超低噪声宽带运算放大器LMH6624

合集下载

微弱信号检测的超低噪音宽带放大器设计

微弱信号检测的超低噪音宽带放大器设计

微弱信号检测的超低噪音宽带放大器设计作者:秦正波任羊弟王辉来源:《现代经济信息》2017年第07期摘要:本文简要报道了微型超低噪音宽带快电荷灵敏前置放大器。

该放大器主要采用高增益宽带低噪音电压反馈型集成运放芯片OPA847,其低电压输入噪音低至0.85nV/Hz1/2,带宽高至3.9GHz。

整个成本低至数百元,是同类型产品的1/10或更少,该前置放大器具有电路结构简单、紧凑,超高速,极低噪音,超高稳定性等优点。

经实验测试,该放大器能有效进行微弱信号的放大和噪音的抑制,可广泛应用于普通物理实验的光电探测的前置放大,科研上也具有较可观的应用前景。

关键词:微弱信号检测;前置放大器;超低噪音中图分类号:TN722 文献识别码:A 文章编号:1001-828X(2017)007-0-02The design of an ultra-low-noise wideband amplifier for the weak signal measurementQIN Zheng-bo,REN Yang-di,WANG Hui(Department of Physics, Anhui Normal University, Wuhu 241000, Anhui, China)Abstract: A miniature, ultra-low-noise, and high-sensitivity preamplifier has been introduced in brief in this paper. The design is adopted which mainly combines a high-gain bandwidth, low-noise, voltage-feedback operational amplifier OPA847. The input voltage noise density reaches to as low as 0.85nV/Hz1/2 and bandwidth gets up to 3.9 GHz. The device costs only several hundred yuan, which is less than one tenth of cost for similar products. The preamplifier has the advantage of simple, compact, super-high speed, ultra-low noise and super-high stability et al. The amplifier has the function of the gain of weak signal and suppression of noise after testing. It is applied to the amplification of photoelectric detection and has the application foreground for scientific research.Key words: weak signal detection; pre-amplifier; ultra-low-noise引言在大学物理实验中的光电测量,光信息传输实验中的微弱信号检测或者飞行时间质谱实验中的质谱检测,无论光谱测量中使用的光电倍增管[1],还是质谱实验中使用的微通道板[2-3],最终输出的都是脉冲电子流,尤其是电子流具有瞬态性和高速性(10-9秒),而普通的低带宽的放大器无法有效的进行高速电子脉冲信号的放大,并且会造成时间积分上的拉宽,造成信号损失乃至丢失,最终可能不为采集装置所采集,因此从检测器上所获得的微弱信号,需要经过前置放大器进行预放大才可以被瞬态采集卡或者示波器进行信号采集及数据处理。

小信号放大电路图详解

小信号放大电路图详解

小信号放大电路图详解小 信号放大一直是电子设计竞赛经久不衰的题目,也是工程师们设计电路时经常遇到的问题。

作者历经小信号放大的血泪史,介绍了小信号放大中的集成芯片放大电 路、滤波器电路和分立元件放大器,有详细的电路图讲解哦!其中LC无源滤波器的软件设计、仿真以及硬件制作流程也合适很多其他电路设计。

第一部分:集成芯片放大器电路图讲解不知有多少童鞋知道TI公司的LHM6624。

这个芯片对于作者来说那是福星一枚。

其主要技术指标如下:Single/Dual Ultra Low Noise Wideband Operational Amplifier(单/双电源低噪声宽带小信号放大器);其增益带宽积在单电源供电时可达1.5GHz,双电源供电时可达1.3GHz;供电电压双电源 (± 2.5V to ± 6V)单电源(+5V to +12V);摆率(Slew rate) 350V/μs增益为10dB(AV = 10)时摆率400V/μs;输入噪声0.92nV/;输入失调电压典型值700uV 。

应用电路图如下:其中双电源供电±5V,C12,C13作用是电源滤波,即稳压;输入阻抗为50W;输出信号峰峰值可至8V(最好不要超过3V,因为大信号会出现非线性放 大)。

这是一个典型的同相放大器,放大倍数计算公式为AV=R14/R12,图中参数放大倍数20倍,即26dB。

值得注意的一点是电阻R16的作用:调 节零漂~如果对低频放大没什么特别需要的话,此处电阻R13,R16以及C11都可省略,但是如果想要放大直流信号的话,此处调节电路就十分有必要了。

模拟放大电路的电源滤波处理是十分有必要的,目的是防止高频模拟信号影响污染整个电源系统。

图中C12,C13在pcb中的位置要尽量靠近IC的电源入 口。

另外也可选择把磁珠(要求严格时可用电感,要求不高时可用100W电阻)和两个电容组成p形滤波电路, 这样可以把电源中的噪音滤得干干净净~2:滤波器滤波器分为有源滤波器和无源滤波器两种,区别在于有没有外接电源。

MAX44246高电压应用的高精度,低噪声运算放大器

MAX44246高电压应用的高精度,低噪声运算放大器

MAX44246高电压应用的高精度,低噪声运
算放大器
MAX44246是一个36V,超高精度,低噪声,低漂移,双运算放大器,可提供接近零直流偏移和漂移通过使用专利斩波稳定和自动调零技术。

此方法不断地测量和补偿的输入偏移量,消除了时间和温度漂移和1 / f噪声的影响。

这种双通道器件具有轨至轨输出,从一个单一的2.7V至36V的电源,每通道仅消耗0.42毫安,只有9nV /输入参考电压噪声。

IC是单位增益稳定的增益带宽积为5MHz。

具有优良的规范,如5μV(最大值)的失调电压,漂移为20nV /°C(最大值),117nV PP噪音在0.1Hz至10Hz,非常适合需要超低噪声和DC精度等的应用的IC作为连接压力传感器,应变计,精密体重秤,医疗器械。

该IC采用8引脚μMAX®或SO封装,额定工作在-40°C至+125°C温度范围。

关键特性
2.7V至36V的电源电压范围
超低输入VOS:5μV(最大)
低20nV /°C(最大值)的失调漂移
9nV /低噪声在1kHz
1μs的快速建立时间
5MHz增益带宽产品
轨到轨输出
集成的EMI滤波器
低0.55毫安每通道(最大值)静态电流8引脚μMAX/ SO封装
图表。

AD6624

AD6624

The AD6624 is a four-channel (quad) digital receive signal processor (RSP) with four cascaded signal-processing elements: a frequency translator, two fixed-coefficient decimating filters, and a programmable-coefficient decimating filter.
REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 Fax: 781/326-8703 © Analog Devices, Inc., 2002
SERIAL AND MICROPORT
24 BITS SDIN[3:0] SDO[3:0] DR[3:0] SDFS[3:0] SDFE[3:0] SCLK[3:0] MODE DS(RD) CS RW (WR) DTACK(RDY) A[2:0] D[7:0]

基于SiGe BiCMOS工艺的5GHz低噪声放大器的设计

基于SiGe BiCMOS工艺的5GHz低噪声放大器的设计

显 著增 大 , 此时 若 继 续 增 大 电 流将 会 导 致 噪 声 上 升 J . 因此 , 设计 L N A 时 必 须折 中考 虑 噪声 和 功
耗, 本文 选 取 G r a c e公 司 0 . 1 8 I z m S i Ge B i C MOS
采用电感作为发射极 的串联反馈元件 , 集电极 负 载也采 用 电感元 件 . 图 4为射极 电感负反馈电路结构 , 其中c 为
_r b +
5 0 Q
( 3 )
输 入阻抗 的虚数部 分应 该为 零 , 即:
图 1 无线接收机系统示 意
L B+ ( 1 +卢) L E一— 一
对于 L NA 电路来 说 , 噪声 是其 最重 要 的性 能
指 标之 一 . 晶体 管 噪声 系 数 与 集 电 极 电流 和
通讯作者简介 : 阮颖 ( 1 9 7 8一) , 女, 博 士, 讲师 , 湖南株 洲人. 主要研究 方 向为射 频集成 电路 和器件 . E - ma i l : r u a n

y i n g@ 1 6 3. c o m.
基金项 目: 上海市科 技 创新 行动 计 划地 方 院校 能力 建 设项 目( 1 0 1 1 0 5 0 2 2 0 0 ) ; 教育 部 科 学技 术研 究 重点 项 目
( 2 1 0 0 7 2 ) .

颖, 等: 基于 S i G e B i C MO S工艺 的 5 G Hz 低噪声放大器 的设计
双极 工 艺 和 标 准 的 互 补 金 属 氧 化 物 半 导 体
(C o mp l e me n t a r y Me t a l Ox i d e S e m i c o n d u c t o r ,

MAX44242 低输入偏置电流、低噪声操作放大器 (OP 放大器) 评估套件说明书

MAX44242 低输入偏置电流、低噪声操作放大器 (OP 放大器) 评估套件说明书

General DescriptionThe MAX44242 evaluation kit (EV kit) provides a prov-en design to evaluate the MAX44242 low-input biascurrent, low-noise operational amplifier (op amp) in an8-pin µMAX ® package. The EV kit circuit is preconfig-ured as noninverting amplifiers, but can be adapted toother topologies by changing a few components. Thecomponent pads accommodate 0805 packages, makingthem easy to solder and replace. The EV kit comes with aMAX44242AUA+ installed.Features and Benefits●Accommodates Multiple Op-Amp Configurations●Rail-to-Rail Outputs●Accommodates Easy-to-Use 0805 Components● 2.7V to 20V Single Supply or ±1.35V to Q 10V DualSupplies●Proven PCB Layout●Fully Assembled and TestedQuick StartRequired Equipment●MAX44242 EV kit●+5V, 10mA DC power supply (PS1)●Two precision voltage sources●Two digital multimeters (DMMs)Procedure The EV kit is fully assembled and tested. Follow the steps below to verify board operation:1) Verify that the jumpers are in their default position, as shown in Table 1.2) Connect the positive terminal of the +5V supply to VDD and the negative terminal to GND and VSS.3) Connect the positive terminal of the precision voltage source to INAP . Connect the negative terminal of the precision voltage source to GND.4) Connect INAM to GND.5) Connect the positive terminal of the second precision voltage source to the INBP pad. Connect the nega-tive terminal of the precision voltage source to GND.6) Connect INBM to GND.7) Connect the DMMs to monitor the voltages on OUTA and OUTB. With the 10kΩ feedback resistors and 1kΩ series resistors, the gain of each noninverting amplifier is +11.8) Turn on the +5V power supply.9) Apply 100mV from the precision voltage sources. Observe the output at OUTA and OUTB on the DMMs. Both should read approximately +1.1V.10) Apply 400mV from the precision voltage sources. Both OUTA and OUTB should read approximately +4.4V.19-6917; Rev 0; 2/14Ordering Information appears at end of data sheet.μMAX is a registered trademark of Maxim Integrated Products, Inc.Detailed Description of HardwareThe MAX44242 EV kit provides a proven layout for theMAX44242 low input bias current, low-noise dual op amp.The IC is a single-supply dual op amp whose primaryapplication is operating in the noninverting configuration;however, the IC can operate with a dual supply as long asthe voltage across the VDD and GND pins of the IC do notexceed the absolute maximum ratings. When operatingwith a single supply, short VSS to GND.Op-Amp Configurations The IC is a single-supply dual op amp ideal for differential sensing, noninverting amplification, buffering, and filter-ing. A few common configurations are shown in the next few sections.The following sections explain how to configure one of the device’s op amps (op-amp A). To configure the device’s second op amp (op-amp B), the same equations can be used after modifying the component reference designa-tors. For op-amp B, the equations should be modified by adding 10 to the number portion of the reference designa-tors (e.g., for the noninverting configuration, equation R1 becomes R11 and R5 becomes R15).Noninverting ConfigurationThe EV kit comes preconfigured as a noninvertingamplifier. The gain is set by the ratio of R5 and R1. TheEV kit comes preconfigured for a gain of +11. The outputvoltage for the noninverting configuration is given by the equation below:OUTA INAP R5V 1V R1 =+ *Default position.JUMPERSHUNT POSITION DESCRIPTION JU1Installed*Connects INAM to R1. Also shorts capacitor C5.OpenConnects INAM to R1 through capacitor C5. When AC-coupling is desired, remove the shunt and install capacitor C5. JU2Installed*Connects INAP to JU3 position 1. Also shorts capacitor C6. OpenConnects INAP to JU3 position 1 through capacitor C6. When AC-coupling is desired, remove the shunt and install capacitor C6. JU31-2*Connects INAP to JU2 and C6 through R2 and R82-3Connects INAP to GND through R2 and R8JU4Installed*Connects OUTA to OUTA OpenConnects OUTA to OUTA through capacitor C10. When AC-coupling is desired, remove the shunt and install capacitor C10. JU5Installed*Connects INBM to R11. Also shorts capacitor C15. OpenConnects INBM to R11 through capacitor C15. When AC-coupling is desired, remove the shunt and install capacitor C15. JU6Installed*Connects INBP to JU6 position 1. Also shorts capacitor C16. OpenConnects INBP to JU6 position 1 through capacitor C16. When AC-coupling is desired, remove the shunt and install capacitor C16. JU71-2*Connects INBP to JU7 and C16 through R12 and R182-3Connects INBP to GND through R12 and R18JU8Installed*Connects OUTB to OUTB Open Connects OUTB to OUTB through capacitor C20. When AC-coupling is desired, remove the shunt and install capacitor C20.R1–R3, and R5 with appropriate resistors. WhenR1 = R2 and R3 = R5, the CMRR of the differential ampli-fier is determined by the matching of the resistor ratiosR1/R2 and R3/R5.OUTA INAP INAM V GAIN (V V )=−where:R5R3GAIN R1R2==Sallen-Key Filter ConfigurationThe Sallen-Key filter topology is ideal for filtering sensorsignals with a second-order filter and acting as a buffer.Schematic complexity is reduced by combining the filterand buffer operations. The EV kit can be configured ina Sallen-Key topology by replacing and populating afew components. The Sallen-Key topology is typicallyconfigured as a unity-gain buffer, which can be done byreplacing R1 and R5 with 0Ω resistors and short JU2. Thenoninverting signal is applied to the INAP test point withJU2 short and short pins 1-2 on JU3 or do the same on theINBP pad similarly. The filter component pads are R2–R4,and R8, where some have to be populated with resistorsand others with capacitors.Lowpass Sallen-Key FilterTo configure the Sallen-Key as a lowpass filter, populatethe R2 and R8 pads with resistors, and populate the R3and R4 pads with capacitors. The corner frequency and Qare then given by:C R3R2R8f Q ==the R3 and R4 pads with resistors and populate the R2 and R8 pads with capacitors. The corner frequency and Qare then given by:C R4R2R8f Q ==Transimpedance Application To configure op-amp U1-A as a transimpedance amplifier (TIA), replace R1 with a 0Ω resistor and install a shunt on jumper JU1 and shunt on pins 2-3 on jumper JU3. The output voltage of the TIA is the input current multiplied by the feedback resistor:OUT IN BIAS OS V (I I )R4V =+×+where R4 is installed as a 10kΩ resistor, I IN is defined as the input current source applied at the INAM pad, I BIAS is the input bias current, and V OS is the input offset voltage of the op amp. Use capacitor C8 (and C7, if applicable) to stabilize the op amp by rolling off high-frequency gain due to a large cable capacitance. Similarly, we can configure op-amp U1-B for transimpedance application.Capacitive Loads Some applications require driving large capacitive loads. To improve the stability of the amplifier, replace R6 (R16 for U1-B) with a suitable resistor value to improve ampli-fier phase margin. The R6/C9 (R16/C19 for U1-B) filter can also be used as an anti-alias filter, or to limit amplifier output noise by reducing its output bandwidth.DESIGNATION QTY DESCRIPTIONC1, C320.1µF ±10%, 25V X7R ceramic capacitors (0805)C2, C424.7µF ±10%, 25V X5R ceramic capacitors (0805)C5–C10, C15–C200Not installed, ceramic capacitors(0805)GND2Black test points INAM, INAP,INBM, INBP,OUTA, OUTB,VDD, VSS8Red test pointsJU1, JU2,JU4–JU6, JU862-pin headers JU3, JU723-pin headers DESIGNATION QTY DESCRIPTION R1, R2,R11, R1241kΩ ±1% resistors (0805)R3, R4, R7,R13, R14, R170Not installed, resistors (0805) R5, R15210kΩ ±1% resistors (0805)R6, R8,R16, R1840Ω ±5% resistors (0805) TP1, TP20Not installed, miniature test points U11Dual low-power, rail-to-rail I/O opamp (8 µMAX)Maxim MAX44242AUA+—8Shunts—1PCB: MAX44242 EVKITFigure 1. MAX44242 EV Kit SchematicFigure 3. MAX44242 EV Kit PCB Layout—Component SideComponent SideFigure 4. MAX44242 EV Kit PCB Layout—Solder SidePART TYPE MAX44242EVKIT#EV Kit #Denotes ROHS compliant.Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.REVISIONNUMBERREVISION DATE DESCRIPTION PAGES CHANGED 02/14Initial release —For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at .。

LMH6624

LMH6624

超低噪声宽带运算放大器LMH6624 2008年07月23日社区交流关键字:分频器信号调理信号调理电路箝位级联拓扑隔离放大器数据采集器LMH6624是美国国家半导体公司推出的一种超低噪声宽带运算放大器IC。

该器件的主要应用领域包括仪器传感器放大器、超声预放大器、磁带与磁盘前置放大器、宽带有源滤波器、专业音频系统、光纤放大器及医疗诊断系统等。

1主要性能参数LMH6624是经改进的CLC425的替代器件,其主要性能与特点如下:●噪声极低;●使用±2.5~±6V双电源或5~12V单电源工作,在VS为±2.5V时的电源抑制比(PSRR)典型值为90dB,无载电源电流(Is)典型值是11.4mA;●增益带宽(GBW)达1.5GHz,输入电压噪声低至0.92nV√Hz,输入电流噪声 in 典型值为2.3pA√Hz;●在电源电压VS为±6V时,输入失调电压VOS为±0.1mV 温度漂移为±0.1μV/℃ ,输入失调电流IOS典型值为0.05μA 温度漂移为0.7nA/℃ ;●开环增益为81dB 典型值 时,共模抑制比 CMRR 达95dB,压摆率 SR 为350V/μs;●输出电压摆幅在VS为±6V下的典型值为±4.9V,输出电流典型值是100mA,输出短路电流为156mA;●采用8引脚SOIC或5引脚SOT23封装,引脚排列分别如图1(a)和图1(b)所示。

2应用简介2.1在较低增益(AV<10V/V)下的补偿在较低的增益下使用LMH6624时,应在其外部进行补偿。

对于同相放大器电路,可以在反馈电阻Rf两端并联一只适当的电容Cf,如图2所示。

设置补偿电容Cf能使频率响应削减至1dB以下。

在反相增益低于10V/V的情况下,为获得稳定的工作特性,可在放大器的两个输入端之间连接RC滞后补偿网络,该补偿方案不影响放大器闭环增益,但影响同相输入阻抗。

超低噪声宽带运算放大器LMH6624

超低噪声宽带运算放大器LMH6624

超低噪声宽带运算放大器LMH6624[超低噪声宽带运算放大器LMH6624]LMH6624是美国国家半导体公司推出的一种超低噪声宽带运算放大器IC,超低噪声宽带运算放大器LMH6624。

该器件的主要应用领域包括仪器传感器放大器、超声预放大器、磁带与磁盘前置放大器、宽带有源滤波器、专业音频系统、光纤放大器及医疗诊断系统等。

1主要性能参数LMH6624是经改进的CLC425的替代器件,其主要性能与特点如下:●噪声极低;●使用±2.5~±6V双电源或5~12V单电源工作,在VS为±2.5V时的电源抑制比(PSRR)典型值为90dB,无载电源电流(Is)典型值是11.4mA;●增益带宽(GBW)达1.5GHz,输入电压噪声低至0.92nV√Hz,输入电流噪声in典型值为2.3pA√Hz;●在电源电压VS为±6V时,输入失调电压VOS为±0.1mV温度漂移为±0.1μV/℃ ,输入失调电流IOS典型值为0.05μA温度漂移为0.7nA/℃ ;●开环增益为81dB典型值时,共模抑制比CMRR达95dB,压摆率SR为350V/μs;●输出电压摆幅在VS为±6V下的典型值为±4.9V,输出电流典型值是100mA,输出短路电流为156mA;●采用8引脚SOIC或5引脚SOT23封装,引脚排列分别如图1(a)和图1(b)所示,电子通信论文《超低噪声宽带运算放大器LMH6624》。

◆分享好文◆2应用简介2.1在较低增益(AV<10V/V)下的补偿在较低的增益下使用LMH6624时,应在其外部进行补偿。

对于同相放大器电路,可以在反馈电阻Rf两端并联一只适当的电容Cf,如图2所示。

设置补偿电容Cf能使频率响应削减至1dB以下。

2.2单电源工作电路LMH6624的单电源工作电路如图3所示。

放大器的输入和输出都采用电容耦合来设置DC增益。

IC同相输入端上的DC电压为Vcc/2,输出端电压为:VOUT=Vcc/2+AvVAC。

LMH6622MMNOPB系列规格书,Datasheet 资料

LMH6622MMNOPB系列规格书,Datasheet 资料

July 2005
LMH6622
Dual Wideband, Low Noise, 160MHz, Operational
Amplifiers
General Description
The LMH6622 is a dual high speed voltage feedback opera-
tional amplifier specifically optimized for low noise. A voltage
LMH6622
±6V Electrical Characteristics (Continued)
Unless otherwise specified, TJ = 25˚C, V+ = 6V, V− = −6V, VCM = 0V, AV = +2, RF = 500Ω, RL = 100Ω. Boldface limits apply at the temperature extremes.
noise specification of 1.6nV/
, a current noise specifi-
cation 1.5pA/ , a bandwidth of 160MHz, and a harmonic
distortion specification that exceeds 90dBc combine to make
VCM = 0V
−1.2
+0.2
+1.2
mV
−2
+2
TC VOS IOS
Input Offset Average Drift Input Offset Current
VCM = 0V (Note 7) VCM = 0V

2~18 GHz超宽带低噪声放大器芯片研制

2~18 GHz超宽带低噪声放大器芯片研制

2~18 GHz超宽带低噪声放大器芯片研制文晓敏;李斌【摘要】低噪声放大器在射电天文望远镜接收机中是一个重要的前端组件,其性能对接收机的灵敏度和噪声有至关重要的影响。

采用OMMIC公司70 nm GaAs mHEMT工艺研究和设计了一款工作频率为2~18 GHz的超宽带单片微波集成低噪声放大器芯片,芯片面积为2 mm×1 mm。

放大器电路采用三级级联放大、双电源供电拓扑结构,常温在片测试结果显示,全频带增益大于28 dB,噪声温度平均值为93 K,直流功耗150 mW,无条件稳定。

该放大器芯片覆盖了射电天文S,C,X,Ku 4个传统观测波段,适用于厘米波段超宽带接收前端和毫米波段超宽带中频放大模块。

【期刊名称】《天文研究与技术-国家天文台台刊》【年(卷),期】2019(16)3【总页数】7页(P278-284)【关键词】低噪声放大器;GaAs;mHEMT;超宽带;单片微波集成电路【作者】文晓敏;李斌【作者单位】中国科学院上海天文台,上海200030;中国科学院大学,北京100049【正文语种】中文【中图分类】TN722.3作为射电天文望远镜接收机前端的核心器件,低噪声放大器(Low Noise Amplifier, LNA)不仅要将天线接收到的来自外太空的微弱信号进行低噪声放大,还要求具有较高的增益抑制后级链路的噪声,保持接收系统的灵敏度。

单片微波集成电路(Monolithic Microwave Integrated Circuits, MMIC)形式的低噪声放大器芯片是实现超宽带、低噪声、高增益器件的重要途径。

变组分高电子迁移率晶体管(Metamorphic High-eletron-mobility Transistor, mHEMT) 具有高频、高功率及噪声性能好的优点,广泛应用于雷达、遥感、辐射测量等领域[1]。

本文设计单片微波集成电路低噪声放大器芯片所用的OMMIC D007IH mHEMT工艺,拥有70 nm栅长和高掺铟沟道,在组分缓变的缓冲层上生长高铟浓度的外延活跃层,从而实现与砷化镓(GaAs)衬底的平稳过渡,因而使其具有极低的噪声和超高频特性[2]。

射频超宽带CMOS低噪声放大器研究与设计

射频超宽带CMOS低噪声放大器研究与设计

摘 要近年来,无线通信领域的进步以及高速数据通信的需求促使了通信技术的快速发展。

超宽带系统由于具有高吞吐率的优点,目前已成为非常受欢迎的通信技术。

超宽带低噪声放大器作为超宽带接收机的第一级系统,它性能的好坏直接对其后各个系统有较大的影响,因此对于超宽带低噪声放大器的研究很有必要。

在文中首先讲述了超宽带低噪声放大器的研究背景和近几年国内外的研究现状,其次简要阐述了低噪声放大器的主要性能参数,如噪声性能、输入阻抗匹配性能、线性度以及电路的增益性能,并且分析了三种无源器件的特性。

在第三章中主要总结了各类常见的低噪声放大器电路结构及其优缺点,另外,片上电感作为超宽带低噪声放大器设计中最常见的无源器件,对其模型的研究是很有意义的,因此,在本章中也提出了一种改进型单π模型。

通过对各种电路成果进行改进,设计了分别工作在4-18GHz和3-5GHz的高增益、低功耗的超宽带低噪声放大器电路。

主要的研究工作和成果为:(1) 针对片上螺旋电感提出了一种改进型单π集总参数等效电路模型。

提出的模型可以很好地模拟高频下的衬底耦合效应、趋肤效应以及邻近效应;利用R-L-C并联结构实现衬底的寄生耦合效应;使用二端口分析方法和拟线性函数方法可以很容易地得到参数值。

提出的片上电感的模型与HFSS软件仿真的结果相比,模型在0-20GHz时拟合度很高。

(2) 设计并研究了一种工作频带为4-18GHz的超宽带低噪声放大器,该放大器基于TSMC 0.18μm RF CMOS工艺,通过在放大级采用三谐振匹配网络技术不仅提高了电路的增益,而且拓宽了电路的频带。

此外,通过引入衬底偏置技术使电路的功耗下降。

利用ADS软件对电路进行优化仿真,并分析了温度以及工艺角对电路的影响。

最终的仿真结果表明,该放大器在室温25℃的状态下,工作带宽为4-18GHz,增益为15.95-18.73dB,增益的平坦度为2.78dB,噪声系数小于4.9dB,其中最小的噪声系数为3.22dB,电路的工作电压为0.9V,功耗仅为5.715mW,该放大器可广泛应用于低功耗、宽频带的射频集成电路中。

OPA类TI免费芯片汇集

OPA类TI免费芯片汇集

OPA1013- 精密单电源双路运算放大器OPA1013CN8P 所有无铅库存$0.00OPA124- 低噪声的精密差动运算放大器OPA124U D 所有无铅库存$0.00OPA124UA D 所有无铅库存$0.00OPA129- 超低偏置电流差动运算放大器OPA129U D 所有无铅库存$0.00OPA129UB D 所有无铅库存$0.00OPA131- 通用 FET- 输入运算放大器OPA131UA D 所有无铅库存$0.00OPA1602- OPA1602、OPA1604 SoundPlus 高性能、双极输入音频运算放大器OPA1602AID D 暂时缺货$0.00OPA1642- Sound-Plus 高性能、JFET 输入音频运算放大器OPA1642AID D 暂时缺货$0.00OPA2130- 低功耗精密 FET 输入运算放大器OPA2130UA D 所有无铅库存$0.00OPA2137- 低成本 FET 输入运算放大器OPA2137P P 所有无铅库存$0.00OPA2141- 10MHz 单电源低噪声 JFET 精密放大器 ]]OPA2141AID D 所有无铅库存$0.00OPA2141AIDR D 所有无铅库存$0.00OPA2227- 高精度、低噪声运算放大器OPA2227P P 所有无铅库存$0.00OPA2227U D 所有无铅库存$0.00OPA2227UA D 所有无铅库存$0.00OPA2228- 高精度低噪声运算放大器OPA2228P P 所有无铅/绿色环保库存$0.00OPA2228PA P 所有无铅库存$0.00OPA2228U D 所有无铅库存$0.00OPA2228UA D 所有无铅库存$0.00OPA2333-HT- 1.8V 微功耗 CMOS 运算放大器OPA2333SJD JD 所有无铅无偏好** 库存$0.00OPA2334- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA2334AIDGST DGS 所有无铅/绿色环保库存$0.00 OPA2335- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA2335AIDGKT DGK 所有无铅库存$0.00 OPA2335AIDR D 所有无铅/绿色环保库存$0.00 OPA2338- MicroSIZE、单电源 CMOS 运算放大器微放大器系列OPA2338EA/250DCN 所有无铅/绿色环保库存$0.00OPA2354- 250MHz 轨至轨 I/O CMOS 双路运算放大器OPA2354AIDDA DDA 所有无铅库存$0.00 OPA2354AIDGKT DGK 所有无铅库存$0.00 OPA2376- 精密、低噪声、低静态电流运算放大器OPA2376AIDR D 所有无铅/绿色环保库存$0.00 OPA2376AIYZDT YZD 所有无铅/绿色环保库存$0.00 OPA2380- 高速精确互阻抗放大器OPA2380AIDGKT DGK 所有无铅/绿色环保库存$0.00 OPA2652- SpeedPlus(TM) 双路 700MHz 电压反馈运算放大器OPA2652U D 所有无铅/绿色环保库存$0.00 OPA2684- 双路低功耗电流反馈运算放大器OPA2684ID D 暂时缺$0.00货OPA2690- 具有禁用功能的双路宽带电压反馈运算放大器OPA2690ID D 所有无铅/绿色环保库存$0.00 OPA2703- 12V CMOS 轨至轨 I/O 运算放大器OPA2703UA D 所有无铅/绿色环保库存$0.00 OPA2703UAG4 D 所有无铅库存$0.00 OPA2704- 12V CMOS 轨至轨 I/O 运算放大器OPA2704EA/250DGK 所有无铅库存$0.00 OPA2704EA/250G4 DGK 所有无铅库存$0.00 OPA2704PA P 所有无铅/绿色环保库存$0.00 OPA2890- 具有禁用功能的双路低功耗宽带电压反馈运算放大器OPA2890ID D 所有无铅/绿色环保库存$0.00 OPA320- 20MHz、0.9pA Ib、RRIO、精密 CMOS 运算放大器OPA320AIDBVT DBV 所有无铅库存$0.00 OPA320SAIDBVT DBV 暂时缺$0.00货OPA3355- 具有关断状态的 2.5V 200MHz 的 GBW CMOS 三路运算放大器OPA3355EA/250PW 所有无铅/绿色环保库存$0.00 OPA3355UA D 所有无铅库存$0.00 OPA337- MicroAmplifier(TM) 系列微型单电源 CMOS 运算放大器OPA337NA/250DBV 所有无铅/绿色环保库存$0.00 OPA343- MicroAmplifier(TM) 系列单电源轨至轨运算放大器OPA343UA D 所有无铅/绿色环保库存$0.00 OPA347- 微功耗轨至轨运算放大器OPA347NA/250DBV 所有无铅/绿色环保库存$0.00 OPA347PA P 所有无铅/绿色环保暂时缺$0.00货OPA347SA/250DCK 所有无铅库存$0.00 OPA353- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA353UA D 所有无铅/绿色环保库存$0.00 OPA364- 1.8V、高 CMR、RRIO 运算放大器OPA364AID D 所有无铅/绿色环保库存$0.00 OPA364AIDBVT DBV 所有无铅/绿色环保库存$0.00 OPA364IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA3692- 具有禁用功能的三路宽带固定增益缓冲器OPA3692ID D 所有无铅/绿色环保库存$0.00 OPA3692IDBQT DBQ 所有无铅/绿色环保库存$0.00 OPA379- 1.8V、2.9µA、90kHz、轨至轨 I/O 运算放大器OPA379AIDCKT DCK 所有无铅/绿色环保库存$0.00 OPA380- 高速精密互阻抗放大器OPA380AIDGKT DGK 所有无铅库存$0.00 OPA4134- SoundPlus(TM) 高性能音频运算放大器OPA4134UA D 所有无铅库存$0.00 OPA4170- 36V、微功耗、轨至轨输出、四路、通用运算放大器OPA4170AID D 所有无铅库存$0.00 OPA4170AIPW PW 所有无铅库存$0.00 OPA4350- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA4350EA/250DBQ 所有无铅/绿色环保库存$0.00 OPA4350UA D 所有无铅/绿色环保库存$0.00 OPA4353- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA4353UA D 所有无铅/绿色环保库存$0.00 OPA4364- 1.8V、高 CMR、RRIO 运算放大器OPA4364AID D 所有无铅/绿色环保库存$0.00 OPA4704- 12V CMOS 轨至轨 I/O 运算放大器OPA4704UA D 所有无铅库存$0.00 OPA548- 高电压大电流运算放大器,出色的输出摆幅OPA548FKTWT KTW 所有无铅/绿色环保库存$0.00 OPA548T KVT 所有无铅/绿色环保库存$0.00 OPA561- 大电流运算放大器OPA561PWP PWP 所有无铅/绿色环保库存$0.00 OPA606- Wide-Bandwidth Difet(R) 运算放大器OPA606KP P 所有无铅/绿色环保库存$0.00 OPA656- 宽带单位增益稳定 FET 输入运算放大器OPA656N/250DBV 所有无铅库存$0.00 OPA656N/250G4DBV 所有无铅库存$0.00 OPA656NB/250DBV 所有无铅库存$0.00 OPA656U D 所有无铅库存$0.00 OPA656UB D 所有无铅库存$0.00 OPA694- 宽带、低功耗、电流反馈放大器OPA694ID D 所有无铅库存$0.00OPA1013- 精密单电源双路运算放大器OPA1013CN8P 所有无铅库存$0.00 OPA121- 低成本的精密差动运算放大器OPA121KU D 所有无铅库存$0.00 OPA124- 低噪声的精密差动运算放大器OPA124U D 所有无铅库存$0.00 OPA124UA D 所有无铅库存$0.00 OPA129- 超低偏置电流差动运算放大器OPA129U D 所有无铅库存$0.00 OPA129UB D 所有无铅库存$0.00 OPA130- 低功耗精密 FET 输入运算放大器OPA130UA D 所有无铅库存$0.00 OPA131- 通用 FET- 输入运算放大器OPA131UA D 所有无铅库存$0.00 OPA132- 高速 FET 输入运算放大器OPA132U D 所有无铅库存$0.00 OPA132UA D 所有无铅库存$0.00 OPA134- SoundPlus(TM) 高性能音频运算放大器OPA134PA P 所有无铅/绿色环保库存$0.00OPA134UA D 所有无铅无偏好** 库存$0.00OPA137- 低成本 FET 输入运算放大器OPA137P P 所有无铅无偏好** 库存$0.00OPA137PA P 库存$0.00 OPA140- 11MHz 单电源、低噪声、精密轨至轨输出 JFET 放大器OPA140AID D 所有无铅库存$0.00 OPA140AIDBVT DBV 所有无铅库存$0.00 OPA140AIDGKT DGK 所有无铅库存$0.00 OPA141- 10MHz 单电源低噪声 JFET 精密放大器OPA141AID D 所有无铅无偏好** 库存$0.00OPA141AIDGKT DGK 所有无铅库存$0.00OPA1602- OPA1602、OPA1604 SoundPlus 高性能、双极输入音频运算放大器OPA1602AID D 暂时缺货$0.00OPA1611- 1.1nV/√Hz 噪声、低功耗精密运算放大器OPA1611AID D 所有无铅库存$0.00OPA1612- 1.1nV/√Hz 噪声、低功耗精密运算放大器OPA1612AID D 所有无铅库存$0.00OPA1632- 全差动 I/O 音频放大器OPA1632D D 所有无铅/绿色环保库存$0.00OPA1632DR D 所有无铅库存$0.00OPA1641- Sound-Plus 高性能、JFET 输入音频运算放大器OPA1641AID D 所有无铅库存$0.00OPA1642- Sound-Plus 高性能、JFET 输入音频运算放大器OPA1642AID D 暂时缺货$0.00OPA1644- OPA1641/1642/1644 SoundPLUS™ 高性能 JFET 输入音频运算放大器OPA1644AID D 所有无铅无偏好** 库存$0.00OPA1654- Sound Plus 低噪声和低失真通用 FET 输入音频运算放大器OPA1654AID D 所有无铅库存$0.00OPA1654AIPW PW 所有无铅库存$0.00OPA1662-Q1- 汽车类 Sound Plus、低功耗、低噪声和低失真音频运算放大器OPA1662AIDGKRQ1 DGK 所有无铅库存$0.00OPA1662AIDRQ1 D 库存$0.00OPA1664- Sound Plus 低功耗、低噪声和低失真音频运算放大器OPA1664AID D 所有无铅库存$0.00OPA1664AIPW PW 所有无铅无偏好** 库存$0.00OPA170- 采用微型封装的 36V、微功耗、轨至轨输出、通用运算放大器OPA170AID D 所有无铅库存$0.00OPA170AIDBVT DBV 所有无铅库存$0.00OPA170AIDRLR DRL 所有无铅库存$0.00OPA170AIDRLT DRL 所有无铅库存$0.00OPA171- 采用微型封装的 36V 通用低功耗 RRO 运算放大器OPA171AID D 所有无铅库存$0.00OPA171AIDBVT DBV 所有无铅库存$0.00OPA171AIDRLT DRL 所有无铅库存$0.00OPA177- 精密运算放大器OPA177FP P 库存$0.00OPA177GP P 所有无铅库存$0.00OPA177GS D 所有无铅库存$0.00OPA177GS/2K5 D 所有无铅库存$0.00OPA188- 0.03μV/°C、6μV Vos、低噪声、轨至轨输出、36V 零漂移运算放大器OPA188AIDGKT DGK 所有无铅库存$0.00OPA1S2385- 具有集成开关和缓冲器的 200-MHz CMOS 跨阻放大器 (TIA)OPA1S2385IDRCT DRC 暂时缺货$0.00OPA211- 1.1nV/(sqrt)Hz Noise, Low Power, Precision Operational Amplifier in DFN-8 Pkg OPA211AIDR D 所有无铅/绿色环保库存$0.00OPA211ID D 所有无铅/绿色环保库存$0.00OPA211IDRGT DRG 所有无铅/绿色环保库存$0.00 OPA2130- 低功耗精密 FET 输入运算放大器OPA2130UA D 所有无铅库存$0.00 OPA2131- 通用 FET 输入运算放大器OPA2131UA D 所有无铅无偏好** 库存$0.00OPA2131UJ D 所有无铅库存$0.00 OPA2132- 高速 FET 输入运算放大器OPA2132P P 库存$0.00OPA2132PA P 所有无铅无偏好** 库存$0.00OPA2132U D 所有无铅无偏好** 库存$0.00OPA2132UA D 所有无铅库存$0.00OPA2134- SoundPlus(TM) 高性能音频运算放大器OPA2134PA P 所有无铅库存$0.00OPA2134UA D 所有无铅库存$0.00OPA2137- 低成本 FET 输入运算放大器OPA2137P P 所有无铅库存$0.00OPA2141- 10MHz 单电源低噪声 JFET 精密放大器 ]]OPA2141AID D 所有无铅库存$0.00OPA2141AIDR D 所有无铅库存$0.00OPA2170- 采用微型封装的 36V、微功耗、轨至轨输出、双路通用运算放大器OPA2170AID D 暂时缺货$0.00OPA2170AIDGK DGK 所有无铅库存$0.00OPA2171- 采用微型封装的 36V 通用低功耗 RRO 运算放大器OPA2171AID D 所有无铅库存$0.00OPA2171AIDCUT DCU 所有无铅库存$0.00OPA2227- 高精度、低噪声运算放大器OPA2227P P 所有无铅库存$0.00OPA2227U D 所有无铅库存$0.00OPA2227UA D 所有无铅库存$0.00OPA2228- 高精度低噪声运算放大器OPA2228P P 所有无铅/绿色环保库存$0.00OPA2228PA P 所有无铅库存$0.00OPA2228U D 所有无铅库存$0.00OPA2228UA D 所有无铅库存$0.00OPA2244- MicroAmplifier(TM) 系列微功耗单电源运算放大器OPA2244EA/250DGK 所有无铅/绿色环保库存$0.00OPA2244PA P 所有无铅库存$0.00OPA2244UA D 所有无铅库存$0.00 OPA2277- 高精度运算放大器OPA2277P P 所有无铅/绿色环保库存$0.00 OPA2277PA P 库存$0.00 OPA2277U D 所有无铅库存$0.00OPA2277UA D 所有无铅无偏好** 库存$0.00OPA2314-EP- 低功耗、低噪声 RRI/O 1.8V CMOS 运算放大器OPA2314ASDRBTEP DRB 库存$0.00 OPA2333- 1.8V、17µA、微功耗、精密、零漂移 CMOS 运算放大器OPA2333AID D 所有无铅/绿色环保库存$0.00 OPA2333AIDGKT DGK 所有无铅库存$0.00 OPA2333AIDRBT DRB 所有无铅/绿色环保库存$0.00 OPA2333-HT- 1.8V 微功耗 CMOS 运算放大器OPA2333SJD JD 所有无铅无偏好** 库存$0.00OPA2334- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA2334AIDGST DGS 所有无铅/绿色环保库存$0.00 OPA2335- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA2335AIDGKT DGK 所有无铅库存$0.00 OPA2335AIDR D 所有无铅/绿色环保库存$0.00 OPA2336- MicroAmplifier 系列单电源微功耗 CMOS 运算放大器OPA2336E/250DGK 所有无铅库存$0.00 OPA2336PA P 所有无铅库存$0.00 OPA2336U D 所有无铅库存$0.00 OPA2336UA D 所有无铅/绿色环保库存$0.00 OPA2337- MicroSIZE、单电源 CMOS 运算放大器微放大器系列OPA2337UA D 所有无铅/绿色环保库存$0.00 OPA2338- MicroSIZE、单电源 CMOS 运算放大器微放大器系列OPA2338EA/250DCN 所有无铅/绿色环保库存$0.00 OPA2338UA D 所有无铅库存$0.00 OPA2345- MicroAmplifier(TM) 系列低功耗单电源轨至轨运算放大器OPA2345EA/250DGK 所有无铅库存$0.00 OPA2345UA D 所有无铅库存$0.00 OPA2347- 采用 WCSP-8 封装的微功耗轨至轨运算放大器OPA2347EA/250DCN 所有无铅/绿色环保库存$0.00 OPA2347UA D 所有无铅/绿色环保库存$0.00 OPA2347UAG4 D 所有无铅库存$0.00 OPA2354- 250MHz 轨至轨 I/O CMOS 双路运算放大器OPA2354AIDDA DDA 所有无铅库存$0.00 OPA2354AIDGKT DGK 所有无铅库存$0.00 OPA2355- 具有关断状态的 2.5V 200MHz 的 GBW CMOS 双路运算放大器OPA2355DGSA/250 DGS 所有无铅/绿色环保库存$0.00 OPA2356- 2.5V 200MHz 的 GBW CMOS 双路运算放大器OPA2356AID D 所有无铅库存$0.00 OPA2356AIDGKT DGK 所有无铅/绿色环保库存$0.00 OPA2356AIDR D 库存$0.00 OPA237- MicroAmplifier(TM) 系列单电源运算放大器OPA237NA/250DBV 库存$0.00 OPA237NA/3K DBV 暂时缺货$0.00 OPA237UA D 所有无铅库存$0.00 OPA2376- 精密、低噪声、低静态电流运算放大器OPA2376AIDR D 所有无铅/绿色环保库存$0.00 OPA2376AIYZDT YZD 所有无铅/绿色环保库存$0.00 OPA2380- 高速精确互阻抗放大器OPA2380AIDGKT DGK 所有无铅/绿色环保库存$0.00 OPA244- 微功耗单电源运算放大器 MicroAmplifier(TM) 系列OPA244NA/250DBV 所有无铅库存$0.00 OPA244UA D 所有无铅库存$0.00 OPA251- 单电源、微功耗运算放大器OPA251PA P 所有无铅无偏好** 库存$0.00OPA2544- 高电压(大电流)双路运算放大器OPA2544T KV 所有无铅/绿色环保库存$0.00OPA2613- 具有电流限制的双宽带高输出电流运算放大器OPA2613ID D 所有无铅/绿色环保库存$0.00OPA2652- SpeedPlus(TM) 双路 700MHz 电压反馈运算放大器OPA2652U D 所有无铅/绿色环保库存$0.00OPA2673- Dual Wideband High Output Current Operational Amplifier with Current Limit OPA2673IRGVT RGV 所有无铅/绿色环保库存$0.00OPA2684- 双路低功耗电流反馈运算放大器OPA2684ID D 暂时缺货$0.00OPA2690- 具有禁用功能的双路宽带电压反馈运算放大器OPA2690ID D 所有无铅/绿色环保库存$0.00OPA27- 超低噪声精度运算放大器OPA27GP P 所有无铅无偏好** 库存$0.00OPA27GU D 所有无铅库存$0.00 OPA2703- 12V CMOS 轨至轨 I/O 运算放大器OPA2703UA D 所有无铅/绿色环保库存$0.00 OPA2703UAG4 D 所有无铅库存$0.00 OPA2704- 12V CMOS 轨至轨 I/O 运算放大器OPA2704EA/250DGK 所有无铅库存$0.00 OPA2704EA/250G4 DGK 所有无铅库存$0.00 OPA2704PA P 所有无铅/绿色环保库存$0.00 OPA2743- 12V 7MHz 轨至轨 I/O 双路运算放大器OPA2743UA D 所有无铅库存$0.00 OPA2830- 二路、低功耗、单电源宽带运算放大器OPA2830ID D 所有无铅/绿色环保库存$0.00 OPA2830IDGKT DGK 所有无铅/绿色环保库存$0.00 OPA2832- 双通道低功耗高速固定增益运算放大器OPA2832ID D 所有无铅/绿色环保库存$0.00 OPA2832IDGKT DGK 所有无铅/绿色环保库存$0.00 OPA2890- 具有禁用功能的双路低功耗宽带电压反馈运算放大器OPA2890ID D 所有无铅/绿色环保库存$0.00 OPA314- 3MHz、低功耗、低噪声、RRI/O 1.8V CMOS 运算放大器OPA314AIDBVT DBV 库存$0.00OPA320- 20MHz、0.9pA Ib、RRIO、精密 CMOS 运算放大器OPA320AIDBVT DBV 所有无铅库存$0.00OPA320SAIDBVT DBV 暂时缺$0.00货OPA322- 具有关断状态的 20MHz、低噪声、1.8V RRIO、CMOS 运算放大器OPA322AIDBVT DBV 所有无铅库存$0.00OPA330- 1.8V、35µA、微功耗、精密、零漂移 CMOS 运算放大器OPA330AID D 所有无铅库存$0.00OPA330AIDBVT DBV 所有无铅库存$0.00OPA330AIDCKT DCK 所有无铅库存$0.00OPA333- 1.8V、17µA、微功耗、精密、零漂移 CMOS 运算放大器OPA333AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA333AIDCKRG4 DCK 所有无铅库存$0.00OPA333AIDCKT DCK 所有无铅库存$0.00OPA333AIDR D 所有无铅库存$0.00OPA334- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA334AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA335- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA335AID D 所有无铅库存$0.00OPA335AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA3355- 具有关断状态的 2.5V 200MHz 的 GBW CMOS 三路运算放大器OPA3355EA/250PW 所有无铅/绿色环保库存$0.00OPA3355UA D 所有无铅库存$0.00OPA336- MicroAmplifier(TM) 系列单电源、微功耗 CMOS 运算放大器OPA336N/250DBV 所有无铅/绿色环保库存$0.00OPA336NA/250DBV 所有无铅/绿色环保库存$0.00OPA336NJ/3K DBV 所有无铅库存$0.00OPA336U D 所有无铅/绿色环保库存$0.00 OPA336UA D 所有无铅库存$0.00 OPA337- MicroAmplifier(TM) 系列微型单电源 CMOS 运算放大器OPA337NA/250DBV 所有无铅/绿色环保库存$0.00 OPA340- MicroAmplifier(TM) 系列单电源轨至轨运算放大器OPA340NA/250DBV 库存$0.00 OPA340UA D 所有无铅/绿色环保库存$0.00 OPA342- MicroAmplifier(TM) 系列低成本低功耗轨至轨运算放大器OPA342NA/250DBV 所有无铅/绿色环保库存$0.00 OPA343- MicroAmplifier(TM) 系列单电源轨至轨运算放大器OPA343UA D 所有无铅/绿色环保库存$0.00 OPA344- 低功耗单电源轨至轨运算放大器 MicroAmplifier(TM) 系列OPA344NA/250DBV 所有无铅/绿色环保库存$0.00 OPA344PA P 所有无铅/绿色环保库存$0.00 OPA344UA D 库存$0.00 OPA345- 低功耗单电源轨至轨运算放大器 MicroAmplifier(TM) 系列OPA345NA/250DBV 所有无铅/绿色环保库存$0.00 OPA345UA D 所有无铅/绿色环保库存$0.00 OPA347- 微功耗轨至轨运算放大器OPA347NA/250DBV 所有无铅/绿色环保库存$0.00 OPA347PA P 所有无铅/绿色环保暂时缺货$0.00 OPA347SA/250DCK 所有无铅库存$0.00 OPA348- 1MHz、45uA、RRIO、单路运算放大器OPA348AID D 所有无铅无偏好** 库存$0.00OPA348AIDBVT DBV 所有无铅/绿色环保库存$0.00 OPA348AIDCKT DCK 所有无铅/绿色环保库存$0.00 OPA350- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA350EA/250DGK 库存$0.00 OPA350PA P 所有无铅库存$0.00 OPA350UA D 所有无铅/绿色环保库存$0.00 OPA353- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA353NA/250DBV 所有无铅库存$0.00 OPA353UA D 所有无铅/绿色环保库存$0.00 OPA354- 250MHz 轨至轨 I/O CMOS 单路运算放大器OPA354AIDBVT DBV 所有无铅/绿色环保库存$0.00 OPA354AIDDA DDA 所有无铅/绿色环保暂时缺货$0.00 OPA355- 具有关断状态的 2.5V 200MHz 的 GBW CMOS 单路运算放大器OPA355NA/250DBV 所有无铅库存$0.00 OPA355UA D 所有无铅/绿色环保库存$0.00OPA357- 具有关断状态的 250MHz 轨至轨 I/O 单路 CMOS 运算放大器OPA357AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA357AIDDA DDA 所有无铅/绿色环保库存$0.00OPA360- 采用 SC70 封装具有低通滤波器、内部 G=2 和 SAG 校正的 3V 视频放大器OPA360AIDCKT DCK 所有无铅/绿色环保库存$0.00OPA361- 具有内部增益和滤波器的 3V 视频放大器OPA361AIDCKT DCK 所有无铅/绿色环保库存$0.00OPA363- 具有关断状态的 1.8V、高 CMR、RRIO 运算放大器OPA363AID D 所有无铅库存$0.00OPA363AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA363IDBVT DBV 所有无铅/绿色环保库存$0.00OPA364- 1.8V、高 CMR、RRIO 运算放大器OPA364AID D 所有无铅/绿色环保库存$0.00OPA364AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA364IDBVT DBV 所有无铅/绿色环保库存$0.00OPA365- 2.2V、50MHz 低噪声单电源轨至轨运算放大器OPA365AID D 所有无铅/绿色环保库存$0.00OPA365AIDBVT DBV 所有无铅库存$0.00OPA365-EP- 增强型产品 2.2V、50MHz 低噪声单电源轨至轨运算放大器OPA365AMDBVTEP DBV 所有无铅库存$0.00OPA3684- 具有禁用功能的低功耗三路电流反馈运算放大器OPA3684ID D 所有无铅/绿色环保库存$0.00OPA3691- 具有禁用功能的三路宽带电流反馈运算放大器OPA3691ID D 所有无铅/绿色环保库存$0.00OPA3691IDBQT DBQ 所有无铅/绿色环保库存$0.00OPA3692- 具有禁用功能的三路宽带固定增益缓冲器OPA3692ID D 所有无铅/绿色环保库存$0.00OPA3692IDBQT DBQ 所有无铅/绿色环保库存$0.00OPA3693- 具有禁用功能的超宽带电流反馈运算放大器OPA3693IDBQ DBQ 所有无铅/绿色环保库存$0.00OPA3695- 具有禁用功能的超宽带电流反馈运算放大器OPA3695IDBQ DBQ 所有无铅/绿色环保库存$0.00OPA373- 6.5MHz 585uA 轨至轨 I/O CMOS 运算放大器OPA373AIDBVT DBV 所有无铅库存$0.00OPA374- 6.5MHz、585uA、轨至轨 I/O CMOS 运算放大器$0.00OPA374AID D 暂时缺货OPA374AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA376- 低噪声、低 IQ 精密运算放大器OPA376AID D 所有无铅/绿色环保库存$0.00OPA376AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA376AIDCKT DCK 所有无铅/绿色环保库存$0.00OPA378- 低噪声、900kHz、RRIO 零漂移系列的精密运算放大器OPA378AIDBVT DBV 所有无铅库存$0.00 OPA379- 1.8V、2.9µA、90kHz、轨至轨 I/O 运算放大器OPA379AIDCKT DCK 所有无铅/绿色环保库存$0.00 OPA380- 高速精密互阻抗放大器OPA380AIDGKT DGK 所有无铅库存$0.00 OPA381- 精确低功耗高速互阻抗放大器OPA381AIDGKT DGK 所有无铅库存$0.00 OPA3875- OPA3875: Triple 2-to-1 High-Speed Video Multiplexer OPA3875IDBQ DBQ 所有无铅/绿色环保库存$0.00 OPA404- 四路高速精密 Difet(R) 运算放大器OPA404KP N 所有无铅/绿色环保库存$0.00OPA404KU DW 所有无铅无偏好** 库存$0.00OPA4130- 低功耗精密 FET 输入运算放大器OPA4130UA D 所有无铅库存$0.00OPA4131- 通用 FET 输入运算放大器OPA4131NA D 所有无铅库存$0.00OPA4131PA N 所有无铅/绿色环保库存$0.00OPA4131UA DW 所有无铅库存$0.00OPA4132- 高速 FET 输入运算放大器OPA4132UA D 所有无铅库存$0.00OPA4134- SoundPlus(TM) 高性能音频运算放大器OPA4134UA D 所有无铅库存$0.00OPA4137- 低成本 FET 输入运算放大器OPA4137P N 库存$0.00OPA4137U D 所有无铅库存$0.00OPA4137UA D 所有无铅库存$0.00OPA4170- 36V、微功耗、轨至轨输出、四路、通用运算放大器OPA4170AID D 所有无铅库存$0.00OPA4170AIPW PW 所有无铅库存$0.00OPA4171- 36V 通用低功耗 RRO 运算放大器OPA4171AID D 所有无铅库存$0.00OPA4171AIPW PW 所有无铅库存$0.00OPA4180- 0.1 uV/C 漂移、四通道、低噪声、轨到轨、36V 零漂移运算放大器OPA4180ID D 暂时缺货$0.00OPA4180IPW PW 暂时缺货$0.00OPA4209- 2.2nV/rtHz、18MHz、36V RRO 精密运算放大器OPA4209AIPW PW 所有无铅库存$0.00OPA4227- 高精度低噪声运算放大器OPA4227PA N 所有无铅/绿色环保库存$0.00 OPA4227UA D 所有无铅库存$0.00 OPA4228- 高精度低噪声运算放大器OPA4228PA N 所有无铅无偏好** 库存$0.00OPA4228UA D 所有无铅库存$0.00 OPA4234- 低功耗、精密单电源运算放大器OPA4234U D 所有无铅库存$0.00 OPA4241- 单电源、微功耗运算放大器OPA4241UA D 所有无铅库存$0.00 OPA4243- 四路运算放大器,微功耗、单电源OPA4243EA/250PW 所有无铅库存$0.00 OPA4244- MicroAmplifier(TM) 系列微功耗单电源运算放大器OPA4244EA/250PW 所有无铅库存$0.00 OPA4251- 单电源、微功耗运算放大器OPA4251PA N 所有无铅/绿色环保库存$0.00 OPA4251UA D 所有无铅库存$0.00 OPA4277- 高精度运算放大器OPA4277PA N 所有无铅无偏好** 库存$0.00OPA4277UA D 所有无铅库存$0.00OPA4314- 四路、3MHz、低功耗、低噪声、RRI/O、1.8V CMOS 运算放大器OPA4314AIPW PW 所有无铅库存$0.00OPA4317- 四路、低偏移、轨到轨 I/O 运算放大器OPA4317ID D 暂时缺货$0.00OPA4317IPW PW 所有无铅库存$0.00OPA4322- 20MHz、低噪声、1.8V、RRIO、CMOS 运算放大器OPA4322AIPW PW 所有无铅库存$0.00OPA4322SAIPW PW 所有无铅库存$0.00OPA4340- MicroAmplifier(TM) 系列单电源轨至轨运算放大器OPA4340EA/250DBQ 所有无铅/绿色环保库存$0.00OPA4340UA D 所有无铅库存$0.00OPA4343- MicroAmplifier™ 系列单电源轨至轨运算放大器OPA4343NA/250PW 所有无铅/绿色环保库存$0.00OPA4343UA D 所有无铅库存$0.00OPA4344- 低功耗单电源轨至轨运算放大器 MicroAmplifier(TM) 系列OPA4344EA/250PW 所有无铅/绿色环保库存$0.00OPA4344UA D 所有无铅/绿色环保库存$0.00OPA4347- 微功耗轨至轨运算放大器OPA4347UA D 库存$0.00OPA4347UAG4 D 所有无铅暂时缺$0.00货OPA4348- 1MHz、45uA、RRIO、四路运算放大器OPA4348AID D 所有无铅库存$0.00 OPA4348AIPWT PW 所有无铅/绿色环保库存$0.00 OPA4348AIPWTG4 PW 所有无铅库存$0.00 OPA4350- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA4350EA/250DBQ 所有无铅/绿色环保库存$0.00 OPA4350UA D 所有无铅/绿色环保库存$0.00 OPA4353- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA4353UA D 所有无铅/绿色环保库存$0.00 OPA4354- 250MHz 轨至轨 I/O CMOS 四路运算放大器OPA4354AIPWT PW 所有无铅库存$0.00 OPA4364- 1.8V、高 CMR、RRIO 运算放大器OPA4364AID D 所有无铅/绿色环保库存$0.00 OPA4376- 精密、低噪声、低静态电流运算放大器OPA4376AIPW PW 所有无铅无偏好** 库存$0.00OPA4377- 低成本、低噪声、5.5MHz CMOS 运算放大器OPA4377AIPW PW 所有无铅库存$0.00 OPA4379- 1.8V、2.5µA、90kHz、轨至轨 I/O 运算放大器OPA4379AIPWR PW 所有无铅/绿色环保库存$0.00 OPA445- 高电压 FET 输入运算放大器OPA445AP P 所有无铅库存$0.00 OPA445AU D 所有无铅库存$0.00 OPA452- 80V 50mA 运算放大器OPA452TA KC 所有无铅库存$0.00 OPA453- 80V 50mA 运算放大器OPA453TA KC 所有无铅库存$0.00 OPA454- 高电压 (100V) 和高电流 (50mA) 运算放大器,G = 1 稳定OPA454AIDDA DDA 所有无铅/绿色环保库存$0.00 OPA4704- 12V CMOS 轨至轨 I/O 运算放大器OPA4704UA D 所有无铅库存$0.00 OPA4743- 12V 7MHz CMOS 轨至轨 I/O 四路运算放大器OPA4743EA/250PW 所有无铅库存$0.00 OPA4820- 四路、单位增益、低噪声、电压反馈运算放大器OPA4820IPWT PW 所有无铅/绿色环保库存$0.00 OPA4830- 低功耗单电源宽带运算放大器OPA4830IPW PW 库存$0.00 OPA4872- 4:1 高速多路复用器OPA4872ID D 所有无铅/绿色环保库存$0.00 OPA541- 高功率单片运算放大器OPA541AP KV 所有无铅/绿色环保库存$0.00OPA544- 高电压、大电流运算放大器OPA544FKTTT KTT 所有无铅/绿色环保库存$0.00 OPA544T KC 所有无铅库存$0.00 OPA547- 高电压、大电流运算放大器、优异的输出摆幅OPA547FKTWT KTW 所有无铅/绿色环保库存$0.00 OPA547T KVT 所有无铅/绿色环保库存$0.00 OPA548- 高电压大电流运算放大器,出色的输出摆幅OPA548FKTWT KTW 所有无铅/绿色环保库存$0.00 OPA548T KVT 所有无铅/绿色环保库存$0.00 OPA549- 高电压大电流运算放大器,出色的输出摆幅OPA549S KVC 所有无铅/绿色环保库存$0.00 OPA549T KV 所有无铅/绿色环保暂时缺货$0.00 OPA551- 高电压、大电流运算放大器OPA551FA/500 KTW 所有无铅库存$0.00 OPA551FAKTWT KTW 所有无铅/绿色环保库存$0.00 OPA551PA P 所有无铅/绿色环保库存$0.00 OPA551UA D 所有无铅库存$0.00 OPA552- 高电压、大电流运算放大器OPA552FAKTWT KTW 所有无铅/绿色环保库存$0.00OPA552PA P 所有无铅无偏好** 库存$0.00OPA552UA D 所有无铅库存$0.00OPA561- 大电流运算放大器OPA561PWP PWP 所有无铅/绿色环保库存$0.00OPA567- 轨至轨 I/O 2A 功率放大器OPA567AIRHGT RHG 所有无铅/绿色环保库存$0.00OPA569- 2A 输出电流时输出信号摆幅在 200mV 轨之内的功率运算放大器OPA569AIDWP DWP 所有无铅/绿色环保库存$0.00OPA602- 高速精密 Difet(R) 运算放大器OPA602AP P 所有无铅/绿色环保库存$0.00OPA602AU D 所有无铅库存$0.00OPA602BP P 所有无铅/绿色环保库存$0.00OPA604- FET 输入音频运算放大器OPA604AP P 所有无铅/绿色环保库存$0.00OPA604APG4P 所有无铅库存$0.00OPA604AU D 所有无铅无偏好** 库存$0.00OPA606- Wide-Bandwidth Difet(R) 运算放大器OPA606KP P 所有无铅/绿色环保库存$0.00 OPA627- 精密高速 Difet(R) 运算放大器OPA627AU D 所有无铅/绿色环保库存$0.00OPA627BP P 所有无铅/绿色环保库存$0.00 OPA637- 精密高速 Difet(R) 运算放大器OPA637AP P 所有无铅无偏好** 库存$0.00OPA637AU D 所有无铅库存$0.00OPA637BP P 所有无铅无偏好** 库存$0.00OPA656- 宽带单位增益稳定 FET 输入运算放大器OPA656N/250DBV 所有无铅库存$0.00 OPA656N/250G4 DBV 所有无铅库存$0.00 OPA656NB/250DBV 所有无铅库存$0.00 OPA656U D 所有无铅库存$0.00 OPA656UB D 所有无铅库存$0.00 OPA657- 1.6GHz 低噪声 FET 输入运算放大器OPA657N/250DBV 所有无铅库存$0.00 OPA657NB/250DBV 所有无铅库存$0.00 OPA657U D 暂时缺货$0.00 OPA657UB D 所有无铅库存$0.00 OPA683- 具有禁用功能的极低功耗电流反馈放大器OPA683IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA684- 具有禁用功能的低功耗电流反馈运算放大器OPA684ID D 所有无铅/绿色环保库存$0.00 OPA690- 具有禁用功能的宽带电压反馈运算放大器OPA690ID D 所有无铅/绿色环保库存$0.00 OPA690IDBVT DBV 所有无铅/绿色环保暂时缺货$0.00 OPA691- 具有禁用功能的宽带电流反馈运算放大器OPA691ID D 所有无铅/绿色环保暂时缺货$0.00 OPA692- 具有禁用功能的宽带固定增益缓冲放大器OPA692ID D 所有无铅/绿色环保库存$0.00 OPA692IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA694- 宽带、低功耗、电流反馈放大器OPA694ID D 所有无铅库存$0.00 OPA695- 具有禁用功能的超宽带电流反馈运算放大器OPA695ID D 所有无铅/绿色环保库存$0.00 OPA695IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA698- 单位增益稳定宽带限压放大器OPA698ID D 所有无铅/绿色环保库存$0.00 OPA699- OPA699:宽带高增益限压放大器OPA699ID D 所有无铅/绿色环保库存$0.00OPA703- 12V CMOS 轨至轨 I/O 运算放大器OPA703UA D 所有无铅/绿色环保库存$0.00 OPA703UAG4 D 所有无铅库存$0.00 OPA704- 12V CMOS 轨至轨 I/O 运算放大器OPA704PA P 所有无铅无偏好** 库存$0.00OPA704PAG4P 所有无铅库存$0.00OPA705- 12V 低成本 CMOS 轨至轨 I/O 运算放大器OPA705UA D 所有无铅库存$0.00OPA725- OPA725 和 OPA726 系列:极低噪声、高速、12V CMOS 运算放大器OPA725AID D 所有无铅/绿色环保库存$0.00OPA725AIDG4 D 所有无铅库存$0.00OPA726- OPA725 和 OPA726 系列:极低噪声、高速、12V CMOS 运算放大器OPA726AIDGKT DGK 所有无铅/绿色环保库存$0.00OPA726AIDGKTG4 DGK 所有无铅库存$0.00OPA727- 电子微调 20MHz、高精度 CMOS 运算放大器OPA727AIDGKT DGK 所有无铅/绿色环保库存$0.00OPA727AIDRBT DRB 所有无铅/绿色环保暂时缺货$0.00OPA728- 电子微调 20MHz、高精度 CMOS 运算放大器OPA728AIDGKT DGK 所有无铅/绿色环保库存$0.00OPA734- 最大漂移0.05uV/℃ 单电源 CMOS 零漂移运算放大器OPA734AID D 所有无铅库存$0.00OPA735- 最大漂移0.05uV/℃ 单电源 CMOS 零漂移系列运算放大器OPA735AID D 所有无铅库存$0.00OPA820- 单位增益稳定低噪声电压反馈运算放大器OPA820ID D 所有无铅/绿色环保暂时缺货$0.00OPA827- 低噪声、高精度、JFET 输入运算放大器OPA827AID D 所有无铅/绿色环保库存$0.00OPA832- 低功耗单电源固定增益视频缓冲放大器OPA832ID D 所有无铅库存$0.00OPA832IDBVT DBV 所有无铅/绿色环保库存$0.00OPA835- 超低功耗、轨至轨输出、负轨输入、VFB 放大器OPA835IDBVT DBV 所有无铅库存$0.00OPA842- 宽带低失真单位增益稳定的电压反馈运算放大器OPA842IDBVT DBV 所有无铅/绿色环保库存$0.00OPA842IDR D 所有无铅无偏好** 库存$0.00OPA843- 宽带低失真中等增益的电压反馈运算放大器OPA843ID D 所有无铅/绿色环保库存$0.00 OPA843IDBVT DBV 所有无铅/绿色环保库存$0.00OPA846- OPA846:宽带低噪声电压反馈运算放大器OPA846IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA847- 具有关断状态的宽带超低噪声电压反馈运算放大器OPA847ID D 所有无铅/绿色环保库存$0.00 OPA847IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA860- 宽带运算跨导放大器和缓冲器OPA860ID D 所有无铅/绿色环保库存$0.00 OPA875- Single 2:1 High-Speed Video MultiplexerOPA875ID D 所有无铅/绿色环保库存$0.00。

低噪声、精密运算放大器 CBM27 数据手册说明书

低噪声、精密运算放大器 CBM27 数据手册说明书

CBM27数据手册专芯发展 • 用芯服务 • 创芯未来www. corebai. com● 宽压供电范围: 8V (±4V)~36V (±18V) ● 低噪声:90 nV p-p (0.1 Hz 至10 Hz ) ● 高速:2.8 V/µs 压摆率、8 MHz 增益带宽 ● 共模抑制比(CMRR):130 dB (VCM = ±11 V) ● 高开环增益:1,800,000● CBM27A 和 CBM27G 其他产品特点 ● 最大噪声谱密度CBM27A . . . 3.9 nV/√Hz @ 1 kHz Max CBM27G . . . 5.0 nV/√Hz @ 1 kHz Max ● 低输入失调电压CBM27A . . . 26 μV Max CBM27G . . . 100 μV Max ● 低输入失调电压漂移CBM27A . . . 0.2 μV/°C CBM27G . . . 0.4 μV/°C● 电力采集应用系统● 高精密数据采集系统 ● 自动化测试设备(ATE )● 音频前置放大器 ● 仪器仪表CBM27提供低电平信号出色的低噪声和高精度放大性能。

产品广泛应用于稳定的积分器、精密求和放大器、精密电压阈值检测器、比较器和专业音频电路,如磁头和麦克风前置放大器。

失调电压低至26 μV ,漂移为0.2 μV/°C ,因而该器件是精密仪器仪表应用的理想之选。

极低噪声(10 Hz 时en=3.5nV/√Hz ), 低1/f 噪声转折频率(2.7Hz)以及高增益(1800V/mV),能够使低电平信号得到精确的高增益放大。

8 MHz 增益带宽积和2.8 V/µs 压摆率则可以在高速数据采集系统中实现出色的动态精度。

利用偏置电流消除电路,CBM27可实现±10nA 的低输入偏置电流。

输出级具有良好的负载驱动能力。

LMH6626中文资料

LMH6626中文资料

LMH6624/LMH6626Single/Dual Ultra Low Noise Wideband OperationalAmplifierGeneral DescriptionThe LMH6624/LMH6626offer wide bandwidth(1.5GHz forsingle,1.3GHz for dual)with very low input noise(0.92nV/,2.3pA/)and ultra low dc errors(100µV V OS,±0.1µV/˚C drift)providing very precise operational amplifierswith wide dynamic range.This enables the user to achieveclosed-loop gains of greater than10,in both inverting andnon-inverting configurations.The LMH6624(single)and LMH6626’s(dual)traditional volt-age feedback topology provide the following benefits:bal-anced inputs,low offset voltage and offset current,very lowoffset drift,81dB open loop gain,95dB common mode rejec-tion ratio,and88dB power supply rejection ratio.The LMH6624/LMH6626operate from±2.5V to±6V indual supply mode and from+5V to+12V in single supplyconfiguration.LMH6624is offered in SOT23-5and SOIC-8packages.The LMH6626is offered in SOIC-8and MSOP-8packages.FeaturesV S=±6V,T A=25˚C,A V=20,(Typical values unlessspecified)n Gain bandwidth(LMH6624) 1.5GHzn Input voltage noise0.92nV/n Input offset voltage(limit over temp)700uVn Slew rate350V/µsn Slew rate(A V=10)400V/µsn HD2@f=10MHz,R L=100Ω−63dBcn HD3@f=10MHz,R L=100Ω−80dBcn Supply voltage range(dual supply)±2.5V to±6Vn Supply voltage range(single supply)+5V to+12Vn Improved replacement for the CLC425(LMH6624)n Stable for closed loop|A V|≥10Applicationsn Instrumentation sense amplifiersn Ultrasound pre-ampsn Magnetic tape&disk pre-ampsn Wide band active filtersn Professional Audio Systemsn Opto-electronicsn Medical diagnostic systemsConnection Diagrams5-Pin SOT238−Pin SOIC8−Pin SOIC/MSOP20058951Top View20058952Top View20058961Top ViewSeptember2005LMH6624/LMH6626Single/DualUltraLowNoiseWidebandOperationalAmplifier ©2005National Semiconductor Corporation Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.ESD Tolerance Human Body Model 2000V (Note 2)Machine Model 200V (Note 9)V IN Differential±1.2VSupply Voltage (V +-V −)13.2VVoltage at Input pins V ++0.5V,V −−0.5VSoldering InformationInfrared or Convection (20sec.)235˚CWave Soldering (10sec.)260˚CStorage Temperature Range−65˚C to +150˚CJunction Temperature (Note 3),(Note 4)+150˚COperating Ratings (Note 1)Operating Temperature Range (Note 3),(Note 4)−40˚C to +125˚CPackage Thermal Resistance (θJA )(Note 4)SOIC-8166˚C/W SOT23–5265˚C/W MSOP-8235˚C/W±2.5V Electrical CharacteristicsUnless otherwise specified,all limits guaranteed at T A =25˚C,V +=2.5V,V −=−2.5V,V CM =0V,A V =+20,R F =500Ω,R L =100Ω.Boldface limits apply at the temperature extremes.See (Note 12).SymbolParameterConditionsMin (Note 6)Typ (Note 5)Max (Note 6)UnitsDynamic Performance f CL −3dB BW V O =400mV PP (LMH6624)90MHzV O =400mV PP (LMH6626)80SRSlew Rate(Note 8)V O =2V PP ,A V =+20(LMH6624)300V/µsV O =2V PP ,A V =+20(LMH6626)290V O =2V PP ,A V =+10(LMH6624)360V O =2V PP ,A V =+10(LMH6626)340t r Rise Time V O =400mV Step,10%to 90% 4.1ns t f Fall TimeV O =400mV Step,10%to 90% 4.1ns t s Settling Time 0.1%V O =2V PP (Step)20ns Distortion and Noise Responsee n Input Referred Voltage Noisef =1MHz (LMH6624)0.92nV/f =1MHz (LMH6626) 1.0i n Input Referred Current Noise f =1MHz (LMH6624) 2.3pA/f =1MHz (LMH6626)1.8HD22nd Harmonic Distortion f C =10MHz,V O =1V PP ,R L 100Ω−60dBc HD33rd Harmonic Distortion f C =10MHz,V O =1V PP ,R L 100Ω−76dBc Input CharacteristicsV OSInput Offset Voltage V CM =0V −0.75−0.95−0.25+0.75+0.95mV Average Drift (Note 7)V CM =0V ±0.25µV/˚C I OSInput Offset Current V CM =0V −1.5−2.0−0.05+1.5+2.0µA Average Drift (Note 7)V CM =0V 2nA/˚C I BInput Bias Current V CM =0V 13+20+25µA Average Drift (Note 7)V CM =0V 12nA/˚C R IN Input Resistance (Note 10)Common Mode 6.6M ΩDifferential Mode 4.6k ΩC IN Input Capacitance (Note 10)Common Mode 0.9pFDifferential Mode 2.0CMRRCommon Mode Rejection RatioInput Referred,dB V CM =−0.5to +1.9V V CM =−0.5to +1.75V878590L M H 6624/L M H 6626 2±2.5V Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed at T A =25˚C,V +=2.5V,V −=−2.5V,V CM =0V,A V =+20,R F =500Ω,R L =100Ω.Boldface limits apply at the temperature extremes.See (Note 12).SymbolParameterConditionsMin (Note 6)Typ (Note 5)Max (Note 6)UnitsTransfer Characteristics A VOLLarge Signal Voltage Gain(LMH6624)R L =100Ω,V O =−1V to +1V 757079dB(LMH6626)R L =100Ω,V O =−1V to +1V726779X t Crosstalk Rejection f =1MHz (LMH6626)−75dBOutput CharacteristicsV OOutput SwingR L =100Ω±1.1±1.0±1.5VNo Load±1.4±1.25±1.7R O Output Impedancef ≤100KHz10m ΩI SCOutput Short Circuit Current(LMH6624)Sourcing to Ground∆V IN =200mV (Note 3),(Note 11)9075145mA(LMH6624)Sinking to Ground∆V IN =−200mV (Note 3),(Note 11)9075145(LMH6626)Sourcing to Ground∆V IN =200mV (Note 3),(Note 11)6050120(LMH6626)Sinking to Ground∆V IN =−200mV (Note 3),(Note 11)6050120I OUTOutput Current(LMH6624)Sourcing,V O =+0.8V Sinking,V O =−0.8V 100mA(LMH6626)Sourcing,V O =+0.8V Sinking,V O =−0.8V75Power Supply PSRR Power Supply Rejection Ratio V S =±2.0V to ±3.0V 828090dB I SSupply Current (per channel)No Load11.41618mA±6V Electrical CharacteristicsUnless otherwise specified,all limits guaranteed at T A =25˚C,V +=6V,V −=−6V,V CM =0V,A V =+20,R F =500Ω,R L =100Ω.Boldface limits apply at the temperature extremes.See (Note 12).SymbolParameterConditionsMin (Note 6)Typ (Note 5)Max (Note 6)UnitsDynamic Performance f CL −3dB BWV O =400mV PP (LMH6624)95MHzV O =400mV PP (LMH6626)85SRSlew Rate (Note 8)V O =2V PP ,A V =+20(LMH6624)350V/µsV O =2V PP ,A V =+20(LMH6626)320V O =2V PP ,A V =+10(LMH6624)400V O =2V PP ,A V =+10(LMH6626)360t rRise TimeV O =400mV Step,10%to 90%3.7nsLMH6624/LMH66263±6V Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed at T A =25˚C,V +=6V,V −=−6V,V CM =0V,A V =+20,R F =500Ω,R L =100Ω.Boldface limits apply at the temperature extremes.See (Note 12).Symbol ParameterConditionsMin (Note 6)Typ (Note 5)Max (Note 6)Units t f Fall TimeV O =400mV Step,10%to 90% 3.7ns t s Settling Time 0.1%V O =2V PP (Step)18nsDistortion and Noise Responsee n Input Referred Voltage Noisef =1MHz (LMH6624)0.92nV/f =1MHz (LMH6626) 1.0i n Input Referred Current Noise f =1MHz (LMH6624) 2.3pA/f =1MHz (LMH6626)1.8HD22nd Harmonic Distortion f C =10MHz,V O =1V PP ,R L 100Ω−63dBc HD33rd Harmonic Distortion f C =10MHz,V O =1V PP ,R L 100Ω−80dBcInput CharacteristicsV OSInput Offset Voltage V CM =0V −0.5−0.7±0.10+0.5+0.7mV Average Drift (Note 7)V CM =0V ±0.2µV/˚C I OSInput Offset Current Average Drift (Note 7)(LMH6624)V CM =0V −1.1−2.50.05 1.12.5µA(LMH6626)V CM =0V −2.0−2.50.1 2.02.5V CM =0V0.7nA/˚CI BInput Bias Current V CM =0V 13+20+25µA Average Drift (Note 7)V CM =0V 12nA/˚C R IN Input Resistance (Note 10)Common Mode 6.6M ΩDifferential Mode 4.6k ΩC IN Input Capacitance (Note 10)Common Mode 0.9pF Differential Mode 2.0CMRRCommon Mode Rejection RatioInput Referred,dBV CM =−4.5to +5.25V V CM =−4.5to +5.0V 908795Transfer Characteristics A VOLLarge Signal Voltage Gain(LMH6624)R L =100Ω,V O =−3V to +3V 777281dB(LMH6626)R L =100Ω,V O =−3V to +3V747080X t Crosstalk Rejection f =1MHz (LMH6626)−75dBOutput CharacteristicsV OOutput Swing(LMH6624)R L =100Ω±4.4±4.3±4.9V(LMH6624)No Load ±4.8±4.65±5.2(LMH6626)R L =100Ω±4.3±4.2±4.8(LMH6626)No Load±4.8±4.65±5.2R OOutput Impedance f ≤100KHz10m ΩL M H 6624/L M H 6626 4±6V Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed at T A=25˚C,V+=6V,V−=−6V,V CM=0V,A V=+20,R F=500Ω,R L= 100Ω.Boldface limits apply at the temperature extremes.See(Note12).Symbol Parameter Conditions Min(Note6)Typ(Note5)Max(Note6)UnitsI SC Output Short Circuit Current(LMH6624)Sourcing to Ground∆V IN=200mV(Note3),(Note11)10085156mA(LMH6624)Sinking to Ground∆V IN=−200mV(Note3),(Note11)10085156(LMH6626)Sourcing to Ground∆V IN=200mV(Note3),(Note11)6555120(LMH6626)Sinking to Ground∆V IN=−200mV(Note3),(Note11)6555120I OUT Output Current(LMH6624)Sourcing,V O=+4.3VSinking,V O=−4.3V 100mA(LMH6626)Sourcing,V O=+4.3VSinking,V O=−4.3V80Power SupplyPSRR Power Supply Rejection Ratio V S=±5.4V to±6.6V828088dBI S Supply Current(per channel)No Load121618mANote1:Absolute maximum ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is intended to be functional,but specific performance is not guaranteed.For guaranteed specifications and the test conditions,see the Electrical Characteristics.Note2:Human body model,1.5kΩin series with100pF.Note3:Applies to both single-supply and split-supply operation.Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of150˚C.Note4:The maximum power dissipation is a function of T J(MAX),θJA,and T A.The maximum allowable power dissipation at any ambient temperature is P D=(T J(MAX)-T A)/θJA.All numbers apply for packages soldered directly onto a PC board.Note5:Typical Values represent the most likely parametric norm.Note6:All limits are guaranteed by testing or statistical analysis.Note7:Average drift is determined by dividing the change in parameter at temperature extremes into the total temperature change.Note8:Slew rate is the slowest of the rising and falling slew rates.Note9:Machine Model,0Ωin series with200pF.Note10:Simulation results.Note11:Short circuit test is a momentary test.Output short circuit duration is1.5ms.Note12:Electrical table values apply only for factory testing conditions at the temperature indicated.Factory testing conditions result in very limited self-heating ofthe device such that T J=T A.No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T J>T A.Absolute maximum ratings indicate junction temperature limits beyond which the device may be permanently degraded,either mechanically or electrically. Ordering InformationPackage Part Number Package Marking Transport Media NSC Drawing SOT23-5LMH6624MF A94A1k Units Tape and Reel MF05ALMH6624MFX3k Units Tape and ReelSOIC-8LMH6624MA LMH6624MA95Units/Rail M08ALMH6624MAX 2.5k Units Tape and ReelSOIC-8LMH6626MA LMH6626MA95Units/Rail M08ALMH6626MAX 2.5k Units Tape and ReelMSOP-8LMH6626MM A98A1k Units Tape and Reel MUA08ALMH6626MMX 3.5k Units Tape and ReelLMH6624/LMH66265Typical Performance CharacteristicsVoltage Noise vs.FrequencyCurrent Noise vs.Frequency2005896220058963Inverting Frequency Response Inverting Frequency Response2005898920058988Non-Inverting Frequency Response Non-Inverting Frequency Response2005890420058903L M H 6624/L M H 6626 6Typical Performance Characteristics(Continued)Open Loop Frequency Response Over TemperatureOpen Loop Frequency Response Over Temperature2005896620058964Frequency Response with Cap.Loading Frequency Response with Cap.Loading2005898420058986Frequency Response with Cap.Loading Frequency Response with Cap.Loading2005898720058985LMH6624/LMH66267Typical Performance Characteristics(Continued)Non-Inverting Frequency Response Varying V INNon-Inverting Frequency Response Varying V IN2005890620058905Non-Inverting Frequency Response Varying V IN(LMH6624)Non-Inverting Frequency Response Varying V IN(LMH6626)2005890820058981Non-Inverting Frequency Response Varying V IN(LMH6624)Non-Inverting Frequency Response Varying V IN(LMH6626)2005890720058980L M H 6624/L M H 6626 8Typical Performance Characteristics(Continued)Sourcing Current vs.V OUT (LMH6624)Sourcing Current vs.V OUT (LMH6626)2005895720058972Sourcing Current vs.V OUT (LMH6624)Sourcing Current vs.V OUT (LMH6626)2005895420058969V OS vs.V SUPPLY (LMH6624)V OS vs.V SUPPLY (LMH6626)2005896720058968LMH6624/LMH66269Typical Performance Characteristics(Continued)Sinking Current vs.V OUT (LMH6624)Sinking Current vs.V OUT (LMH6626)2005895820058971Sinking Current vs.V OUT (LMH6624)Sinking Current vs.V OUT (LMH6626)2005895620058970I OS vs.V SUPPLYCrosstalk Rejection vs.Frequency (LMH6626)2005895320058979L M H 6624/L M H 6626 10Typical Performance Characteristics(Continued)Distortion vs.FrequencyDistortion vs.Frequency2005894420058946Distortion vs.Frequency Distortion vs.Gain2005894520058978Distortion vs.V OUT Peak to Peak Distortion vs.V OUT Peak to Peak2005894320058977LMH6624/LMH662611Typical Performance Characteristics(Continued)Non-Inverting Large Signal Pulse ResponseNon-Inverting Large Signal Pulse Response2005897320058974Non-Inverting Small Signal Pulse Response Non-Inverting Small Signal Pulse Response2005897520058976PSRR vs.Frequency PSRR vs.Frequency2005894820058949L M H 6624/L M H 6626 12Typical Performance Characteristics(Continued)Input Referred CMRR vs.FrequencyInput Referred CMRR vs.Frequency2005890120058902Amplifier Peaking with Varying R F Amplifier Peaking with Varying R F2005898320058982LMH6624/LMH662613Application SectionINTRODUCTIONThe LMH6624/LMH6626are very wide gain bandwidth,ultra low noise voltage feedback operational amplifiers.Their ex-cellent performances enable applications such as medical diagnostic ultrasound,magnetic tape &disk storage and fiber-optics to achieve maximum high frequency signal-to-noise ratios.The set of characteristic plots in the "Typical Performance"section illustrates many of the performance trade offs.The following discussion will enable the proper selection of external components to achieve optimum sys-tem performance.BIAS CURRENT CANCELLATIONTo cancel the bias current errors of the non-inverting con-figuration,the parallel combination of the gain setting (R g )and feedback (R f )resistors should equal the equivalent source resistance (R seq )as defined in Figure bining this constraint with the non-inverting gain equation also seen in Figure 1,allows both R f and R g to be determined explicitly from the following equations:R f =A V R seq and R g =R f /(A V -1)When driven from a 0Ωsource,such as the output of an op amp,the non-inverting input of the LMH6624/LMH6626should be isolated with at least a 25Ωseries resistor.As seen in Figure 2,bias current cancellation is accom-plished for the inverting configuration by placing a resistor (R b )on the non-inverting input equal in value to the resis-tance seen by the inverting input (R f ||(R g +R s )).R b should to be no less than 25Ωfor optimum LMH6624/LMH6626per-formance.A shunt capacitor can minimize the additional noise of R b .TOTAL INPUT NOISE vs.SOURCE RESISTANCE To determine maximum signal-to-noise ratios from the LMH6624/LMH6626,an understanding of the interaction be-tween the amplifier’s intrinsic noise sources and the noise arising from its external resistors is necessary.Figure 3describes the noise model for the non-inverting amplifier configuration showing all noise sources.In addition to the intrinsic input voltage noise (e n )and current noise (i n =i n +=i n −)source,there is also thermal voltage noise (e t =√(4KTR))associated with each of the external resistors.Equation 1provides the general form for total equivalent input voltage noise density (e ni ).Equation 2is a simplifica-tion of Equation 1that assumes20058918FIGURE 1.Non-Inverting Amplifier Configuration 20058919FIGURE 2.Inverting Amplifier Configuration 20058920FIGURE 3.Non-Inverting Amplifier Noise ModelL M H 6624/L M H 6626 14Application Section(Continued)(1)R f||R g=R seq for bias current cancellation.Figure4illustratesthe equivalent noise model using this assumption.Figure5is a plot of e ni against equivalent source resistance(R seq)with all of the contributing voltage noise source of Equation2.This plot gives the expected e ni for a given(R seq)whichassumes R f||R g=R seq for bias current cancellation.The totalequivalent output voltage noise(e no)is e ni*A V.(2)As seen in Figure5,e ni is dominated by the intrinsic voltagenoise(e n)of the amplifier for equivalent source resistancesbelow33.5Ω.Between33.5Ωand6.43kΩ,e ni is dominatedby the thermal noise(e t=√(4kT(2R seq))of the externalresistor.Above6.43kΩ,e ni is dominated by the amplifier’scurrent noise(i n=√(2)i n R seq).When R seq=464Ω(ie.,e n/√(2)i n)the contribution from voltage noise and currentnoise of LMH6624/LMH6626is equal..For example,config-ured with a gain of+20V/V giving a−3dB of90MHz anddriven from R seq=25Ω,the LMH6624produces a totalequivalent input noise voltage(e ni x 1.57*90MHz)of16.5µV rms.If bias current cancellation is not a requirement,then R f||R gneed not equal R seq.In this case,according to Equation1,R f||R g should be as low as possible to minimize noise.Results similar to Equation1are obtained for the invertingconfiguration of Figure2if R seq is replaced by R b and R g isreplaced by R g+R s.With these substitutions,Equation1willyield an e ni referred to the non-inverting input.Referring e nito the inverting input is easily accomplished by multiplyinge ni by the ratio of non-inverting to inverting gains.NOISE FIGURENoise Figure(NF)is a measure of the noise degradationcaused by an amplifier.(3)The Noise Figure formula is shown in Equation3.The addi-tion of a terminating resistor R T,reduces the external ther-mal noise but increases the resulting NF.The NF is in-creased because R T reduces the input signal amplitude thusreducing the input SNR.(4)The noise figure is related to the equivalent source resis-tance(R seq)and the parallel combination of R f and R g.Tominimize noise figure.•Minimize R f||R g•Choose the Optimum R S(R OPT)R OPT is the point at which the NF curve reaches a minimumand is approximated by:R OPT≈e n/i nSINGLE SUPPLY OPERATIONThe LMH6624/LMH6626can be operated with single powersupply as shown in Figure6.Both the input and output arecapacitively coupled to set the DC operating point.LOW NOISE TRANSIMPEDANCE AMPLIFIERFigure7implements a low-noise transimpedance amplifiercommonly used with photo-diodes.The transimpedancegain is set by R f.Equation4provides the total input current20058921FIGURE4.Noise Model with R f||R g=R seq20058922FIGURE5.Voltage Noise Density vs.SourceResistance20058926FIGURE6.Single Supply OperationLMH6624/LMH662615Application Section(Continued)noise density (i ni )equation for the basic transimpedance configuration and is plotted against feedback resistance (R f )showing all contributing noise sources in Figure 8.This plot indicates the expected total equivalent input current noise density (i ni )for a given feedback resistance (R f ).The total equivalent output voltage noise density (e no )is i ni *R f .(5)LOW NOISE INTEGRATORThe LMH6624/LMH6626implement a deBoo integrator shown in Figure 9.Positive feedback maintains integration linearity.The LMH6624/LMH6626’s low input offset voltage and matched inputs allow bias current cancellation and pro-vide for very precise integration.Keeping R G and R S low helps maintain dynamic stability.HIGH-GAIN SALLEN-KEY ACTIVE FILTERSThe LMH6624/LMH6626are well suited for high gain Sallen-Key type of active filters.Figure 10shows the 2nd order Sallen-Key low pass filter ing component predis-tortion methods discussed in OA-21enables the proper selection of components for these high-frequency filters.LOW NOISE MAGNETIC MEDIA EQUALIZERThe LMH6624/LMH6626implement a high-performance low noise equalizer for such application as magnetic tape chan-nels as shown in Figure 11.The circuit combines an integra-tor with a bandpass filter to produce the low noise equaliza-tion.The circuit’s simulated frequency response is illustrated in Figure 12.20058927FIGURE 7.Transimpedance Amplifier Configuration20058928FIGURE 8.Current Noise Density vs.FeedbackResistance20058929FIGURE 9.Low Noise Integrator20058930FIGURE 10.Sallen-Key Active Filter Topology L M H 6624/L M H 6626 16Application Section(Continued)LAYOUT CONSIDERATIONNational Semiconductor suggests the copper patterns on the evaluation boards listed below as a guide for high frequency layout.These boards are also useful as an aid in device testing and characterization.As is the case with all high-speed amplifiers,accepted-practice RF design technique onthe PCB layout is mandatory.Generally,a good high fre-quency layout exhibits a separation of power supply and ground traces from the inverting input and output pins.Para-sitic capacitances between these nodes and ground may cause frequency response peaking and possible circuit os-cillations (see Application Note OA-15for more information).Use high quality chip capacitors with values in the range of 1000pF to 0.1F for power supply bypassing.One terminal of each chip capacitor is connected to the ground plane and the other terminal is connected to a point that is as close as possible to each supply pin as allowed by the manufacturer’s design rules.In addition,connect a tantalum capacitor with a value between 4.7µF and 10µF in parallel with the chip capacitor.Signal lines connecting the feedback and gain resistors should be as short as possible to minimize induc-tance and microstrip line effect.Place input and output ter-mination resistors as close as possible to the input/output pins.Traces greater than 1inch in length should be imped-ance matched to the corresponding load termination.Symmetry between the positive and negative paths in the layout of differential circuitry should be maintained to mini-mize the imbalance of amplitude and phase of the differential signal.These free evaluation boards are shipped when a device sample request is placed with National Semiconductor.Component value selection is another important parameter in working with high speed/high performance amplifiers.Choosing external resistors that are large in value compared to the value of other critical components will affect the closed loop behavior of the stage because of the interaction of these resistors with parasitic capacitances.These parasitic capacitors could either be inherent to the device or be a by-product of the board layout and component placement.Moreover,a large resistor will also add more thermal noise to the signal path.Either way,keeping the resistor values low will diminish this interaction.On the other hand,choosing very low value resistors could load down nodes and will contribute to higher overall power dissipation and high dis-tortion.DevicePackage Evaluation Board Part Number LMH6624MF SOT23–5CLC730216LMH6624MA SOIC-8CLC730227LMH6626MA SOIC-8CLC730036LMH6626MMMSOP-8CLC73012320058931FIGURE 11.Noise Magnetic Media Equalizer20058932FIGURE 12.Equalizer Frequency Response LMH6624/LMH662617Physical Dimensionsinches (millimeters)unless otherwise noted5-Pin SOT23NS Package Number MF05A8-Pin SOICNS Package Number M08AL M H 6624/L M H 6626 18Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)8-Pin MSOPNS Package Number MUA08ANational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.For the most current product information visit us at .LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no ‘‘Banned Substances’’as defined in CSP-9-111S2.Leadfree products are RoHS compliant.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560LMH6624/LMH6626Single/Dual Ultra Low Noise Wideband Operational Amplifier。

3GHz-5GHz超宽带噪声系数稳定的低噪声放大器

3GHz-5GHz超宽带噪声系数稳定的低噪声放大器

3 GHz  ̄5 GHz UW B L NA wi t h s t e a d y n o i s e i f g u r e
Wa n g Ni n g z h a n g, Ga o Ya, Ni n g J i , Xu Hu i
( S c h o o l o f C o mp u t e r a n d El e c t r o n i c s& I n f o r ma t i o n, Gu a n g x i U n i v e r s i t y, Na n n i n g 5 3 0 0 0 4, Ch i n a)
Ab s t r a c t : An u l t r a —w i d e b a n d L NA c i r c u i t wi t h c a s c a d e s t r u c t u r e a n d s o u r c e n e g a t i v e f e e d b a c k i n d u c t a n c e i s i n t r o d u c e d i n t h i s p a p e r .I t i s c o mb i n e d w i t h B u t t e r wo r t h i f h e r t h e o r y, w h i c h i s u s e d t o a c h i e v e i n p u t a n d o u t p u t ma t c h i n g n e t w o r k o f a mp l i i f e r .An d t h e p a p e r p r e s e n t s t h e d e t a i l e d a n a l y s i s o f t h e c i r c u i t n o i s e f i g u r e .T h i s c i r c u i t b a s e d o n 0. 1 8 u m CMOS t e c h n o l o g y i s s i mu l a t e d

2~4 GHz波段低噪声放大器的仿真设计

2~4 GHz波段低噪声放大器的仿真设计

2~4GHz 波段低噪声放大器的仿真设计赵玉胜(电子科技大学物理电子学院,四川成都610054)摘要:利用pHEMT 工艺设计了一个2~4GHz 宽带微波单片低噪声放大器电路。

本设计中采用了具有低噪声、较高关联增益、pHEMT 技术设计的ATF-54143晶体管,电路采用二级级联放大的结构形式,利用微带电路实现输入输出和级间匹配,通过ADS 软件提供的功能模块和优化环境对电路增益、噪声系数、驻波比、稳定系数等特性进行了研究设计,最终使得该LNA 在2~4GHz 波段内增益大于20dB ,噪声小于1.2dB ,输出电压驻波比小于2,达到了设计指标的要求。

关键词:低噪声放大器;负反馈网络;pHEMT ;ADS 仿真中图分类号:TN722.3文献标识码:A文章编号:1674-6236(2012)23-0190-03Simulation and design of 2~4GHz low -noise amplifierZHAO Yu -sheng(Institute of Physical Electronics ,UESTC ,Chengdu 610054,China )Abstract:Based on the LNA with excellent performance from 2GHz to 4GHz band purpose ,this design uses a low -noise ,high associated gain ,PHEMT technology designed ATF -54143transistor ,the circuit is presented with two cascade structureform ,microstrip circuit is used to complete the input ,output and interstage matching ,through the functionality modules and optimizing environment provided by ADS software ,the circuit gain ,noise figure ,VSWR ,stability factor and other characteristics are studied ,ultimately from 2GHz to 4GHz band the LNA gain is greater than 20dB ,the noise is less than 1.2dB ,input and output VSWR is less than 2,and all factors meet the design requirements.Key words:low -noise amplifier ;negative feedback network ;HEMT ;ADS simulation and optimization收稿日期:2012-08-19稿件编号:201208085作者简介:赵玉胜(1987—),男,山东临沂人,硕士研究生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[超低噪声宽带运算放大器LMH6624]
LMH6624是美国国家半导体公司推出的一种超低噪声宽带运算放大器IC,超低噪声宽带运算放大器LMH6624。

该器件的主要应用领域包括仪器传感器放大器、超声预放大器、磁带与磁盘前置放大器、宽带有源滤波器、专业音频系统、光纤放大器及医疗诊断系统等。

1主要性能参数
LMH6624是经改进的CLC425的替代器件,其主要性能与特点如下:
●噪声极低;
●使用±2.5~±6V双电源或5~12V单电源工作,在VS为±2.5V时的电源抑制比(PSRR)典型值为90dB,无载电源电流(Is)典型值是11.4mA;
●增益带宽(GBW)达1.5GHz,输入电压噪声低至0.92nV√Hz,输入电流噪声 in 典型值为2.3pA√Hz;
●在电源电压VS为±6V时,输入失调电压VOS为±0.1mV 温度漂移为±0.1μV/℃ ,输入失调电流IOS典型值为0.05μA 温度漂移为0.7nA/℃ ;
●开环增益为81dB 典型值 时,共模抑制比 CMRR 达95dB,压摆率 SR 为350V/μs;
●输出电压摆幅在VS为±6V下的典型值为±4.9V,输出电流典型值是100mA,输出短路电流为156mA;
●采用8引脚SOIC或5引脚SOT23封装,引脚排列分别如图1(a)和图1(b)所示,电子通信论文《超低噪声宽带运算放大器LMH6624》。

◆分享好文◆
2应用简介
2.1在较低增益(AV<10V/V)下的补偿
在较低的增益下使用LMH6624时,应在其外部进行补偿。

对于同相放大器电路,可以在反馈电阻Rf两端并联一只适当的电容Cf,如图2所示。

设置补偿电容Cf能使频率响应削减至1dB以下。

2.2单电源工作电路
LMH6624的单电源工作电路如图3所示。

放大器的输入和输出都采用电容耦合来设置DC增益。

IC同相输入端上的DC电压为Vcc/2,输出端电压为:VOUT=Vcc/2+AvVAC。

2.3低噪声跨导放大电路
LMH6624组成的低噪声跨导 transimpedance 放大电路如图4所示。

在放大器反相输入端上,通常连接一只光电二极管。

这种放大器的总输入电流噪声密度ini可由下式确定:[1][2]。

相关文档
最新文档