式乘法中,应注意避免运算错误 ,如符号错误、计算错误等。
在进行复杂计算时,应仔细核对每一 步骤的计算结果,确保整个过程的正 确性。
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
《整式的乘法》ppt 课件
目录
CONTENTS
• 整式乘法的定义与性质 • 整式乘法的运算规则 • 整式乘法的应用 • 整式乘法的注意事项 • 练习与巩固
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
01
整式乘法的定义与性质
详细描述
单项式乘单项式是指两个单项式相乘 ,将它们的系数相乘,并将同类项的 字母和指数分别相加。例如,$2x^3y times 3x^2y = 6x^{3+2}y^{1+1} = 6x^5y^2$。
单项式乘多项式
总结词
逐项相乘,合并同类项。
14.1.4整式的乘法(3) 课件(共20张PPT)
![14.1.4整式的乘法(3) 课件(共20张PPT)](https://img.taocdn.com/s3/m/def0e0a12dc58bd63186bceb19e8b8f67c1cefaf.png)
=22+14 -56 =-20.
课后作业
教材105页习题14.1第5题.
合作探究
你你能能通得过到计多
为了扩大街心花园的绿地面积,把一块原长am,宽算项pm说式的明乘长它以方们多形绿地,
加长了bm,加宽了qm. 你能用几种方法表示扩大后的绿项相地式等面的吗积方??法
Байду номын сангаас
吗?
(a b)(p q) = ap aq bp bq b
p
p
b
q
q
ap aq bp bq
2x2 4x 6 x2 2x 1 x2 2x 5;
实战演练
(2)(2x 3)( x 2) ( x 1)2 ;
解:原式 2 x 2 4 x 3x 6 ( x 2 12 )
2x2 7x 6 x2 1
x2 7 x 7.
( x 1)( x 1)
( x2 2x 1)
合作探究
多项式乘以多项式的法则: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项
式的每一项,再把所得的积相加. (a b)(p q) = ap aq bp bq
典例精析
例1 计算:(1)(3x+1)(x+2); (2)(x-8y)(x-y);
(3)(x+y)(x2-xy+y2). 解: (1) 原式 =3x·x+2·3x+1·x+1×2
计算时不能漏乘.
小试牛刀
1.计算:
(1)(2x+1)(x+3); =2x2+7x+3;
(2)(m+2n)(3n-m); =-m2+mn+6n2;
(3)(a-1)2;
=a2-2a+1;
课后作业
教材105页习题14.1第5题.
合作探究
你你能能通得过到计多
为了扩大街心花园的绿地面积,把一块原长am,宽算项pm说式的明乘长它以方们多形绿地,
加长了bm,加宽了qm. 你能用几种方法表示扩大后的绿项相地式等面的吗积方??法
Байду номын сангаас
吗?
(a b)(p q) = ap aq bp bq b
p
p
b
q
q
ap aq bp bq
2x2 4x 6 x2 2x 1 x2 2x 5;
实战演练
(2)(2x 3)( x 2) ( x 1)2 ;
解:原式 2 x 2 4 x 3x 6 ( x 2 12 )
2x2 7x 6 x2 1
x2 7 x 7.
( x 1)( x 1)
( x2 2x 1)
合作探究
多项式乘以多项式的法则: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项
式的每一项,再把所得的积相加. (a b)(p q) = ap aq bp bq
典例精析
例1 计算:(1)(3x+1)(x+2); (2)(x-8y)(x-y);
(3)(x+y)(x2-xy+y2). 解: (1) 原式 =3x·x+2·3x+1·x+1×2
计算时不能漏乘.
小试牛刀
1.计算:
(1)(2x+1)(x+3); =2x2+7x+3;
(2)(m+2n)(3n-m); =-m2+mn+6n2;
(3)(a-1)2;
=a2-2a+1;
整式的乘除数学课件PPT
![整式的乘除数学课件PPT](https://img.taocdn.com/s3/m/a42e3b84a0c7aa00b52acfc789eb172ded6399cc.png)
03
整式乘除混合运算
乘除混合运算顺序
运算优先级
在整式的乘除混合运算中,遵循 先乘除后加减的运算优先级。先 进行乘法或除法运算,再进行加 法或减法运算。
括号处理
若整式中包含括号,则先进行括 号内的运算,再按照运算优先级 进行乘除和加减运算。
乘除混合运算技巧
乘法分配律
在整式乘法中,可以运用乘法分配律 简化计算过程。例如,a(b+c)可以拆 分为ab+ac。
积的乘方
把积的每一个因式分别乘方,再把所得的幂相乘。即$(ab)^n = a^n times b^n$。
乘法分配律在整式中的应用
01
单项式与多项式相乘的分配律
单项式与多项式相乘,就是根据乘法分配律,用单项式去乘多项式的每
一项,再把所得的积相加。
02
多项式与多项式相乘的分配律
多项式与多项式相乘时,将一个多项式的每一项与另一个多项式的每一
实例三
计算(2x+3)(x-1)/x。首先进行括号内 的运算,得到2x^2-2x+3x-3,然后 合并同类项得到2x^2+x-3,最后进 行除法运算得到2x+1-3/x。
计算(x^2+2x+1)/(x+1) * (x^2-1)。 首先进行因式分解,得到 (x+1)^2/(x+1) * (x+1)(x-1),然后 约去公因式(x+1),得到(x+1)(x-1), 最后进行乘法运算得到x^2-1。
整式乘除的拓展与延伸
分式的乘除运算
分式乘法法则
分式的乘法法则是分子乘分子作为新的分子,分母乘分母作为新 的分母。
分式除法法则
分式的除法法则是将除数的分子分母颠倒位置后与被除数相乘。
整式的乘法ppt课件
![整式的乘法ppt课件](https://img.taocdn.com/s3/m/6cb7e919b207e87101f69e3143323968011cf4a3.png)
12a 7b 2 4a 7b 2
16a b
7 2
(乘法计算)
(加法计算)
典例分析
单项式乘单项式
例5 卫星绕地球运动的速度(即第一宇宙速度)约是7.9 × 103 Τ.
求卫星绕地球1h所经过的路程约是多少(结果用科学记数法表示)?
解:
7.9 103 3600
7.9 10 3.6 10
果要按照代数式的规范格式进行书写.
解(1) 3 x 2 y 2 7 xy 3 z 2
(3 7) x 2 x y 2 y 3 z 2
21x3 y 5 z 2
4
3
(2) a 2b a
3
2
4 3
a2 a b
整式的乘法
复习回顾
计算:6a5 x 4(
4a 2b3 x6)
这些系数和字母的幂都是连乘积的形式,我们可以运用
乘法交换律和结合律将系数相乘,相同字母的幂相乘.
6a 5 x 4 (
4a 2b3 x 6)
6 (4) a5 a 2 b3 x 4 x 6 (依据:乘法交换律和结合律)
3 2
2a 3b
典例分析
单项式乘单项式
4
1
例2 计算:(1)( 0.25mn3) np m 2 p 3
5 2
1
(2)( 2 x 2 y)
(
xy 2)
(
x 2 y 2) xyz
2
分析:单项式与单项式相乘的法则可以推广到多个单项式相乘的情形.
2
2 x 2 27 x 3 y 6
16a b
7 2
(乘法计算)
(加法计算)
典例分析
单项式乘单项式
例5 卫星绕地球运动的速度(即第一宇宙速度)约是7.9 × 103 Τ.
求卫星绕地球1h所经过的路程约是多少(结果用科学记数法表示)?
解:
7.9 103 3600
7.9 10 3.6 10
果要按照代数式的规范格式进行书写.
解(1) 3 x 2 y 2 7 xy 3 z 2
(3 7) x 2 x y 2 y 3 z 2
21x3 y 5 z 2
4
3
(2) a 2b a
3
2
4 3
a2 a b
整式的乘法
复习回顾
计算:6a5 x 4(
4a 2b3 x6)
这些系数和字母的幂都是连乘积的形式,我们可以运用
乘法交换律和结合律将系数相乘,相同字母的幂相乘.
6a 5 x 4 (
4a 2b3 x 6)
6 (4) a5 a 2 b3 x 4 x 6 (依据:乘法交换律和结合律)
3 2
2a 3b
典例分析
单项式乘单项式
4
1
例2 计算:(1)( 0.25mn3) np m 2 p 3
5 2
1
(2)( 2 x 2 y)
(
xy 2)
(
x 2 y 2) xyz
2
分析:单项式与单项式相乘的法则可以推广到多个单项式相乘的情形.
2
2 x 2 27 x 3 y 6
《整式的乘法复习》课件
![《整式的乘法复习》课件](https://img.taocdn.com/s3/m/16a5b454c381e53a580216fc700abb68a882ad6f.png)
学习建议与展望
深入理解概念
建议学生深入理解整式乘法的 概念和性质,掌握其本质,以
便更好地应用所学知识。
提高运算能力
强调学生应通过多做练习题提 高整式乘法的运算能力,掌握 常用的运算技巧。
拓展应用领域
建议学生将整式乘法的应用拓 展到其他学科领域,如物理、 化学等,以增强跨学科应用能 力。
展望未来发展
$(x+y)(x^2+y^2) = (x^2+y^2)(x+y)$,可用于交换多项式相乘的顺序。
整式乘法的综合练
04
习
基础练习题
总结词
掌握基本概念和规则
详细描述
包括单项式与单项式相乘、单项式与多项式相乘、多项式与 多项式相乘等基础题型,旨在帮助学生掌握整式乘法的基本 概念和规则。
提高练习题
总结词
学习方法总结
主动参与
强调在学习整式乘法过程中,学 生应积极参与课堂讨论,主动思
考问题,提高自主学习能力。
实践应用
建议学生在课后多做练习题,通过 实践应用加深对整式乘法的理解, 提高运算能力和解决问题的能力。
归纳总结
鼓励学生对所学知识进行归纳总结 ,形成知识体系,以便更好地掌握 整式乘法的核心概念和运算规则。
小。
整式乘法的技巧与
03
注意事项
乘法公式的运用
01
02
03
平方差公式
$(a+b)(a-b) = a^2 b^2$,可用于简化整式 乘法。
完全平方公式
$(a+b)^2 = a^2 + 2ab + b^2$,可用于展开整 式和简化整式乘法。
平方差公式
$(a-b)^2 = a^2 - 2ab + b^2$,可用于展开整式 和简化整式乘法。
《整式的乘法》课件
![《整式的乘法》课件](https://img.taocdn.com/s3/m/df3ea2a1846a561252d380eb6294dd88d0d23d30.png)
同类项相加
如果两个整式含有同类项,则将它们 的同类项的字母和字母的指数分别相 加,例如:$x^2y cdot xy^2 = x^{2+1}y^{1+2} = x^3y^3$。
整式乘法的应用
01
02
03
解决实际问题
整式乘法在实际问题中有 着广泛的应用,例如计算 面积、体积、路程等。
代数运算
整式乘法是代数运算中的 基本运算之一,它可以用 于解决代数方程、不等式 等问题。
掌握好单项式乘多项式和多项式乘多 项式的计算方法,是学好整式乘法的 基础。
合并同类项时,要注意不要遗漏任何 一项,特别是系数和字母因式部分。
多项式乘多项式的实例解析
例如
$(x+1)(x^2+2x+3)$,先分别用$(x+1)$去乘$(x^2+2x+3)$的每一项,得到 $x^3+2x^2+3x$,$x^2+2x+3$,再将同类项合并,得到 $x^3+3x^2+5x+3$。
整式乘法的符号表示
用“·”表示整式相乘,例如:$a^2 cdot b^3 = a^{2+3} cdot b^{3+1} = a^5 cdot b^4$。
整式乘法的规则
系数相乘
合并同类项
整式相乘时,首先将它们的系数相乘 ,例如:$2x cdot 3y = 6xy$。
在整式乘法中,如果两个整式含有相 同的字母和字母的指数,则可以将它 们合并为一个项,例如:$2x^2y + 3x^2y = 5x^2y$。
再如
$(-2x+3y)(-2x-3y)$,利用平方差公式得到$4x^2-9y^2$。
《整式的乘法》整式的乘法与因式分解PPT优秀教学课件
![《整式的乘法》整式的乘法与因式分解PPT优秀教学课件](https://img.taocdn.com/s3/m/077e4da550e79b89680203d8ce2f0066f5336415.png)
归纳
多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除 以这个单项式,再把所得的商相加.
转化
多项式除以单项式
单项式除以单项式
示例: (28x3y14x2y27x)7x 28x3y7x14x2y27x7x7x 4x2y2xy21
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
单项式相除,把系数与同底数幂分别相除作为商 的因式,对于只在被除式里含有的字母,则连同它的 指数作为商的一个因式.
被除式的系数 除式的系数
底数不变, 保留作为商 指数相减. 的一个因式.
商式系数·同底的幂·被除式里单独有的幂 示例:6x4y6z8x2y2(68)·(x4x2)·(y6y2)·z3x2y4z
14.1.4 整式的乘法
学习目标
1.掌握单项式除以单项式、多项式除以单项式的法则,理解除法运算的
整
算理;
式
2.能熟练运用单项式除以单项式、多项式除以单项式的法则计算,并能
的
解决一些实际问题;
除
3.经历探索整式除法运算法则的过程,进一步体会类比方法的作用,发
法
展运算能力;
4.让学生主动参与到探索过程中,发展有条理的思考及表达能力.
(ambm)m
如何计算?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
除法是乘法的逆运算
(ambm)m( ab)
( ab)·mambm
ammbmmab
单项式除以单项式
(ambm)mammbmmab
讨论 尝试归纳多项式除以单项式的运算法则.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
整式的乘法PPT课件
![整式的乘法PPT课件](https://img.taocdn.com/s3/m/b23d137259fb770bf78a6529647d27284b733798.png)
法 交 换 律
法转
结
化 合
律
= x y3 z2
有理数的乘法
同底数幂的乘法
用自己的语言说一说
单项式与单项式相乘的步骤
(3a2b)·(2ab3)
=(3×2)·(a2 ·a )·(b ·b3)
= 6 a3 b4
1.系数乘以系数
(xyz)·(y2z) 2.同底数幂相乘 =x·( y·y2 )·(z ·z )
如果某种地砖的 价格是a元/米2,那 么购买所需的地砖 至少需要多少元?
解:2x ·4y + x(4y-2y)+ y(4x-x-2x) =(2×4)xy + x ·2y + y ·x = 8xy + 2xy + xy = 11xy (米2 ) a ·11xy = 11axy(元)
答:至少需要11xy平方米的地砖; 购买所需的地砖至少需要11axy元。
计算:
1. (5x3)·(2x2y) 10x5y
2. 3ab ·2a
6a2b
3. (2x2y)3 ·(-4xy2) -32x7y5
单 系数乘以系数项式源自与 同底数幂相乘单
项
式
相 乘
其余的保留,作为积的因式
P15,习题1.6 1.(2) 1.(4) 1.(6)
=mx2
② mx =m·3
3
·4 x (x·x)
= 3 m4x2
4
类似地,
(1)(3a2b)·(2ab3)
(2)(xyz)·(y2z)
也可以表达得更简单些吗?
解:(3a2b)·(2ab3)
=(3×2)·(a2 ·a )·(b ·b3)
= 6 a3 b4
单项式与单项式相乘
整式的乘法ppt课件
![整式的乘法ppt课件](https://img.taocdn.com/s3/m/5409a763effdc8d376eeaeaad1f34693daef10d2.png)
解:原式=2x3y2·4x2y4z2=8x5y6z2;
(2)(-2x2)3+x2·x4-(-3x3)2.
原式=-8x6+x6-9x6=-16x6.
感悟新知
知识点 2 单项式与多项式相乘
知2-讲
1. 单项式乘多项式法则:一般地,单项式与多项式相乘,
就是用单项式去乘多项式的每一项,再把所得的积相加.
用字母表示为
2. 单项式除以单项式的结果还是单项式.
3. 根据乘除互逆的原则,可用单项式乘单项式来
验证结果.
感悟新知
知6-练
例 8 计算:
(1)-3a7b4c÷9a4b2;(2)4a3m+1b÷(-8a2m+1);
(3)(6.4×105)÷(2×102).
解题秘方:根据单项式除以单项式法则解答.
感悟新知
知6-练
的0次幂都等于1.
解:|-3|+22-( -1)0=3+4-1=6.
感悟新知
知5-练
7-1.计算:
0
-
+(-2)2.
解:原式=1-4+4=1.
感悟新知
知6-讲
知识点 6 单项式除以单项式
1. 单项式除以单项式法则:一般地,单项式相除,把系数
与同底数幂分别相除作为商的因式,对于只在被除式里
14.1 整式的乘法
14.1.4 整式的乘法
1 课时讲解 单项式与单项式相乘
2 课时流程
逐点
导讲练
单项式与多项式相乘
多项式与多项式相乘
同底数幂的除法
零指数幂
单项式除以单项式
多项式除以单项式
课堂
小结
作业
提升
感悟新知
知1-讲
知识点 1 单项式与单项式相乘
(2)(-2x2)3+x2·x4-(-3x3)2.
原式=-8x6+x6-9x6=-16x6.
感悟新知
知识点 2 单项式与多项式相乘
知2-讲
1. 单项式乘多项式法则:一般地,单项式与多项式相乘,
就是用单项式去乘多项式的每一项,再把所得的积相加.
用字母表示为
2. 单项式除以单项式的结果还是单项式.
3. 根据乘除互逆的原则,可用单项式乘单项式来
验证结果.
感悟新知
知6-练
例 8 计算:
(1)-3a7b4c÷9a4b2;(2)4a3m+1b÷(-8a2m+1);
(3)(6.4×105)÷(2×102).
解题秘方:根据单项式除以单项式法则解答.
感悟新知
知6-练
的0次幂都等于1.
解:|-3|+22-( -1)0=3+4-1=6.
感悟新知
知5-练
7-1.计算:
0
-
+(-2)2.
解:原式=1-4+4=1.
感悟新知
知6-讲
知识点 6 单项式除以单项式
1. 单项式除以单项式法则:一般地,单项式相除,把系数
与同底数幂分别相除作为商的因式,对于只在被除式里
14.1 整式的乘法
14.1.4 整式的乘法
1 课时讲解 单项式与单项式相乘
2 课时流程
逐点
导讲练
单项式与多项式相乘
多项式与多项式相乘
同底数幂的除法
零指数幂
单项式除以单项式
多项式除以单项式
课堂
小结
作业
提升
感悟新知
知1-讲
知识点 1 单项式与单项式相乘
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6) 3a3b·(-ab3c2) = -3a4b4c2
下面的计算对不 对?如果不对, 怎样改正?
⑴5a2 2a3 10a65 ⑵2x 3x4 56xx55
?
⑶ 3s 2s7 6s87
⑷ 2 a3 a26a3
⑸ 28 2a3 29 a3
(6)3x2·4x2 =1122xx42 (7) 5y3·3y5=15 yy158
p(a+b+c)=pa+pb+pc
(p、a、b、c都是单项式)
例1:计算 (-4x2)·(3x+1);
解: (-4x2)·(3x+1)
=(-4x2)·(3x)+(-4x2)·1 =(-4×3)·(x2·x)+(-4x2) =-12x3-4x2
注意:1:多项式中”1”这项不要漏乘.
2:观察最后结果的项数与原多项式的 项数,有何关系?
2.已知1 (x2 y3 )m • (2xyn1)2 x4 • y9 , 4
求m、n的值。
解:1 (x2 y3 )m • (2xyn1)2 x4 • y9 4
1 x2m y3m • 4x2 y2n2 x4 • y9 4
x y 2m2 3m2n2 x4 • y9
2m+2=4
由此可得: 3m+2n+2=9
单项式与单项式相乘,把它们的 系数、相同字母分别相乘,对于只在 一个单项式里含有的字母,则连同它 的指数作为积的一个因式。
例4 计算:
(1) (-5a2b)(-3a); (2) (2x)3(-5xy2).
解:(1) (-5a2b)(-3a) (2) (2x)3(-5xy2)
= [(-5)×(-3)](a2•a)b =8x3(-5xy2)
解: 4a2 x5 3a3bx2
相同字母的指数的和作 为积里这个字母的指数
= 4 3 a2a3 x5x2 b = 12 a5x7 b
各因式系数的积 作为积的系数
注意点
只在一个单项式里含有 的字母连同它的指数作
为积的一个因式
单项式乘以单项式的结果仍是单项式.
单项式与单项式相乘的法则:
例2(1)计算: (1)
光的速度约为3×105千米/秒,太阳光照射到地球上 需要的时间大约是5×102秒,你知道地球与太阳的 距离约是多少千米吗?
怎样计算?你能说说每步运算的依据吗? 分析:距离=速度×时间;即(3×105)×(5×102);
地球与太阳的距离约是:
(3×105)×(5×102) =(3 ×5) ×(105 ×102) =15 ×107 =1.5 ×108(千米)
3、下列等式①a5+3a5=4a5
②2m2·
1 2
m4=m8
③2a3b4(-ab2c)2=-2a5b8c2 ④(-7x) 4x3y中,正确的有( B )个。
4
·7
x2y=-
A、1 B、2 C、3 D、4
4、如果单项式-3x4a-by2与 x3ya+b是同类项,那
么这两个单项式的积是( D)
A、x6y4 B、-x3y2
∴ p(a+b+c)=pa+pb+pc
p
pa
a
pb
pc
b
c
如何进行单项式与多项式相乘的 运算?
用单项式分别去乘多项式的 每一项,再把所得的积相加。
你能用字母表示这一结论吗?
p(a+b+c) = pa单×单
单项式与多项式相乘法则: 单项式与多项式相乘,就是用单 项式去乘多项式的每一项,再把所得 的积相加。
C 、1x3y2 D、 -x6y4
3
问题: 怎样算简便?
6(1 1 1) 236
=6×
1 2
+6× 1 3
-
6×
1 6
=3+2-1
=4
设长方形长为(a+b+c),宽为p,则面 积为; p(a+b+c)
这个长方形可分割为宽为p,长分别为a、b、c 的三个小长方形,它们的面积之和为pa+pb+pc
如果将上式中的数字改为字母,即: ac5·bc2;怎样计算? ac5•bc2是两个单项式ac5与bc2相乘,我们可以 利用乘法交换律,结合律及同底数幂的运算性质 来计算: ac5•bc2=(a•b)•(c5•c2)=abc5+2=abc7.
如何计算:4a2x5• (-3a3bx2)?
计算:4a2 x5 3a3bx2
(2ab2)3 9ab2 • (ab2)2 17ab2 • (ab2)2
1. 若n为正整数,且x3n=2,求2x2n ·x4n+x4n ·x5n 的值。
解: 2x2n ·x4n+x4n ·x5n =2x6n+x9n =2(x3n)2+(x3n)3 =2×22+23
=8+8 =16 ∴原式的值等于16。
4
(1) 3x3y·(-2y)2-(-xy)2·(-xy)-xy3·(-4x)2
解:原式=3xy3·4y2-x2y2·(-xy)-xy3·16x2 =12x3y3+x3y3-16x3y3 =-3x3y3
(2) (-a)2·a3·(-2b)3-(-2ab)2·(3a)3b
解:原式=a2a3·(-8b3)-4a2b2·(-27a3)b =-8a5b3+108a5b3 =100a5b3
m=1
解得: n=2
∴m、n得值分别是m=1,n=2.
3.精心选一选:
(1)、下列计算中,正确的是( B )
A、2a3·3a2=6a6
B、4x3·2x5=8x8
C、2X·2X5=4X5
D、5X3·4X4=9X7
(2)、下列运算正确的是( D )
A、X2·X3=X6
B、X2+X2=2X4
C、(-2X)2=-4X2 D、(-2X2)(-3X3)=6x5
= 15a3b
=[8×(-5)](x3•x)y2
=-40x4y2
细心算一算:
(1) 3x2·5x3 = 15X5 (2) 4y·(-2xy2) = -8xy3
(3) (-3x2y) ·(-4x) = 12x3y (4) (-4a2b)(-2a) = 8a3b
(5) 3y(-2x2y2) = -6x2y3
练习
(1) -5a3b2c·3a2b= -15a5b3c (2) x3y2·(-xy3)2= x5y8 (3) (-9ab2) ·(-ab2)2= -9a3b6 (4) (2ab)3·(-a2c)2= 8a7b3c2 (5)( 4 ab) • (3ab)2 -12a3b3
3
(6) 1 (a2 )2 • (4a3 )2 4a10
下面的计算对不 对?如果不对, 怎样改正?
⑴5a2 2a3 10a65 ⑵2x 3x4 56xx55
?
⑶ 3s 2s7 6s87
⑷ 2 a3 a26a3
⑸ 28 2a3 29 a3
(6)3x2·4x2 =1122xx42 (7) 5y3·3y5=15 yy158
p(a+b+c)=pa+pb+pc
(p、a、b、c都是单项式)
例1:计算 (-4x2)·(3x+1);
解: (-4x2)·(3x+1)
=(-4x2)·(3x)+(-4x2)·1 =(-4×3)·(x2·x)+(-4x2) =-12x3-4x2
注意:1:多项式中”1”这项不要漏乘.
2:观察最后结果的项数与原多项式的 项数,有何关系?
2.已知1 (x2 y3 )m • (2xyn1)2 x4 • y9 , 4
求m、n的值。
解:1 (x2 y3 )m • (2xyn1)2 x4 • y9 4
1 x2m y3m • 4x2 y2n2 x4 • y9 4
x y 2m2 3m2n2 x4 • y9
2m+2=4
由此可得: 3m+2n+2=9
单项式与单项式相乘,把它们的 系数、相同字母分别相乘,对于只在 一个单项式里含有的字母,则连同它 的指数作为积的一个因式。
例4 计算:
(1) (-5a2b)(-3a); (2) (2x)3(-5xy2).
解:(1) (-5a2b)(-3a) (2) (2x)3(-5xy2)
= [(-5)×(-3)](a2•a)b =8x3(-5xy2)
解: 4a2 x5 3a3bx2
相同字母的指数的和作 为积里这个字母的指数
= 4 3 a2a3 x5x2 b = 12 a5x7 b
各因式系数的积 作为积的系数
注意点
只在一个单项式里含有 的字母连同它的指数作
为积的一个因式
单项式乘以单项式的结果仍是单项式.
单项式与单项式相乘的法则:
例2(1)计算: (1)
光的速度约为3×105千米/秒,太阳光照射到地球上 需要的时间大约是5×102秒,你知道地球与太阳的 距离约是多少千米吗?
怎样计算?你能说说每步运算的依据吗? 分析:距离=速度×时间;即(3×105)×(5×102);
地球与太阳的距离约是:
(3×105)×(5×102) =(3 ×5) ×(105 ×102) =15 ×107 =1.5 ×108(千米)
3、下列等式①a5+3a5=4a5
②2m2·
1 2
m4=m8
③2a3b4(-ab2c)2=-2a5b8c2 ④(-7x) 4x3y中,正确的有( B )个。
4
·7
x2y=-
A、1 B、2 C、3 D、4
4、如果单项式-3x4a-by2与 x3ya+b是同类项,那
么这两个单项式的积是( D)
A、x6y4 B、-x3y2
∴ p(a+b+c)=pa+pb+pc
p
pa
a
pb
pc
b
c
如何进行单项式与多项式相乘的 运算?
用单项式分别去乘多项式的 每一项,再把所得的积相加。
你能用字母表示这一结论吗?
p(a+b+c) = pa单×单
单项式与多项式相乘法则: 单项式与多项式相乘,就是用单 项式去乘多项式的每一项,再把所得 的积相加。
C 、1x3y2 D、 -x6y4
3
问题: 怎样算简便?
6(1 1 1) 236
=6×
1 2
+6× 1 3
-
6×
1 6
=3+2-1
=4
设长方形长为(a+b+c),宽为p,则面 积为; p(a+b+c)
这个长方形可分割为宽为p,长分别为a、b、c 的三个小长方形,它们的面积之和为pa+pb+pc
如果将上式中的数字改为字母,即: ac5·bc2;怎样计算? ac5•bc2是两个单项式ac5与bc2相乘,我们可以 利用乘法交换律,结合律及同底数幂的运算性质 来计算: ac5•bc2=(a•b)•(c5•c2)=abc5+2=abc7.
如何计算:4a2x5• (-3a3bx2)?
计算:4a2 x5 3a3bx2
(2ab2)3 9ab2 • (ab2)2 17ab2 • (ab2)2
1. 若n为正整数,且x3n=2,求2x2n ·x4n+x4n ·x5n 的值。
解: 2x2n ·x4n+x4n ·x5n =2x6n+x9n =2(x3n)2+(x3n)3 =2×22+23
=8+8 =16 ∴原式的值等于16。
4
(1) 3x3y·(-2y)2-(-xy)2·(-xy)-xy3·(-4x)2
解:原式=3xy3·4y2-x2y2·(-xy)-xy3·16x2 =12x3y3+x3y3-16x3y3 =-3x3y3
(2) (-a)2·a3·(-2b)3-(-2ab)2·(3a)3b
解:原式=a2a3·(-8b3)-4a2b2·(-27a3)b =-8a5b3+108a5b3 =100a5b3
m=1
解得: n=2
∴m、n得值分别是m=1,n=2.
3.精心选一选:
(1)、下列计算中,正确的是( B )
A、2a3·3a2=6a6
B、4x3·2x5=8x8
C、2X·2X5=4X5
D、5X3·4X4=9X7
(2)、下列运算正确的是( D )
A、X2·X3=X6
B、X2+X2=2X4
C、(-2X)2=-4X2 D、(-2X2)(-3X3)=6x5
= 15a3b
=[8×(-5)](x3•x)y2
=-40x4y2
细心算一算:
(1) 3x2·5x3 = 15X5 (2) 4y·(-2xy2) = -8xy3
(3) (-3x2y) ·(-4x) = 12x3y (4) (-4a2b)(-2a) = 8a3b
(5) 3y(-2x2y2) = -6x2y3
练习
(1) -5a3b2c·3a2b= -15a5b3c (2) x3y2·(-xy3)2= x5y8 (3) (-9ab2) ·(-ab2)2= -9a3b6 (4) (2ab)3·(-a2c)2= 8a7b3c2 (5)( 4 ab) • (3ab)2 -12a3b3
3
(6) 1 (a2 )2 • (4a3 )2 4a10