单级倒立摆的模糊控制及仿真

合集下载

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告一、实验目的本实验旨在通过模糊控制方法来控制一阶倒立摆系统,实现摆杆保持竖直的稳定控制。

二、实验原理1. 一阶倒立摆系统一阶倒立摆系统由一个垂直的支撑杆和一个在杆顶端垂直摆动的杆组成。

系统的输入为杆的控制力矩,输出为杆的角度。

系统的动力学方程可以表示为:Iθ''(t) + bθ'(t) + mgl sin(θ(t)) = u(t)其中,I为倒立摆的转动惯量,b为摩擦阻尼系数,θ为倒立摆的角度,m为倒立摆的质量,l为杆的长度,g为重力加速度,u为输入的控制力矩。

2. 模糊控制方法模糊控制方法是一种基于模糊逻辑的控制方法,通过将模糊集合与模糊规则相结合,构建模糊控制器来实现对系统的控制。

在本实验中,可以使用模糊控制器来实现倒立摆系统的稳定控制。

三、实验步骤1. 搭建实验平台,包括倒立摆系统、传感器和执行器。

2. 训练模糊控制器a. 定义模糊集合:根据角度误差和角速度误差定义模糊集合,并确定模糊集合的划分方式。

b. 构建模糊规则:根据经验或系统建模,确定模糊规则。

c. 设计模糊控制器:根据模糊集合和模糊规则,设计模糊控制器,包括模糊推理和模糊解模块。

d. 调整模糊控制器参数:根据系统响应实验,根据控制效果调整模糊控制器参数。

3. 实施模糊控制a. 读取传感器数据:获取倒立摆的角度和角速度数据。

b. 计算控制器输出:根据模糊控制器和传感器数据计算控制力矩的输出。

c. 执行控制器输出:将控制力矩作用在倒立摆上。

4. 监测系统响应:实时监测倒立摆的角度和角速度,判断控制效果。

5. 调整模糊控制器参数:根据实验监测结果,调整模糊控制器参数,以提高控制效果。

四、实验结果分析通过实验,我们可以观察到倒立摆系统在模糊控制下的稳定控制效果。

通过实时监测倒立摆的角度和角速度,可以验证控制器的性能。

实验结果可以通过绘制控制力矩输入和倒立摆角度响应曲线,以及观察系统的稳态误差来分析。

一级倒立摆的模糊控制系统设计毕业论文

一级倒立摆的模糊控制系统设计毕业论文

2.1
图2-1倒立摆结构
在考虑空气流动、小车与导轨之间的摩擦力对倒立摆的影响之后,可将倒立摆抽象成小车和匀质杆,如图2–2所示。图2–2是系统中小车和摆竿的受力分析图,其中N 和P分别为小车和摆竿相互作用力的水平和垂直方向的分量。要求摆角的摆动不超过0.35rad。
表2-1 一级倒立摆系统参数
符号
1.4本论文的主要工作
本论文简单介绍倒立摆系统控制发展过程和国外发展现状;研究了一级倒立摆数学模型的建立;并用牛顿定律推导了倒立摆的数学模型。运用模糊控制的控制方法对倒立摆系统进行研究,并借助MATLAB语言以及SIMULINK进行仿真,在做了大量仿真研究工作的基础上,进行了硬件的调试,软件的编写和调试,对倒立摆控制中遇到的问题进行分析和讨论[8]。
意 义
实际数值
M
小车质量
1.096 kg
m
摆竿质量
0.109 kg
b
小车的摩擦系数
50N/S
l
摆杆转动轴心到杆质心的长度
0.25 m
I
摆杆惯量
0.0034 kg*m*m
F
加在小车上的力
X
小车位置
小车速度
摆杆与垂直向上方向的夹角
图2-2 小车与倒立摆受力分析图
应用牛顿力学进行受力分析,小车在水平方向的受力情况是
(2–6)
设 ( 是摆杆与垂直向上方向之间的夹角),假设 与1(单位是弧度)相比很小,即 ≤1,则可以进行近似处理: , 。
用u来代表被控对象的输入力F,线性化后两个运动方对方程组(2–7)进行拉普拉斯变换,得到
(2–8)
注意:推导传递函数时假设初始条件为0。
由于输出是角度 ,求解方程组(2–8)的第一个方程,可以得到

单级倒立摆及其控制系统的研究和图形化仿真

单级倒立摆及其控制系统的研究和图形化仿真

������
B
A
������
图 1 倒立摆的物理模型
控制倒立摆的目的是使摆杆不到,滑块不动,即 为 0 且 不随时间变化。这里,控 制量被定义为作用在滑块 A 上沿 方向的力 。
根据以上物理模型得到系统的动力学方程:
(
)
将滑块速度 和摆杆角速度 分别定义为:
若控制作用 恒为 0,则由动力学方程可知,倒立摆是非线性自治系统。该系统的状
参考文献
1. 施颂椒, 陈学中, 杜秀华. 现代控制理论基础. 北京:高等教育出版社, 2005 2. 刘崇新. 非线性电路理论及应用. 西安:西安交通大学出版社, 2007
3.2. 碰撞过程
定义:设物体 A 与物体 B 以一定相对速率碰撞,碰撞前后,撞击点切面法线方向上的速 率分量分别为 和 ,则物体 A 与物体 B 之间的碰撞分离率 被定义为:
显然,碰撞分离率 与物体 A 和 B 的材质有关,其取值范围为 [ ],当
生完全弹性碰撞,当
则发生完全非弹性碰撞。
则发
设墙壁与滑块之间的碰撞分离率为 速度 撞击墙壁后,将以速度 击地面后,将以角速度
4. 镇定控制
倒立摆接近平衡状态
时,有
(
)
,系统动力学方程线性化为
令 [] [ 其特征方程为:

]
[ ⁄ ],系统可用状态空间表示为:
(
)⁄

̇
(
)
令̅
̅
其中
̅
,原状态方程变换为能控标准型:
̅̇ ̅ ̅ ̅


[

⁄]
根据给定的极点位置,可以求得期望的特征方程,形如
能控标准型状态方程的反馈向量为:

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告本次实验旨在研究一阶倒立摆系统的模糊控制方法,通过对系统进行建模、设计控制器并进行仿真,最终评估控制效果。

实验过程主要包括系统建模、控制器设计、模糊控制器参数调节和性能评价四个步骤。

首先,我们对一阶倒立摆系统进行建模。

一阶倒立摆系统是一种具有非线性特性的控制系统,主要由电机、倒立摆、支撑杆等组成。

我们需要建立数学模型描述系统的动力学特性,包括倒立角度、倒立角速度、杆角度等状态变量,并考虑控制输入电压对系统的影响。

接着,我们设计模糊控制器。

模糊控制是一种基于模糊逻辑的控制方法,适用于非线性系统和模糊系统。

我们根据系统模型,设计模糊控制器的模糊规则、隶属函数等参数,以实现系统的稳定控制。

在设计过程中,我们需要考虑系统的性能指标,如超调量、稳态误差等。

第三步是模糊控制器参数调节。

通过仿真实验,我们可以对模糊控制器的参数进行调节,以使系统的性能达到最佳状态。

调节参数的过程需要考虑系统的稳定性、鲁棒性和响应速度,以达到控制效果的要求。

最后,我们对模糊控制系统进行性能评价。

通过对系统的响应曲线、稳定性、控制精度等指标进行分析,评价模糊控制器的控制效果。

我们可以比较模糊控制系统和传统控制系统的性能,探讨模糊控制在一阶倒立摆系统中的优势和局限性。

总的来说,本次实验通过研究一阶倒立摆系统的模糊控制方法,探讨了模糊控制在非线性系统中的应用。

通过实验,我们对模糊控制的基本原理和设计方法有了更深入的理解,同时也对一阶倒立摆系统的控制特性有了更清晰的认识。

希望通过实验的研究,能够为控制系统的设计和应用提供一定的参考和借鉴。

一阶倒立摆模糊控制matlab仿真

一阶倒立摆模糊控制matlab仿真

一阶倒立摆模糊控制仿真实验分析报告%mainclearclose all%load table.matglobal Table;global RULE;global UCenter;global Width;global num;global RuleMatch; %前件匹配方式0 取小;1乘积global Defuzzy; %反模糊化方法0: COG ; 1:COA; 2:MAXglobal g0;global g1;global h;x=[0.4,0,0];RuleMatch = 1; %前件匹配方式0 取小;1乘积Defuzzy = 0;%反模糊化方法0: COG ; 1:COA; 2:MAXg0=1.5;g1=0.1;h=1;% u=0;% Table = u;% [m,n]=size(u);% num = (m-1)/2;%u=[];RULE =[2, 2, 2, 1, 0; ...2, 2, 1, 0,-1;...2, 1, 0,-1,-2;...1, 0,-1,-2,-2;...0,-1,-2,-2,-2];%% RULE =[2,2,1,1,0; ...% 2,1,1,0,-1;...% 1,1,0,-1,-1;...% 1,0,-1,-1,-2;...% 0,-1,-1,-2,-2];RULE=RULE + 3*ones(size(RULE));%原始的%UCenter=[-20,-10,0,10,20];%改进的%UCenter=[-25,-15,0,15,25];UCenter=[-20,-15,0,15,20];Width(1)=(UCenter(5)-UCenter(4))/2;Width(2)=(UCenter(5)-UCenter(3));Width(3)=(UCenter(4)-UCenter(3))*2;Width(4)=Width(2);Width(5)=Width(1);x=x';[t,y]= ode45('P_Pendulum',[0,5],x);% [t,y]= ode45('P_Pendulum_tab',[0,10],x);% y2=y.*y;% inty = intnum(t,y2)%% int_e2 = inty(1)+inty(2);% int_u2 = inty(3);%int_y2 = sum(y.^2);%int_e2 = int_y2(1)+int_y2(2);%int_u2 = int_y2(3);figuresubplot(2,1,1)plot(t,y(:,1 ),'r',t,y(:,2),'k')%xlabel('t(sec)')% str1 = sprintf('x(0)=[%2.2f,%2.2f]',x(1),x(2)); % Title(str1,'Interpreter','latex','fontsize',14)%% str1=sprintf('t(sec)---index:$\\int{e^{T}(t)e(t)dt}=$ %f', int_e2);%str1 = '$\int{e^2}dt$'% text(6,0,str1,'Interpreter','latex','fontsize',14)%% xlabel(str1,'Interpreter','latex','fontsize',14)legend('x1(rad)', 'x2(rad/s)')title('输出隶属函数中心值:[-20,-15,0,15,20]')subplot(2,1,2)plot(t,y(:,3),'r')xlabel('t(sec)')ylabel('u(N)')% str1=sprintf('t(sec)--index:$\\int{u^{2}(t)dt}$= %f', int_u2);% %H = Title(str1,'Interpreter','latex','fontsize',14)% xlabel(str1,'Interpreter','latex','fontsize',14)% inverted pendulum stabilized% program on 2006,10,26function xdot = P_Pendulum(t,x)global RULE;global UCenter;global step;global k;global Kc;global QQ;global Width;global RuleMatch; %前件匹配方式0 取小;1乘积global Defuzzy; %反模糊化方法0: COG ; 1:COA; 2:MAXglobal g0;global g1;global h;M = 1;m =0.5;g = 9.8;l = 0.5;a = 1/(m+M);%计算隶属度mu_e= emembershipdegree(-x(1)*g0);mu_de = demembershipdegree(-x(2)*g1);%pausemu_e_id = find(mu_e>0);mu_de_id = find(mu_de>0);eLen= length(mu_e_id);deLen = length(mu_de_id);mu_pre= zeros(1,4);fuzzy_out = zeros(1,4);weight = zeros(1,4);in =1;%规则匹配for (i=1:eLen)for(j=1:deLen)switch RuleMatchcase 0%前件采用取小推理mu_pre(in)= min(mu_e(mu_e_id(i)),mu_de(mu_de_id(j)));case 1%前件采用乘积推理mu_pre(in)= mu_e(mu_e_id(i))*mu_de(mu_de_id(j));end%计算规则匹配度fuzzy_out(in) = RULE(mu_e_id(i),mu_de_id(j));in=in+1;endendnRule = eLen *deLen;u = 0;summu =0;%反模糊化for(i=1:nRule)switch Defuzzycase 0%按照重心法计算(COG)weight(i)= Width(fuzzy_out(i))*(mu_pre(i)-mu_pre(i)*mu_pre(i)/2);case 1% 按照中心平均法weight(i)=mu_pre(i);case 2% 取大法(大中求中)[max_v,max_id] = max(mu_pre);weight(max_id)=1;endu = weight(i)*UCenter(fuzzy_out(i))+u;summu =summu + weight(i);end%u=0;u=h*u/summu;if (u>20)u=20;endif (u<-20)u=-20;endt% if(t>2.5 && t<2.6 )% u=u+20;% end% if (u>20)% u=20;% end%% if (u<-20)% u=-20;% end% xdot(1)=x(2);% xdot(2)=(g*sin(x(1))-a*m*l*x(2)*x(2)*sin(2*x(1))/2-a*cos(x(1))*x(3))/(4*l/3-a*m*l*cos(x(1))*cos(x(1))); % xdot(3)=-100*x(3)+100*u;% x(3) = u;xdot(1)=x(2);xdot(2)=(g*sin(x(1))-a*m*l*x(2)*x(2)*sin(2*x(1))/2-a*cos(x(1))*x(3))/(4*l/3-a*m*l*cos(x(1))*cos(x(1))); xdot(3)=-100*x(3)+100*u;xdot = xdot';y=zeros(1,5);if (x<= -pi/2)y(1) =1 ;elseif (x<=-pi/4)y(1) = abs(x+pi/4)/(pi/4);y(2) = 1-abs(x+pi/4)/(pi/4); elseif (x<= 0)y(2) = 1-abs(x+pi/4)/(pi/4);y(3) = 1- abs(x)/(pi/4);elseif (x<=pi/4)y(3) = 1- abs(x)/(pi/4);y(4) = 1-abs(x-pi/4)/(pi/4); elseif (x<=pi/2)y(4) = 1-abs(x-pi/4)/(pi/4);y(5) = abs(x-pi/4)/(pi/4);elseif (x>pi/2)y(5) =1;endfunction y = demembershipdegree(x) y=zeros(1,5);if (x<= -pi/4)y(1) =1 ;elseif (x<=-pi/8)y(1) = abs(x+pi/8)/(pi/8);y(2) = 1-abs(x+pi/8)/(pi/8); elseif (x<= 0)y(2) = 1-abs(x+pi/8)/(pi/8);y(3) = 1- abs(x)/(pi/8);elseif (x<=pi/8)y(3) = 1- abs(x)/(pi/8);y(4) = 1-abs(x-pi/8)/(pi/8); elseif (x<=pi/4)y(4) = 1-abs(x-pi/8)/(pi/8);y(5) = abs(x-pi/8)/(pi/8);elseif (x>pi/4)y(5) =1;endy=zeros(1,5); if (x<= -30) y(1) =0 ; elseif (x<=-20)y(1) = 1-abs(x+20)/(10); elseif (x<=-10)y(1) = 1-abs(x+20)/(10); y(2) = 1-abs(x+10)/(10); elseif (x<= 0)y(2) = 1-abs(x+10)/(10); y(3) = 1- abs(x)/(10); elseif (x<=10)y(3) = 1- abs(x)/(10); y(4) = 1-abs(x-10)/(10); elseif (x<=20)y(4) = 1-abs(x-10)/(10); y (5) = 1-abs(x-20)/(10); elseif (x>30) elseif (x<=30)y(5) = 1-abs(x-20)/(10); elseif (x>30) y(5) =0; end不同的推理方式,反模糊化方法初始值:x0=[0.1 0]’t(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )不同的初始条件前件隶属度函数计算方法:乘积模糊蕴含关系计算方法:取小 反模糊化方法:COGt(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )结论:当初始角达到一定程度时,控制力趋向饱和,系统不稳定。

一阶倒立摆控制仿真-论文

一阶倒立摆控制仿真-论文

一阶倒立摆控制仿真摘要:倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,研究倒立摆的精确控制对工业复杂对象的控制有着重要的工程应用价值。

本文对仿真的分类、过程、发展、应用及仿真环境等作了简单的介绍,同时也介绍了倒立摆系统的特性、分类、应用、发展等基本情况。

文中采用牛顿-欧拉方法建立一阶倒立摆的数学模型,对精确模型在工作点附件进行线性化和降价处理,利用固高公司的一阶倒立摆参数,计算出传递函数。

在数学模型的基础上进行了PID 控制的理论分析。

利用MATLAB中的Simulink仿真工具对一阶倒立摆的单回路PID控制进行仿真分析,在仿真中整定出合理的PID参数。

仿真证实,单回路PID控制方案能满足对倒立摆摆杆角度的控制要求。

关键词:倒立摆;PID控制;仿真;MATLAB-Simulink---------Simulation of single inverted pendulum Abstract: The inverted pendulum system is characterized as a fast multi-variable nonlinear essentially unsteady system.The research on precise control of the inverted pendulum is of great practical engineering value for control problems of complicated industrial object.In this paper, the classification, process, development, application of simulation and simulation environment are simply introduced. The basic situation include Characteristics, classification application development and so on of the inverted pendulum system is introduced.This text uses the Newton-the Eule method to establishing the mathematical model of single inverted pendulum, carries on the linearization and fall step processing to the precise model nearby the work-point, uses the parameters of googol’s single inverted pendulum, calculate s its transferred functions. And do theoretical analysis of the PID control based on the mathematical model. This text uses the MA TLAB Simulink simulation tools to do simulation analysis of the single inverted pen dulum’s single loop PID control, collated reasonable PID controlled parameters in simulation. Simulation proves that the single loop PID controlled plans can satisfied to the control of the angle of pendulum rod.Keywords:inverted pendulum; PID control; simulation; MATLAB-Simulink目录1 绪论 (1)1.1 仿真技术的简介 (1)1.1.1 仿真概念 (1)1.1.2 仿真分类 (1)1.1.3 仿真过程 (1)1.1.4 系统建模 (2)1.1.5 模型验证 (2)1.2 倒立摆系统介绍 (3)1.2.1 倒立摆的分类 (3)1.2.2 倒立摆的特性 (4)1.2.3 倒立摆的发展 (5)1.2.4 倒立摆的应用 (5)1.3 本论文研究的主要内容 (6)2 一阶倒立摆系统的建模 (7)2.1 一阶倒立摆的物理模型 (7)2.2 一阶倒立摆的数学模型 (7)2.3 一阶倒立摆的实际模型 (11)3 PID控制器简介 (12)3.1 PID控制原理 (12)3.2 PID控制器的参数整定 (13)4 一阶倒立摆PID控制器系统的仿真研究 (16)4.1 MATLAB/SIMULINK仿真环境 (16)4.2 一阶倒立摆的PID控制理论分析 (17)4.3 一阶倒立摆的PID控制仿真分析 (18)5 结论 (23)致谢 (24)参考文献 (25)1 绪论1.1 仿真技术的简介1.1.1仿真概念自动控制系统是由被控对象、测量变送装置、执行器和控制器所组成,当选定测量变送装置和执行器后,对自动控制系统进行设计和分析研究,也就是对被控对象的动态特性进行分析和研究,然后根据被控对象的动态特性进行控制器的设计,以求获得能满足性能指标要求的最优控制系统。

模糊控制在倒立摆中的MATLAB仿真应用

模糊控制在倒立摆中的MATLAB仿真应用

TAIYUAN UNIVERSITY OF SCIENCE & TECHNOLOGY题目:院(系):专业:学生姓名:学号:模糊控制在倒立摆中的仿真应用1、倒立摆系统简介倒立摆有许多类型,例如图1-1的a和b所示的分别是轮轨式一级倒立摆系统和二级倒立摆系统的模型。

倒立摆是一个典型的快速、多变量、非线性、本质不稳定系统,它对倒置系统的研究在理论上和方法论上具有深远的意义。

对倒立摆的研究可归结为对非线性多变量本质不稳定系统的研究,其控制方法和思路在处理一般工业过程中也有广泛的用途。

近些年来国内外不少专家学者对一级、二级、三级、甚至四级等倒立摆进行了大量的研究,人们试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和本质不稳定系统的控制能力。

2002年8月11日,我国的李洪兴教授在国际上首次成功实现了四级倒立摆实物控制,也标志着我国学者采用自己提出的控制理论完成的一项具有原创性的世界领先水平的重大科研成果。

图1-1 倒立摆模型(a)一级倒立摆模型(b)二级倒立摆模型倒立摆系统可以简单地描述为小车自由地在限定的轨道上左右移动。

小车上的倒立摆一端用铰链安装在小车顶部,另一端可以在小车轨道所在的垂直平面内自由转动,通过电机和皮带传动使小车运动,让倒立摆保持平衡并保持小车不和轨道两端相撞。

在此基础上在摆杆的另一端铰链其它摆杆,可以组成二级、三级倒立摆系统。

该系统是一个多用途的综合性试验装置,它和火箭的飞行及步行机器人的关节运动有许多相似之处,其原理可以用于控制火箭稳定发射、机器人控制等诸多领域。

倒立摆系统控制原理单级倒立摆系统的硬件包括下面几个部分:计算机、运动控制卡、伺服系统、倒立摆和测量元件,由它们组成的一个闭环系统,如图1-2所示,就是单级倒立摆系统的硬件结构图。

图1-2 单级倒立摆硬件结构图通过角度传感器可以测量摆杆的角度,通过位移传感器可以得到小车的位置,然后反馈给运动控制卡,运动控制卡与计算机双向通信。

单级倒立摆的模糊控制应用2

单级倒立摆的模糊控制应用2

单级倒立摆的模糊控制应用摘要:随着被控对象的日趋复杂,对控制性能的要求不断提高,传统控制理论对解决复杂系统无能为力。

该文将人工智能中的模糊控制引入倒立摆控制系统,以提高控制要求,改善控制精度。

通过仿真实验表明这种控制思路是可行的,效果良好。

关键词:倒立摆;模糊控制;模糊推理系统;仿真The applica tion of a fuzzy con trol theory to a single inverted pendulumCHEN J in,QU Cheng2ming, J IANGMing, CHEN Qi2gong (Anhui Provincial Key Laboratory of Electrical Transm ission and Control,Anhui University of Technology and Science, AnhuW uhu 241000, China)Abstract:As the controlled objects become more and more comp lex and the requirement of controlperformance is higher and higher, the conventional control theory is inefficiency. The paper p resents theapp lication of the fuzzy control theory of artificial intelligent to an inverted pendulum control system. It canimp rove the control requrement and accuracy. Simulations show that this control concep tion is p ractical.Key words: inverted pendulum; fuzzy control; F IS; simulation 引言倒立摆系统是一个复杂的非线性系统。

基于极点配置的单级倒立摆t-s模糊控制

基于极点配置的单级倒立摆t-s模糊控制

基于极点配置的单级倒立摆t-s模糊控制
基于极点配置的单级倒立摆T-S模糊控制是一种控制方法,旨在实现单级倒立摆的控制。

T-S模糊控制又称为模糊控制器,是一种具有适应性的控制方法,可以应对非线性系统。

单级倒立摆是指一个质量集中在底部的刚性杆,这个杆可以绕着水平轴旋转,并在其顶端悬挂一个质量。

单级倒立摆是一种经典的非线性控制问题。

极点配置是一种控制系统设计方法,它是基于控制系统的极点位置来调整控制器参数,以达到预期的控制性能。

在基于极点配置的单级倒立摆T-S模糊控制中,控制器的设计包括两个部分。

第一部分是基于极点配置的控制器设计,这个部分主要是确定控制器的极点位置,以实现所需的控制性能。

第二部分是基于T-S模糊控制的控制器设计,这个部分主要是设计模糊规则和隶属函数,以实现在不同状态下的控制。

总体来说,基于极点配置的单级倒立摆T-S模糊控制是一种创新性的控制方法,它可以应对非线性系统的控制问题,并具有良好的控制性能。

一级直线倒立摆系统模糊控制器设计---实验指导书

一级直线倒立摆系统模糊控制器设计---实验指导书

WOIRD格式一级直线倒立摆系统模糊控制器设计实验指导书目录1实验要求.................................................................................................. .. (3)1.1实验准备.................................................................................................. .. (3)1.2评分规则.................................................................................................. .. (3)1.3实验报告内容.................................................................................................. (3)1.4安全注意事项.................................................................................................. (3)2倒立摆实验平台介绍.................................................................................................. (4)2.1硬件组成.................................................................................................. .. (4)2.2软件结构.................................................................................................. .. (4)3倒立摆数学建模(预习内容)................................................................................................ (6)4模糊控制实验.................................................................................................. . (8)4.1模糊控制器设计(预习内容)................................................................................................ . (8)4.2模糊控制器仿真.................................................................................................. . (12)4.3模糊控制器实时控制实验.................................................................................................. (12)5附录:控制理论中常用的MATLAB函数 (13)6参考文献.................................................................................................. (14)21实验要求1.1实验准备实验准备是顺利完成实验内容的必要条件。

单级倒立摆的模糊控制以及在MATLAB中的仿真

单级倒立摆的模糊控制以及在MATLAB中的仿真

单级倒立摆的模糊控制以及在MATLAB中的仿真摘要倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。

因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。

本文围绕一级倒立摆系统,采用模糊控制理论研究倒立摆的控制系统仿真问题。

仿真的成功证明了本文设计的模糊控制器有很好的稳定性。

主要研究工作如下:(1)使用了牛顿力学和Lagrange方程对倒立摆进行数学建模,推导出倒立摆系统传递函数和状态空间方程。

(2)分析了模糊控制理论的数学基础,对模糊控制的方法进行了研究:介绍了模糊子集、模糊关系和模糊推理等相关知识。

(3)介绍了如何利用Simulink建立倒立摆系统模型,特别是利用Mask封装功能,使模型更具灵活性,给仿真带来很大方便。

(4)进行一级倒立摆系统的控制器设计与仿真。

通过matlab的Simulink实现倒立摆模糊控制系统的仿真。

说明仿真结果的趋向。

关键词:倒立摆模糊控制仿真MATLAB第一章绪论1.1 倒立摆系统的重要意义倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。

在控制过程中,它能有效地反映诸如可镇定性、鲁棒性、随动性以及跟踪等许多控制中的关键问题,是检验各种控制理论的理想模型。

迄今人们已经利用经典控制理论、现代控制理论以及各种智能控制理论实现了多种倒立摆系统的控制稳定。

倒立摆主要有:有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆;倒立摆的级数有一级、二级、三级、四级乃至多级;倒立摆的运动轨道可以是水平的,也可以是倾斜的:倒立摆系统己成为控制领域中不可或缺的研究设备和验证各种控制策略有效性的实验平台。

同时倒立摆研究也具有重要的工程背景:如机器人的站立与行走类似双倒立摆系统;火箭等飞行器的飞行过程中,其姿态的调整类似于倒立摆的平衡等等。

基于模糊控制一阶倒立摆控制与仿真

基于模糊控制一阶倒立摆控制与仿真

基于模糊控制一阶倒立摆控制与仿真简介本文将介绍一种基于模糊控制的一阶倒立摆控制方法,并进行仿真实验。

倒立摆是一个常用的控制理论问题,它涉及到控制一个无人机或机器人,使其保持平衡。

模糊控制模糊控制是一种基于模糊逻辑的控制方法。

它通过将输入变量和输出变量模糊化,使用一组模糊规则来产生控制信号,从而实现系统的控制。

在倒立摆控制中,模糊控制可以帮助我们根据当前倾斜角度和角速度来调整控制信号,以使倒立摆保持平衡。

一阶倒立摆模型一阶倒立摆是一个简化的倒立摆模型。

它由一个质点和一个可动的杆组成。

质点位于杆的底部,而杆通过一个铰链连接到一个支撑平面。

倒立摆的目标是使杆保持垂直位置。

模糊控制器设计模糊控制器由三个部分组成:模糊化、模糊推理和解模糊化。

在倒立摆控制中,我们需要模糊化输入变量(倾斜角度和角速度),并定义一组模糊规则来确定控制信号。

然后,通过运用模糊推理,我们可以根据当前的模糊规则和输入变量得到一个模糊输出。

最后,使用解模糊化方法将模糊输出转化为具体的控制信号。

仿真实验为了验证模糊控制方法的有效性,我们进行了一系列的仿真实验。

在实验中,我们使用了一阶倒立摆的数学模型,并将模糊控制器应用于这个模型。

通过调整模糊规则和输入变量,我们可以观察到一阶倒立摆的响应和稳定性。

结论本文介绍了一种基于模糊控制的一阶倒立摆控制方法,并进行了仿真实验。

模糊控制是一种有效的控制方法,可以帮助倒立摆保持平衡。

通过模糊控制器的设计和调整,我们可以实现对倒立摆的精确控制。

在实际应用中,模糊控制还有许多其他的应用领域,具有很高的潜力和发展空间。

参考文献:。

直线一级倒立摆模糊控制算法的设计与仿真

直线一级倒立摆模糊控制算法的设计与仿真

模糊控制算法的设计与仿真4.1 模糊控制理论研究的历史、背景与现状模糊理论是由美国著名控制论学者Lotfi A.Zadeh于1965年在名为“模糊集合”(《Fuzzy sets》)(Zadeh【1965】)的开创性文章中创立的。

Zadeh教授早在20世纪60年代初期认为经典控制论过于强调精确性而无法处理复杂的系统,他认为“在处理生物系统时,需要一种彻底不同的数学——关于模糊量的数学,该数学不能用概率分布来描述”。

后来,他将这些思想正式形成文章“模糊集合”。

模糊理论的大多数基本概念都是由Zadeh在02世纪60年代末07年代初提出来的。

他在1965年提出模糊集合后,又在1968年提出模糊算法的概念(Zadeh【1968】),在1970年提出模糊决策(Bellman和Zadeh【1970】),在1971年提出了模糊排序(Zadeh【1971】)。

1973年他发表了另一篇开创性文章《分析复杂系统和决策过程的新方法纲要》,该文建立了研究模糊控制的基础理论,在引入语言变量这一概念的基础上,提出了用模糊IF-THEN 规则来量化人类知识。

20世纪70年代的一个重大事件就是诞生了处理实际系统的模糊控制器。

在1975年,Mamdani和Assilian 创立了模糊控制器的基本框架,并将模糊控制器用于控制蒸汽机。

他们的研究成果发表在文章《带有模糊逻辑控制器的语言合成实验》(Mamdani和Assilian【1975】)中,这是关于模糊理论的另一篇具有开创性的文章。

他们发现模糊控制器非常易于构造且运作效果较好。

后来,在1978年,Holmblad和Ostergaard为整个工业过程开发出了第一个模糊控制器-模糊水泥窑控制器。

1980年,Sugeno。

开创了日本的首次模糊应用——控制一家富士(Fuji)电子水净化工厂。

1983年,他又开始研究模糊机器人,这种机器人能够根据呼唤命令来自动控制汽车的停放(Sugeno和Nishicla[1985])。

单级倒立摆系统中模糊控制理论的应用

单级倒立摆系统中模糊控制理论的应用

单级倒立摆系统中模糊控制理论的应用1. 引言倒立摆系统是研究控制理论的一种典型实验平台,其具有成本低廉,结构简单,物理参数和结构易于调整等优点,是一个高阶次、极不稳定、多变量、非线性和强耦合的不稳定系统。

在对倒立摆系统的控制过程中,它能有效地反映诸如可镇定性、随动性、鲁棒性以及跟踪等许多控制中关键性的问题,是检验各种控制理论的理想模型。

迄今人们已经利用经典控制理论、现代控制理论以及各种智能控制理论实现了对多种倒立摆系统的稳定性的控制。

同时倒立摆系统的动态过程与人类的行走姿态类似,平衡过程与火箭的发射姿态调整类似,因此倒立摆的研究在实现双足机器人直立行走、火箭发射过程的姿态调整以及直升机飞行控制领域中都有着重要的现实意义,有关的科研成果已经应用到航天科技和机器人学等诸多领域当中。

1.1 倒立摆简介倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自由连接(即无电动机或其他驱动设备)。

现在由中国的师大学洪兴教授领导的“模糊系统与模糊信息研究中心”暨复杂系统智能控制实验室采用变论域自适应模糊控制成功的实现了对四级倒立摆的控制。

使我国称为了世界上第一个成功完成四级倒立摆实验的国家。

按其形式分,倒立摆还分为,悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆。

按控制电机数量,又可分为单电机倒立摆和多级电机倒立摆等等。

图1-1为集中倒立摆系统的,实物照片。

图1-1 各类倒立摆系统照片本文所采用的倒立摆模型,直线单极倒立摆。

1.2倒立摆控制方法简介对倒立摆系统这样一个典型的非线性、强耦合、极不稳定的复杂的被控对象进行研究,无论在理论上还是在方法上都具有其重要的意义,各种控制理论,控制方法都可以在这里得到充分的实践,并且可以促成各种不同方法之间的有机结合。

当前,倒立摆的控制方法大致可以分为线性控制、预测控制和智能控制三大类。

下面本文将对现阶段应用较为广的几种控制方法进行简要介绍。

(1)常规PID控制:该方法是最早发展起来的一种控制方法,由于其算法简单、鲁棒性好、速度快、可靠性高等优点,至今仍广泛应用于工业过程控制中[1]。

毕业论文(设计)单级倒立摆lqr控制器的设计及仿真

毕业论文(设计)单级倒立摆lqr控制器的设计及仿真

毕业设计(论文)任务书I、毕业设计(论文)题目:单级倒立摆LQR控制器的设计及仿真II、毕业设计(论文)使用的原始资料(数据)及设计技术要求:1、在深入了解倒立摆的基础上,熟悉单级倒立摆控制的基本原理2、了解单级倒立摆控制的发展趋势。

3、熟悉线性系统的基本理论和非线性系统线性化的基本方法。

4、建立单级倒立摆的数学模型,并编写MATLAB程序,完成倒立摆的仿真。

I I I、毕业设计(论文)工作内容及完成时间:工作安排如下:1、查阅文献,翻译英文资料,书写开题报告第1---4周2、相关资料的获取和必要知识的学习第5---9周3、设计系统的硬件和软件模块并调试第10--14周4、撰写论文第15--17周5、总结,准备答辩第18周Ⅳ、主要参考资料:1.阳武娇.基于MATLAB的一阶倒立摆控制系统的建模与仿真[J].电子元器件应用.2007,9(1):29-312 .杨世勇,徐莉苹,王培进.单级倒立摆的PID控制研究[J].控制工程.2007,14:23-53.3.黄忠霖.控制系统MATLAB计算及仿真[M].北京:国防工业出版社,2006.4.薛安客,王俊宏.倒立摆控制仿真与实验研究现状[J].杭州电子工业学院学报.2002,21(6):25-27.5 .徐征.基于遗传算法的PID控制器参数寻优方法的研究[D].武汉:武汉大学,2004.6.Takahas M,Narukawa T,Y oshida K.Intelligent transfer andstabilization control to unstable equilibrium point of double inverted pendulum.Int SICE 2003 Annual Co nfeFence,2003,2:1451-145.信息工程系自动化专业类1082022班学生(签名):填写日期: 2014 年 1 月 10 日指导教师(签名):助理指导教师(并指出所负责的部分):信息工程系主任(签名):单级倒立摆LQR控制器的设计及仿真摘要:单级倒立摆系统是一个典型多变量、不稳定和强耦合的非线性系统。

一级直线倒立摆串联模糊控制方法研究

一级直线倒立摆串联模糊控制方法研究
2008,7:306-311.
[3]刘丽 ,何华灿.五种倒 立摆控 制器对比研究 计算机 工程 与应用 ,
2006,30:3-5.
[4]薛安克 ,王俊宏 ,柴利等 .倒 立摆控 制仿真与试验研 究现状 .杭 州I 电子工业学院学报 ,2005,1:37-41.
[5]石 辛 民,郝 整清.模 糊控 制及 其 MATLAB仿 真.清 华大 学 出版 社 ,北京交通大学 出版社 ,2008.
(上 接第49页 )
表 1分布参 数取 值
参数

取 值范围
1.25

0.04453
1.0218~1.0940

O.1378-0.08356
6 C6
1.0218~1.0940 O.1246-0.06387
3.模 糊可靠度计算与分析 本 文运用 所建 模型 对某 型号 的钢带 缠绕式 等静 压机 (工 作压力 300MPa、内径  ̄b5OOmm )进行 了可靠度计算 ,把 以上 的分 布参数代人公 式得 出了该 型号的钢带缠绕式等 静压机工作载荷及屈 服载荷 (接 近使 结构屈服失效 的载荷 )的模糊可靠度为 :
(3)模 糊推理采用 mamdani最小运算。 (4)解模糊采用面积 中心法 。 3.仿 真 实验 由 MATLAB对控 制系统 进行 仿真实验 ,搭建系统模型如 图3。
。2

.o 2 0
O 1
苗 E 0
5 time )
10
V ’
粤 0
-,
科 技信 息
图3仿真模块结构 其 中 K1、K2、K5、K6为量化 因子 ,分别取 值 8、6、52、5;K3、K7为 比 例 因子 ,分别 取值 0.09、20;K4为耦合因子 ,取值 0.4。 图4所示 为摆杆初 始角 0.1tad,小车位移 、速度 、角度 、角 速度 的仿 真 曲线 ,可以看 出,上升时 间小 ,在较 短时间内恢复到平衡状态 ,并且 各 项指标超调量较 小 ,在可接受范围内。

直线一级倒立摆模糊控制系统的研究

直线一级倒立摆模糊控制系统的研究

摘要本文以直线一级倒立摆为被控对象,应用模糊控制算法设计了一个二维模糊控制器,实现了直线一级倒立摆的倒立摆控制。

直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一。

设计直线一级倒立摆,首先要清楚直线一级倒立摆及它的特性,其次用数学建模的方法建立直线一级倒立摆模型,最后对模糊控制设计方法进行了控制器结构设计和参数设计。

本文重点分析了模糊控制器的设计涉及的各项内容在理论上对系统性能的影响,设计了一个二维模糊控制器,以Matlab/Simulink为平台,搭建了倒立摆系统的模糊控制仿真模型,仿真结果表明该控制器可到良好的控制效果,系统的抗干扰能力很强;同时,分析了模糊控制器各项参数对系统性能的影响。

关键词:直线一级倒立摆,模糊控制,Matlab仿真ABSTRACTIn this paper, a straight line to an inverted pendulum controlled object, the application of fuzzy control algorithm designed a two-dimensional fuzzy controller, the realization of the linear inverted pendulum an inverted pendulum control.L inear level inverted pendulum is made of Linear motion module and Level one place body components, It is one of the most common handstand pendulum. Design linear level, first we make clear inverted pendulum straight level inverted pendulum and its characteristics;secondly we use mathematical modeling method to set up straight level inverted pendulum model; Finally, using the fuzzy control design method of structural design and parameters of the controller design. This article mainly analyzes the design of fuzzy controller in theory the content involved effect the performance of the system. Designed a two-dimensional fuzzy controller to Matlab / Simulink as a platform, set up the inverted pendulum fuzzy control system simulation model, simulation results show that the controller can achieve good control of the system and anti-interference ability to follow strong; At the same time, an analysis of the parameters of fuzzy controller for the impact on system performance; The control algorithm is applied to the physical control, good control system anti-interference ability.KEY WORD: L inear level inverted pendulum, Fuzzy control,MATLAB simulation目录摘要 (I)ABSTRACT.......................................................................................................................................... I II 1 绪论. (1)1.1课题背景 (2)1.2国内外研究现状 (3)1.2.1国内研究现状 (3)1.2.2国外研究现状 (4)1.3本文研究内容 (5)2 一级倒立摆数学模型的建立 (7)2.1数学模型 (7)2.2数学模型的建立 (7)2.2.1建立数学模型的要求 (7)2)必须具有代表性; (7)2.2.2数学模型的建立方法 (8)2.2.3 数学模型的构建步骤 (9)2.3 直线一级倒立摆的基本结构 (9)2.4直线一级倒立摆数学模型的建立 (10)2.5状态空间方程 (12)3模糊控制系统 (15)3.1 模糊控制系统概述 (15)3.1.1模糊控制系统的组成 (15)3.1.2 模糊控制系统的工作原理 (16)3.2 模糊控制器 (16)3.2.1 模糊控制器的基本结构 (16)3.2.2 模糊控制器各主要环节的功能 (17)3.3 量化因子和比例因子 (17)3.4 隶属函数 (19)3.5 解模糊 (19)3.6 模糊控制器的分类 (20)3.7 模糊控制器的设计 (21)3.7.1 模糊控制器的设计规则 (21)3.7.2 模糊控制器的设计步骤 (24)4 直线一级倒立摆模糊控制的仿真 (25)4.1 MATLAB及Simulink的介绍 (25)4.2倒立摆仿真的研究 (26)4.2.1 模糊控制器的输入和输出变量 (26)4.2.2 隶属函数的选择与确定 (27)4.2.3 模糊控制规则的设计 (29)4.2.4 解模糊和推理模糊 (30)4.2.5 确定量化因子和比例因子 (31)4.3 系统仿真 (31)4.3.1 直线一级倒立摆的数学模型 (31)4.3.2 仿真模型和结果 (32)4.3.3 K e、K ec及K u对系统性能的影响 (34)4.3.4 系统抗干扰能力 (40)4.3.5 隶属函数形状对系统性能的影响 (41)4.3.6 改变被控对象对系统性能的影响 (45)4.4 小结 (46)5 总结 (47)致谢 (49)参考文献 (51)1 绪论计算机的诞生和发展给自动动控制增添了先进的工具,现代控制理论的发展,又给自动控制提供了新的理论支柱。

毕业设计基于模糊控制的倒立摆系统及MATLAB仿真

毕业设计基于模糊控制的倒立摆系统及MATLAB仿真

摘要倒立摆系统是研究控制理论的一种典型的实验装置,广泛应用于控制理论研究,航空航天控制等领域,其控制研究对于自动化控制领域具有重要的价值。

然而,倒立摆装置是一个绝对不稳定系统,具有高阶次、非线性、强耦合等特性,本文应用模糊控制策略对其进行控制研究。

本文应用牛顿力学定律建立了直线一级倒立摆的状态方程数学模型并推导了简化的传递函数数学模型,分析了其稳定性,可控性和可观测性。

研究了控制系统整体结构,建立了模糊控制器,在MATLAB平台上对模糊控制系统进行了仿真研究,并对获得的控制系统输出图进行了性能分析。

关键词:一阶倒立摆,数学模型,模糊控制, MATLAB仿真AbstractInverted pendulum control system is to study the theory of a typical experimental device, widely used in control theory, the field of aerospace control, its control is important for the automation and control value. However, the inverted pendulum device is an absolute unstable system, with high time, nonlinear, strong coupling and other features, this fuzzy control strategy to control research.In this paper, Newton's laws of mechanics to establish a line-level inverted pendulum equation of state mathematical model to derive the simplified transfer function model to analyze its stability, controllability and observability. Of the control system as a whole structure of a fuzzy controller, in the MATLAB platform for fuzzy control system was simulated, and access control system output graph of the performance analysis.Keywords: inverted pendulum, mathematical model, fuzzy control, MATLAB simulation目录摘要 (i)Abstract (ii)第一章倒立摆系统简介 (1)1.1倒立摆系统概述 (1)1.2倒立摆的控制目标及研究意义 (1)1.3倒立摆系统控制方法简介 (2)1.4论文的主要工作 (4)第二章模糊控制概述 (6)2.1控制理论简介 (6)2.1.1经典控制理论 (6)2.1.2现代控制理论 (6)2.1.3模糊控制与经典控制理论的比较 (8)2.2模糊控制的数学基础 (9)2.2.1模糊子集与运算 (9)2.2.2模糊关系与模糊关系合成 (11)2.2.3模糊推理 (12)第三章控制系统分析与模糊控制方法研究 (15)3.1控制系统结构及工作原理 (15)3.1.1控制系统结构 (15)3.1.2模糊控制器的工作原理 (16)3.2精确量的模糊化 (17)3.2.1模糊控制器的语言变量 (17)3.2.2量化因子与比例因子 (17)3.2.3语言变量值的选取 (18)3.2.4语言变量论域上的模糊子集 (18)3.3常见的模糊控制规则 (19)3.4输出信息的模糊判决 (20)3.4.1基于推理合成规则进行模糊推理 (20)3.4.2输出信息的模糊判决 (20)3.5本章小结 (21)第四章倒立摆系统建模 (21)4.1常见的倒立摆类型 (21)4.2倒立摆系统建模 (23)4.3系统可控性分析 (27)第五章倒立摆模糊控制器的设计及仿真 (29)5.1倒立摆的稳定模糊控制器的设计 (29)5.1.1位置模糊控制器的设计 (29)5 .1.2角度模糊控制器的设计 (34)5.1.3稳定控制器的实现 (34)5. 2一级倒立摆系统仿真 (35)5.2.1 Simulink简介 (36)5.2.2系统仿真 (37)第六章总结 (44)致谢 (45)参考文献 ......................................................................................................................... 错误!未定义书签。

单级倒立摆的模糊控制应用1

单级倒立摆的模糊控制应用1

单级倒立摆的模糊控制应用1.摘要:随着被控对象的日趋复杂,对控制性能的要求不断提高,传统控制理论对解决复杂系统无能为力。

该文将人工智能中的模糊控制引入倒立摆控制系统,以提高控制要求,改善控制精度。

通过仿真实验表明这种控制思路是可行的,效果良好。

2.关键词:倒立摆,模糊控制,双闭环模糊控制器,模糊推理系统,MATLAB仿真3.引言倒立摆系统是一个复杂的非线性系统。

从形式上倒立摆系统可以分为直线型、环型和平面型,按照摆杆的数量可以分为一级、二级、三级倒立摆系统.倒立摆控制是一个经典的控制平衡问题。

作为典型的快速、多变量、非线性、绝对不稳定系统,一直是控制理论与应用的热点问题,不但是验证现代控制理论方法的典型实验装置,而且其控制方法和思路对处理一般工业过程亦有广泛的用途,因此倒立摆系统的研究具有重要的理论研究和实际应用价值。

许多抽象的控制概念如控制系统的稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆系统直观的表现出来。

倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合等特性使得许多现代控制理论的研究人员一直将它视为研究对象。

他们不断从研究倒立摆控制方法中发掘出新的控制方法,并将其应用于航天科技和机器人学等各种高新科技领域。

由于它的行为与火箭以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。

本文阐述了倒立摆系统控制的研究发展过程和现状;研究了倒立摆系统的各种控制策略。

把倒立摆系统的动态方程在其工作点附近进行线性化,得出其线性化方程,然后运用MA TLAB 程序对极点配置控制器和LQR控制器进行了仿真,针对实际系统总结出这两种理论的经验参数,并对两种理论的控制效果进行了对比。

由于被控对象的日趋复杂,对控制性能的要求不断提高,传统控制理论对解决复杂系统效果不好。

本文将人工智能中的模糊控制引入控制系统,设计了一个四维基本模糊控制器,并在此基础上设计了一个双闭环模糊控制器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年9月
第19卷第3期
山东师范大学学报(自然科学版)
Journal of Shandong Normal University(Natural Science)
Sep.2004
Vol.19No.3单级倒立摆的模糊控制及仿真
赵莉
(山东师范大学化工学系,250014,济南M36岁,女,副教授)
摘要采用模糊控制的方法对单级倒立摆进行了控制,并用MA TLAB进行了仿真,仿真结果符合控制要求.
1单级倒立摆系统及其数学模型
倒立摆系统是一个多变量、快速、严重非线性和绝对不稳定系统,必须采用控制的方法使之稳定.其控制方法在军工、航天、机器人领域和一般工业过程中都有广泛用途.倒立摆系统通常用来检验控制策略的效果,是控制理论研究中较为理想的实验装置,其结构如图1所示.
倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成.导轨一端固定有位置传感器,测量出沿导轨运动的小车位移;小车通过轴承连接摆杆,在小车与摆杆之间的连接处固定有共轴角度传感器,用以测量摆杆的角度信号;导轨的另一端固定有直流永磁力矩电机,通过传送带驱动小车沿导轨运动,在小车沿导轨左右运动的过程中将力传递给摆杆以实现整个系统的平衡.
倒立摆的数学模型许多文献中已有介绍,此处不再做详细讨论,
直接给出其在平衡点附近线性化后的状态方程模型为图1单级倒立摆结构示意图
Ûx=A x+Bu,y=Cx,其中,x=[r HÛrÛH],
A=0010
0001
0-1.02303-16.812680.01734
036.2497256.31093-0.61440
,B=
0.73371
-2.45742
,C=
1000
0100
.
2单级摆模糊控制的基本思想
理论上模糊控制可以由人的直觉和经验来确定模糊控制规则,但多次仿真证明,倒立摆的模糊控制规则很难确定.原因在于,对倒立摆的任一给定位置,难以确定用多大的力来使它稳定,甚至连力的方向都无法确定,如果控制规则不全,系统极易失控.故模糊控制中,模糊规则的获取是关键问题.
对于单级倒立摆的任意位置,虽无法确定所需控制力的大小和方向,但若把摆杆控制范围限定在一定区域内,则可在这个区域内选定若干参考位置,用极点配置法或最优控制法算出稳定每个参考位置所需的力,当摆处于该控制区域内任一位置时,就可以用这一位置附近的所有参考位置估算出该位置所需的控制力.由于倒立摆的控制目的是保证摆杆垂直,而对小车具体位置要求不高,故选参考位置时,只考虑H和ÛH,而不考虑r和Ûr,从而减少了参考位置的数量.
单级倒立摆的控制范围可根据实际需要而定,此处选-10b[H[+10b,-20rad/s[ÛH[20rad/s,则可以确定参考位置为H=[-10,-5,0,5,10];ÛH=[-20,-10,0,10,20].由此可见,每个参数在控制范围内选五个参考位置,二个参数H和ÛH的参考位置的排列组合共有5@5=25个,每个参考位置对应一条模糊规则,就有25条模糊规则.实际控制范围越大,参考位置也越多,模糊规则的数量也越多.其形式为:/IF摆处于参考位置X,T HEN稳定摆所需的状态所馈阵为K.0对每一个位置求出其极点配置或最优控制的状态反馈阵K,这对计算机来说,是一个很大的工作量,这成为该算法是否能应用于实际,满足实时控制的主要问题.
收稿日期:2002-11-16
如果实时性不能满足,则可能出现计算机还在忙于计算规则,而摆早已失控的现象,即该控制时却将时间耗费在了计算上,施加控制不及时.考虑到某一时刻若摆的位置X 为:[#8,#,-13],其中,#表示任意数值,即不考虑小车位移r 和其速度Ûr ,则H =8,其附近的参考位置是10和5,ÛH =-13,其附近的参考位置是-20和-10,即摆位置X 的参考位置就是这两个参数的排列组合,为四个,分别是[#,10,#,-20],[#,10,#,-10],[#,5,#,-20],[#,5,#,-10],如果某些时刻的摆位置X 恰好等于该参数的参考位置,则该参数的参考位置就唯一了,这样一来,X 的参考位置将最多为四个,最少为一个.而问题也就转变成了如何在判断出X 附近的所有参考位置后,通过参考位置对应的模糊规则,采用模糊规则合成方法求出X 位置的状态反馈阵K,从而确定相应的控制力.规则数的减少使该方法的实时控制成为可能.计算机不再用大量的时间去计算,而能满足实时控制的需要.实际控制时,这部分任务由编程来完成.
编程时需首先判断出单级摆当前位置X,并求出X 附近的所有参考位置;然后计算这些参考位置的状态反馈阵(最多为四个,至少为一个),按一定的方法进行模糊合成运算,求出当前摆位置的状态反馈阵K;最后输出控制量u =-K X.为使控制效果更直观,采用M ATL AB 对上述控制方法进行了仿真.
3 单级摆模糊控制的仿真
模糊控制定义了三个不同阶段:一是模糊
化阶段,即定义输入输出变量的模糊集;二是模
糊推理阶段,即建立模糊规则,这些规则能根据
偏差和它的变化得出控制信号的值;三是解模
糊阶段,即根据推理阶段得到的值计算实际的
输出值.
单级倒立摆模糊控制器有四个输入;r 、H 、Û
r 和ÛH ,一个控制输出u.其Simulink 模型如图2所

.
图2 单级摆模糊控制的Si mulink 模型 由于ÛH 和Ûr 实际上无法直接观测到,故图2中模糊控制器的输入使用了降维状态观测器对x 的状态估计x ^,其中降维状态观测器的结构参数如下:
F =-23.81268 0.01734
56.31093 -7.6144, G =-166.6888 -0.9017
394.1765 -17.0511
, H =0.73371-2.45742,Q 1=
1 00 10 00
0 Q 2=0 0
0 01 0
0 1.采用最优控制方法确定参考位置的状态反馈阵,取Q =[1 50 1 50],R =0.1.利用max-min 法确定任意位置X 的状态反馈阵K.建立Sugeno 仿真模型,输入模糊集定义为:NL 、NS 、0、PS 、PM,定义gaussmf 隶属函数;输出变量取linear,即使用这种方法计算-K X.在初始状态为x 0=[0 8 0 -13]时的系统的反应曲线如图3和图4所示.
103第3期赵 莉:单级倒立摆的模糊控制及仿真
104山东师范大学学报(自然科学版)第19卷由图3和图4可看出,该方法控制的倒立摆,过渡时间短且超调量不大,能满足控制要求.
4参考文献
[1]Mohand Mokhtari,Michel Marie.MATLAB与SIMULINK工程应用[M].赵彦玲,等译.北京:电子工业出版社,2002.76~111
[2]王沫然.Si mulink4建模及动态仿真[M].北京:电子工业出版社,2002.15~96
[3]薛定宇.控制系统计算机辅助设计[M].北京:清华大学出版社,1996.118~300
[4]郑大钟.线性系统理论[M].北京:清华大学出版社,1998.142~216
关于学报论文中的表
1)表应精心设计,具有自明性.数据应按一定的规律和顺序编排.表的内容切忌与图及文字表述重复.
2)为使表的结构简洁,并便于排版,建议采用三线表;必要时可加辅助线.
3)表中的参数应标明量和单位的符号,若所有栏或大部分栏的单位相同,可将该单位标注在表的右上角,其余单位标注在相应的栏内.
4)表中的术语、符号、单位等应同图及文字表述所用的一致.
5)表中相邻或上下栏的数字或内容相同者,应重复标注或以通栏表示,不能用/同左0、/同上0等字样代替.
6)表一般随文排,先见文字后见表.表旁空白较大时,可串排文字.
7)表若卧排,应顶左底右,即双页表顶向切口,单页向订口,表若跨页,一般排为双页跨单页.需要转页排的表,应在续表上方居中注明/续表@0,续表的表头应重复排出.
8)表应以阿拉伯数字连续编号的表序和简明的表题.表序和表题间空1个字长,居中排于表的上方.。

相关文档
最新文档