2017-2018年上海市复旦附中高二上期末数学试卷含答案

合集下载

上海市复旦大学附属中学2018-2019学年高二上学期期末考试数学试题附答案解析

上海市复旦大学附属中学2018-2019学年高二上学期期末考试数学试题附答案解析

上海市复旦大学附属中学2018-2019学年高二上学期期末考试数学试题一、填空题(本大题共12题)1.抛物线的准线方程是_______【答案】【解析】【分析】先根据抛物线的标准方程得到焦点在y轴上以及,再直接代入即可求出其准线方程.【详解】因为抛物线的标准方程为,焦点在y轴上,所以:,即,所以,所以准线方程为:,故答案是:.【点睛】该题考查的是有关抛物线的几何性质,涉及到的知识点是已知抛物线的标准方程求其准线方程,属于简单题目.2.若方程表示椭圆,则实数的取值范围是_____.【答案】【解析】【分析】根据题意,可得关于m的不等式组,解之即可得到实数m的取值范围.【详解】根据椭圆的标准方程的形式,可知方程表示椭圆的条件是:,解得,所以实数的取值范围是,故答案是:.【点睛】该题考查的是有关方程表示椭圆的条件,明确椭圆的标准方程的形式,即可得到其对应的不等式组,求解即可.3.若直线与直线平行,则与之间的距离为______ .【答案】【解析】【分析】利用直线平行可求得,代入距离公式即可得出结果.【详解】根据两直线平行,可得,解得,所以两直线的方程为:,整理得,根据平行线间的距离公式可得,两平行线间的距离,故答案是:.【点睛】该题考查的是有关两条平行线间的距离问题,涉及到的知识点有两条直线平行的条件,平行线间的距离公式,属于简单题目.4.过点作圆的切线,则切线所在直线的方程为______ .【答案】或【解析】【分析】首先考虑斜率不存在的时候直线与圆的位置关系,再考虑直线斜率存在时,设出直线的方程,利用圆心到直线的距离等于半径求得的值,综合到一起,得出切线的方程.【详解】过点,直线斜率不存在时方程为,圆心到直线的距离为1,等于半径,所以是圆的切线;过点,切线斜率存在时,直线设为,即,圆心到直线的距离为,整理解得;切线方程为或,故答案是:或.【点睛】该题考查的是有关过圆外一点的圆的切线的方程,涉及到的知识点有直线与圆的位置关系,直线方程的点斜式,点到直线的距离公式,注意考虑斜率不存在的情况.5.若一条双曲线与有共同渐近线,且与椭圆有相同的焦点,则此双曲线的方程为______.【答案】【解析】【分析】由椭圆方程求出椭圆及双曲线的半焦距,设出与双曲线有相同渐近线的双曲线方程为,化为标准方程,结合双曲线中的隐含条件求得值,求得结果.【详解】由得,所以,得,即椭圆的半焦距为,设与双曲线有相同渐近线的双曲线方程为,因为所求双曲线的焦点在轴上,则,双曲线方程化为,根据椭圆和双曲线共焦点,所以有,解得,所以所求双曲线的方程为:,故答案是:.【点睛】该题考查的是有关共渐近线的双曲线的方程的求解问题,涉及到的知识点有已知椭圆的方程求椭圆的焦点坐标,与某双曲线共渐近线的双曲线方程的设法,注意平时对有关结论的理解.6.已知三角形的顶点、,若顶点在抛物线上移动,则三角形的重心的轨迹方程为______ 【答案】【解析】【分析】首先设出三角形的重心和三角形的顶点C的坐标,利用三角形的重心坐标公式,将两点坐标之间的关系建立,结合点C在曲线上,利用相关点法求得对应曲线的方程,之后利用三角形的三个顶点不共线,去掉相应的点,即可得到结果.【详解】设的重心,,则有,即,因为点C在曲线上,所以有,即,因为三角形的三个顶点不能共线,所以,所以的重心的轨迹方程为:,故答案是:.【点睛】该题考查的是有关动点的轨迹方程的求解问题,涉及到的知识点有三角形重心坐标公式,用相关点法求动点的轨迹方程,注意对不满足条件的点要去掉.7.设、分别为直线(为参数,)和曲线(为参数,)上的点,则的取值范围是______.【答案】【解析】【分析】首先将直线和曲线的参数方程化为普通方程,结合点P、Q分别为直线和圆上的动点,从而得到的最小值即为圆心到直线的距离减去半径,从而得到相应的范围.【详解】由(t为参数)可得直线的普通方程为,由(为参数)可得曲线的普通方程为,因为点P、Q分别为直线和圆上的动点,所以,可以无穷远,所以的取值范围是,故答案是:.【点睛】该题考查的是有关直线与圆上的点的距离的范围问题,涉及到的知识点有曲线的参数方程向普通方程的转化,圆上的点到直线的距离的最小值,认真审题是正确解题的关键.8.已知直线,若是抛物线上的动点,则点到直线和它到轴的距离之和的最小值为______ 【答案】【解析】【分析】首先利用抛物线的定义,将抛物线上的点到y轴的距离转化为其到抛物线的焦点的距离减1,从而将其转化为求抛物线的焦点到直线的距离减1,从而求得结果.【详解】,故答案是:.【点睛】该题考查的是有关抛物线上的点到两条定直线的距离之和的最小值问题,涉及到的知识点有抛物线的定义,利用抛物线的定义将距离转化为抛物线上的点到焦点的距离和到定直线的距离之和的最小值问题,属于简单题目.9.如果为椭圆上的动点,为椭圆上的动点,那么的最大值为______.【答案】15【解析】【分析】首先利用椭圆的参数方程,设出点M、N的坐标,之和应用向量的数量积坐标公式,结合余弦差角公式将其化简,结合余弦函数的值域求得结果.【详解】利用椭圆的参数方程:设、,则,所以最大值是:15.【点睛】该题考查的是有关向量数量积的取值范围的问题,涉及到的知识点有椭圆的参数方程,向量的数量积坐标公式,余弦的差角公式,余弦函数的值域,属于中档题目.10.若关于的方程有两个不相等的实数根,则实数的取值范围是____ .【答案】【解析】【分析】首先将关于的方程有两个不相等的实数根,转化为曲线(上半个单位圆)与的图像有两个不同的交点,画出图形,分类讨论,最后求得结果.【详解】转化为(上半个单位圆)与的图像有两个不同的交点,如图,当时,要满足条件,则,∴;类似,当时,;综上,实数的取值范围是.【点睛】该题考查的是有关根据方程解的个数求参数的取值范围的问题,涉及到的知识点有将方程的解转化Wie曲线的交点,数形结合,分类讨论求得结果.11.已知直线与椭圆交于、两点,若,则的取值范围是_____.【答案】【解析】【分析】根据直线过坐标原点,结合椭圆的对称性,可知点A、B关于原点对称,设出两个点的坐标、,利用向量的运算法则以及向量数量积坐标运算公式,求得,之后结合,求得结果,也可以应用参数方程来解决.【详解】直线过原点,结合椭圆图形的对称性可知、两点关于原点对称,方法一:设、,则,,即,∴.方法二:利用参数方程,设、,则.【点睛】该题考查的是有关一个点与椭圆上两个关于原点对称的点所构成的向量的数量积的取值范围的问题,在解题的过程中,注意两点关于原点对称这个条件非常关键,也可以应用参数方程来设点的坐标.12.在平面直角坐标系中,已知圆与曲线交于两点、(在第一象限),与轴正半轴交于点.若,点,则当和变化时,的最小值为______.【答案】7【解析】【分析】首先根据题意画出相应的图形,根据曲线,可得,对m与1的大小关系进行分类讨论,最后结合图形,得出结果.【详解】易得,从而可证,∴,点关于的对称点为,记,则,∴.【点睛】该题考查的是有关线段和的最值的问题,在解题的过程中,注意利用对称将问题转化,从而求得结果,注意对m与1的大小关系进行分类讨论.二、选择题(本大题共4题)13.方程所表示的曲线的对称性是()A. 关于轴对称B. 关于轴对称C. 关于轴对称D. 关于原点对称【答案】D【解析】【分析】将方程中的分别换为,以及将换成,比较所得方程与原方程,看相同与否,再将方程中的换为,比较所得方程与原方程是否相同,最后得到结果.【详解】将方程中的换为,方程变为,与原方程相同,故关于轴对称;将方程中的换为,方程变为,与原方程相同,故关于轴对称;将方程中的换为,方程变为,与原方程不同,故不关于直线对称;可知曲线既关于轴对称,又关于轴对称,从而得到其关于原点对称;故选D.【点睛】该题考查的是利用方程判断曲线的对称性,属于简单题目.14.若点是圆外一点,则直线与圆的位置关系是()A. 相离B. 相切C. 相交且不过圆心D. 相交且过圆心【答案】C【解析】【分析】由已知条件推导出,从而圆心到直线的距离,由此能判断出直线与该圆的位置关系,从而求得结果.【详解】由题意,得,从而圆心到直线的距离为,∴选C.【点睛】该题考查的是有关判断直线与圆的位置关系的问题,涉及到的知识点有点与圆的位置关系,利用圆心到直线的距离与半径比较大小得到直线与圆的位置关系,属于简单题目.15.已知,由所有直线组成的集合记为,则下列命题中的假命题是()A. 存在一个圆与所有直线相交B. 存在一个圆与所有直线不相交C. 存在一个圆与所有直线相切D. M中的直线所能围成的正三角形面积都相等【答案】D【解析】【分析】首先能够确定直线是表示的圆的所有切线,所以可以将圆心定住,改变半径的大小,得到与直线相交,相离和相切,从而确定出A,B,C三项都是正确的,对于D项,已经找到两种大小不相等的正三角形,从而得到结果.【详解】根据点到L的距离为,表示圆的所有切线,符合选项A、B、C的圆依次为、、,对于选项D,存在如下图的两种大小不相等的正三角形,∴D错误,故选D.【点睛】该题考查的是有关定圆的切线系方程,利用点到直线的距离可以确定直线系L是定圆的切线系,之后对选项逐项分析,找到对应的结果,从而得到答案.16.双曲线的左右焦点分别为、,若是双曲线左支上的一个动点,则的内切圆的圆心可能是()A. B. C. D.【答案】B【解析】【分析】首先根据题意,结合切线的性质以及双曲线的定义,可以判断出其三角形的内切圆的圆心的横坐标为,并且根据题意判断出其落在渐近线的下方,从而得到正确的结果.【详解】设内切圆圆心为,内切圆与、、的切点分别为、、,则由切线长定理,知、、,∴,∴为双曲线的左顶点且轴,设所在直线与的交点为,由角平分线定理,知,由于,∴点一定位于上,因此,若内心在第二象限,则其一定位于渐近线的下方,在第三象限,则其一定位于渐近线的上方,即的坐标一定为,其中,∴选B.【点睛】该题考查的是双曲线的焦点三角形的内心的位置,涉及到的知识点有双曲线的定义,圆的切线的性质,属于中档题目.三、解答题(本大题共5题)17.已知圆的圆心在直线上,并且圆与直线和都相切.(1)求圆的方程;(2)若直线与圆有两个不同的交点、,求弦长的最小值.【答案】(1)(2)【解析】【分析】(1)根据两条直线和是平行的,从而断定圆心是与的交点,解方程组求得,由两平行线间的距离求得圆的半径,从而得到圆的方程;(2)由直线的方程可以断定直线过定点,根据垂径定理,得到最小值求得结果.【详解】(1)圆心为与的交点,解得,圆的直径为两平行线与间的距离,可求出半径,∴圆的方程为;(2)直线过定点,由垂径定理知,当为直线的法向量时,弦心距最长,弦最短,∴.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有圆的方程的求解,直线与圆的位置关系,直线过定点,根据垂径定理求圆的最短弦长,属于中档题目.18.在平面直角坐标系中,动圆经过点并且与直线相切,设动圆圆心的轨迹为曲线.(1)如果直线过点(0,4),且和曲线只有一个公共点,求直线的方程;(2)已知不经过原点的直线与曲线相交于、两点,判断命题“如果,那么直线经过点”是真命题还是假命题,并说明理由.【答案】(1)直线的方程为、、;(2)见解析【解析】【分析】(1)根据抛物线的定义,求得曲线C的方程,之后分直线的斜率存在与不存在两种情况,根据直线与抛物线有一个公共点,得出结果;(2)根据图形的对称性,得出对应的定点在x轴上,设出直线的方程,利用韦达定理,根据向量垂直向量的数量积等于零,求得对应的结果.【详解】(1)根据题意,可知曲线C的方程为,①直线的斜率不存在,即的方程为,符合题意,②直线的斜率存在,设,与抛物线方程联立得,(ⅰ),符合题意,此时的方程为,(ⅱ),则,解得,此时的方程为,综上,符合题意的直线的方程为、、;(2)由图形的对称性,若直线过定点,则该定点必定落在轴上,设定点坐标为、、、,,则,∵,∴,即,解得或(舍),∴命题为真命题.【点睛】该题考查的是有关直线与抛物线的综合题,涉及到的知识点有根据抛物线的定义求抛物线的方程,直线与抛物线的位置关系,属于中档题目.19.轮船在海上航行时,需要借助无线电导航确认自己所在的位置,以把握航向.现有、、三个无线电发射台,其中在陆地上,在海上,在某国海岸线上,(该国这段海岸线可以近似地看作直线的一部分),如下图.已知、两点距离10千米,是的中点,海岸线与直线的夹角为.为保证安全,轮船的航路始终要满足:接收到点的信号比接收到点的信号晚秒.(注:无线电信号每秒传播千米).在某时刻,测得轮船距离点距离为4千米.(1)以点为原点,直线为轴建立平面直角坐标系(如图),求出该时刻轮船的位置;(2)根据经验,船只在距离海岸线1.5千米以内的海域航行时,有搁浅的风险.如果轮船保持目前的航路不变,那么是否有搁浅风险?【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据题意,设出点P的坐标,根据题意得出点P的轨迹是双曲线的一支,根据对应的量,从而求得点P的坐标,得到结果;(2)根据题意,找出对应的关系,从而求得结果,得到结论.【详解】(1)设轮船在点处,则由题意,得,∴为以、为焦点,实轴长为8,焦距为10的双曲线右支上的点,其方程为,又,解得;(2)海岸线所在直线的方程为,与其平行,且距离为1.5的直线的方程为,考虑与是否有交点,,∴与没有交点,即轮船保持目前的航路不变,没有搁浅风险.【点睛】该题考查的是应用所学知识解决实际问题,在解题的过程中,涉及到的知识点有应用定义得出曲线的方程,利用直线与曲线的位置关系得到相应的结果,属于中档题目.20.已知椭圆的两个焦点分别为、,短轴的两个端点分别为、,且为等边三角形.(1)若椭圆长轴的长为4,求椭圆的方程;(2)如果在椭圆上存在不同的两点、关于直线对称,求实数的取值范围;(3)已知点,椭圆上两点、满足,求点横坐标的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据为等边三角形,可得,结合椭圆长轴的长为4,即,得,从而求得椭圆的方程;(2)根据等边三角形,得出a,b,c之间的关系,从而设出椭圆的方程,根据椭圆中中点弦所在直线的斜率所满足的条件,结合对称的条件,求得弦的中点坐标,保证点在椭圆内,得到相应的不等关系,得到结果;(3)利用向量的关系,得到点的坐标之间的关系,结合隐含条件,得到相应的范围,求得结果【详解】(1)由题意,得,,∴椭圆的方程为;(2)“点差法”设椭圆的方程为,即,设、、中点,则,得,又,解得,显然在椭圆内,∴,得,又,∴;(3)设椭圆方程,即,方法一:(常规解法)①过、的直线斜率不存在,即直线方程为时,、,由,得,②过、的直线斜率存在,设直线方程为、、,由,得,,则,由,可得,∴,综上,点横坐标的取值范围是.方法二:设,则,,又,∴,∴,∴,即点横坐标的取值范围是.【点睛】该题考查的是有关直线与椭圆的综合问题,涉及到的知识点有椭圆中a,b,c三者之间的关系,正三角形的特征,点关于直线的对称点的特征,椭圆中中点弦所在直线的斜率的条件,向量之间的关系,属于较难题目. 21.已知点、为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.(1)求双曲线的两条渐近线的夹角;(2)过点的直线和双曲线的右支交于、两点,求的面积的最小值;(3)过双曲线上任意一点分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于、两点,求平行四边形的面积.【答案】(1)(2)(3)【解析】【分析】(1)首先根据双曲线的定义,结合题中所给的角的大小,求得,从而求得b的值,进而得到双曲线的渐近线方程,利用直线的方向向量所成的角,求得两条渐近线的夹角余弦值,利用反余弦求出结果;(2)设出直线的方程,与双曲线的方程联立,利用三角形的面积公式,结合函数的单调性,求得最值,得到结果;(3)根据所学的知识将四边形的面积表示出来,进而求得结果.【详解】(1)由题意,得,,∴,∴双曲线的方程为,∴,∴;(2)【注:若设点斜式,需补上斜率不存在的情况】设,、,将直线的方程代入双曲线方程,消去,得,则,得,,令,,则,其中在上单调递减,∴在上单调递增,∴当时,取得最小值,此时,的方程为;(3)设,其中方法一:设,与联立,可求出,由三阶行列式表示的三角形面积公式可得.方法二:如图,,设到和的距离为、,则,,∴【点睛】该题考查的是有关双曲线与直线的综合题,涉及到的知识点有双曲线的渐近线的夹角,双曲线中三角形的面积,四边形的面积,属于较难题目.。

2017-2018学年上海市复旦附中高二(下)期末数学试卷(解析版)

2017-2018学年上海市复旦附中高二(下)期末数学试卷(解析版)

2017-2018学年上海市复旦附中高二(下)期末数学试卷一、选择题(本大题共4小题,共16.0分) 1. 在(√2x +√33)2018的展开式中,系数为有理数的系数为( )A. 336项B. 337项C. 338项D. 1009项 【答案】A【解析】解:根据题意,(√2x +√33)2018的展开式的通项为T r+1=C 2018r (√2x)2018−r (√33)r =C 2018r ×22018−r 2⋅3r3×x 2018−r ;其系数为C 2018r C 2018r ×22018−r 2⋅3r3,若系数为有理数,必有r =6n ,(n =1、2……、336) 共有336项, 故选:A .根据题意,求出(√2x +√33)2018的展开式的通项,即可得项的系数,进而分析可得若系数为有理数,必有r =6n ,(n =1、2、……、336),即可得答案.本题考查二项式定理的应用,关键是掌握二项式定理的形式,属于基础题.2. 如图,某几何体的三视图是三个边长为1的正方形,及每个正方形中的一条对角线,则该几何体的表面积是( ) A. 4+√2B. 9+√32C. 3+√32D. 3+√2【答案】B【解析】解:几何体的直观图如图:所以几何体的表面积为:3+3×12×1×1+√34×(√2)2=9+√32.故选:B .画出几何体的直观图,利用三视图的数据,求解几何体的表面积即可. 本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.3. 定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有( ) A. 18个 B. 16个 C. 14个 D. 12个 【答案】C【解析】解:由题意可知,“规范01数列”有偶数项2m 项,且所含0与1的个数相等,首项为0,末项为1,若m =4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1; 0,0,0,1,0,1,1,1; 0,0,0,1,1,0,1,1; 0,0,0,1,1,1,0,1; 0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1; 0,0,1,0,1,1,0,1; 0,0,1,1,0,1,0,1; 0,0,1,1,0,0,1,1; 0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1; 0,1,0,0,1,1,0,1; 0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,1.共14个. 故选:C . 由新定义可得,“规范01数列”有偶数项2m 项,且所含0与1的个数相等,首项为0,末项为1,当m =4时,数列中有四个0和四个1,然后一一列举得答案.本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.4. 已知椭圆方程为x 24+y225=1,将此椭圆绕y 轴旋转一周所得的旋转体的体积为V 1,满足{y ≥−50≤x ≤2y ≤52x的平面区城绕y 轴旋转一周所得的旋转体的体积为V 2,则( )A. V 2=V 1B. V 2=32V 1C. V 2=54V 1D. V 2,V 1无明确大小关系【答案】C【解析】解:在同一平面直角坐标系中画出椭圆与旋转体如图,椭圆绕y 轴旋转一周所得的旋转体为椭球,其体积为V 1=43π×2×2×5=80π3;满足{y ≥−50≤x ≤2y ≤52x的平面区城阴影部分绕y 轴旋转一周所得的旋转体是圆柱挖去一个圆锥,其体积V 2=π×22×10−13×π×22×5=100π3.∴V 2=54V 1.故选:C .由题意画出图形,分别求出椭圆绕y 轴旋转一周所得的旋转体的体积为V 1与满足{y ≥−50≤x ≤2y ≤52x 的平面区城绕y轴旋转一周所得的旋转体的体积为V 2,则答案可求.本题主要考查旋转体的体积的大小比较,考察学生的计算能力,是中档题.二、填空题(本大题共11小题,共44.0分)5. 已知a ,b ∈{0,1,2,3},则不同的复数z =a +bi 的个数是______. 【答案】16【解析】解:当a=b时,复数z=a+bi的个数是4个;当a≠b时,由排列数公式可知,组成不同的复数z=a+bi的个数是A42=12个.∴不同的复数z=a+bi的个数是16个.故答案为:16.分a=b和a≠b结合排列数公式求解.本题考查排列及排列数公式,是基础题.6.一个竖直平面内的多边形,用斜二测画法得到的水平放置的直观图是一个边长为√2的正方形,该正方形有一组对边是水平的,则原多边形的面积是______.【答案】4√2【解析】解:该多边形的直观图是一个边长为√2的正方形,正方形的面积为S正方形=(√2)2=2,∴原多边形的面积是2×2√2=4√2.故答案为:4√2.根据斜二测画法中原平面图形与直观图的面积比是2√2:1,计算即可.本题考查了斜二测画法中原平面图形与直观图的面积比应用问题,是基础题.7.已知(1−2x)2018=a0+a1x+a2x2+⋯+a 2018x2018则|a0|+|a1|+|a2|+⋯+|a2018|=______.【答案】32018【解析】解:根据题意,(1−2x)2018中,其展开式的通项为T r+1=C2018r(−2x)r,又由(1−2x)2018=a0+a1x+a2x2+⋯+a 2018x2018,则a1、a3、……a2017为负值,则在(1−2x)2018中,令x=−1可得:32018=a0−a1+a2−a3+⋯…+a2017−a2018,又由a1、a3、……a2017为负值,则|a0|+|a1|+|a2|+⋯+|a2018|=a0−a1+a2−a3+⋯…+a2017−a2018=32018,故答案为:32018.根据题意,由二项式定理分析可得(1−2x)2018的展开式的通项,分析可得a1、a3、……a2017为负值,在(1−2x)2018中,令x=−1可得:32018=a0−a1+a2−a3+⋯…+a2017−a2018,分析可得答案.本题考查二项式定理的应用,注意二项式定理的形式,属于基础题.8.已知球的体积是V,则此球的内接正方体的体积为______.【答案】2√3V3π【解析】解:设球的半径为R,球内接正方体的棱长为a,则球的体积是V=43πR3,∴R=33V4π;又球的内接正方体的体对角线是球的直径,即3a2=4R2,∴a=√43R;∴正方体的体积为V正方体=(√43R)3=3√3×3V4π=2√3V3π.故答案为:2√3V3π.设球的半径为R,球内接正方体的棱长为a,根据题意知球内接正方体的体对角线是球的直径,得出a与R的关系,再计算正方体的体积.本题考查了球与其内接正方体的关系应用问题,是基础题.9.点A(1,2,1),B(3,3,2),C(λ+1,4,3),若AB⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ 的夹角为锐角,则λ的取值范围为______.【答案】(−2,4)∪(4,+∞)【解析】解:AB⃗⃗⃗⃗⃗ =(2,1,1),AC⃗⃗⃗⃗⃗ =(λ,2,2),∵AB⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ 的夹角为锐角,∴AB⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =2λ+2+2>0,且不能同向共线.解得λ>−2,λ≠4.则λ的取值范围为(−2,4)∪(4,+∞).故答案为:(−2,4)∪(4,+∞).AB⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ 的夹角为锐角,可得AB⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ >0,且不能同向共线.解出即可得出.本题考查了向量夹角公式、向量共线定理,考查了推理能力与计算能力,属于基础题.10.若一个圆柱的侧面展开图是正方形,则这个圆柱的全面积与侧面积的比是______.【答案】1+2π2π【解析】解:可以设该侧面的正方形边长为A,则S侧面积=A2全面积S=A2+2π(A2π)2则圆柱的全面积与侧面积的比S全面积S侧面积=(1+2π2π)A2A2=1+2π2π故答案:1+2π2π由圆柱的侧面展开图是正方形,我们易得圆柱的高与底面周长相等,设侧面的正方形边长为A后,易分别计算出侧面积和全面积,代入计算后,易得结果.本题考查的是圆柱的表面积与侧面积,利用已知分别求出全面积和侧面积是解答本题的关键,另外全面积=侧面积+底面积×2,中易解为全面积=侧面积+底面积.11.正四面体ABCD的棱长为2,则所有与A,B,C,D距离相等的平面截这个四面体所得截面的面积之和为______.【答案】√3+3【解析】解:设E、F、G分别为AB、AC、AD的中点,连结EF、FG、GE,则△EFG是三棱锥A−BCD的中截面,可得平面EFG//平面BCD,点A到平面EFG的距离等于平面EFG与平面BCD之间的距离,∴A、B、C、D到平面EFG的距离相等,即平面EFG是到四面体ABCD四个顶点距离相等的一个平面;正四面体ABCD中,象△EFG这样的三角形截面共有4个.∵正四面体ABCD的棱长为2,可得EF=FG=GE=1,∴△EFG是边长为1的正三角形,可得S△EFG=12EF⋅FG⋅sin60∘=√34;取CD、BC的中点H、I,连结GH、HI、IE,∵EI、GH分别是△ABC、△ADC的中位线,∴EI−//12AC,GH−//12AC,得EI−//GH,∴四边形EGHI为平行四边形;又∵AC =BD 且AC ⊥BD ,EI−//12AC ,HI−//12BD ,∴EI =HI 且EI ⊥HI ,∴四边形EGHI 为正方形,其边长为12AB =1,由此可得正方形EGHI 的面积S EGHI =1;∵BC 的中点I 在平面EGHI 内,∴B 、C 两点到平面EGHI 的距离相等;同理可得D 、C 两点到平面EGHI 的距离相等,且A 、B 两点到平面EGHI 的距离相等; ∴A 、B 、C 、D 到平面EGHI 的距离相等,∴平面EGHI 是到四面体ABCD 四个顶点距离相等的一个平面,且正四面体ABCD 中,象四边形EGHI 这样的正方形截面共有3个, 因此,所有满足条件的正四面体的截面面积之和等于4S △EFG +3S EGHI =4×√34+3×1=√3+3.故答案为:√3+3.根据题意知到正四面体ABCD 四个顶点距离相等的截面分为两类:一类是由同一顶点出发的三条棱的中点构成的三角形截面,这样的截面有4个;另一类是与一组相对的棱平行,且经过其它棱的中点的四边形截面,这样的截面有3个; 作出示意图,求出所有满足条件的截面面积之和即可.本题考查了正四面体的性质、点到平面距离的定义、三角形面积与四边形形面积的求法等知识,是难题.12. 从集合{1,2,…,30}中取出五个不同的数组成单调递增的等差数列,则所有符合条件的不同的数列个数是______. 【答案】98【解析】解:根据题意,设满足条件的一个等差数列首项为a 1,公差为d ,必有d ∈N ∗. 则a 5=a 1+4d ,则d =a 5−a 14≤30−14=294,则d 的可能取值为1,2,3, (7)对于给定的d ,a 1=a 5−4d ≤30−4d ,当a 1分别取1,2,3,…,30−4d 时,可得递增等差数列30−4d 个(如:d =1时,a 1≤26,当a 1分别取1,2,3,…,26时,可得递增等差数列26个:1,2,3,4,5;2,3,…,6;…;26,27,…,30,其它同理). 当d 取1,2,3,…,7时,可得符合要求的等差数列的个数为:12×(2+26)×7=98个;故答案为:98.根据题意,设满足条件的一个等差数列首项为a 1,公差为d ,d ∈N ∗.确定d 的可能取值为1,2,3,…,7,进而分析可得答案.本题考查合情推理的应用,涉及等差数列的性质,关键是确定d 的取值范围,属于偏难题.13. 在正三棱锥P −ABC 中,PA =2,AB =1,记二面角P −AB −C ,A −PC −B 的平面角依次为α,β,则3sin 2α−2cosβ=______. 【答案】2【解析】解:如图所示,作PO ⊥平面ABC ,连接CO 延长交AB 于点D ,连接PD . 则D 为AB 的中点,CD ⊥AB ,∴AB ⊥PD . ∴二面角P −AB −C 的平面角为∠PDO =α. ∵PD =√22−(12)2=√152,CD =√32,OD =13CD =√36, ∴OP =√PD 2−OD 2=√333. ∴sinα=OP PD =23√115.作AE ⊥PC ,垂足为E 点,连接BE , ∵△PAC≌△PBC , ∴BE ⊥PC .∴∠AEB 为A −PC −B 的平面角β, ∵cos∠PCA =12+22−222×1×2=14.∴AE =AC ⋅sin∠PCA =1×√1−(14)2=√154. 在△AEB 中,cosβ=AE 2+BE 2−AB 22×AE×BE =715.∴3sin 2α−2cosβ=3×(23√115)2−2×715=2.故答案为:2.如图所示,作PO ⊥平面ABC ,连接CO 延长交AB 于点D ,连接PD.可得D 为AB 的中点,CD ⊥AB ,AB ⊥PD.于是二面角P −AB −C 的平面角为∠PDO =α.作AE ⊥PC ,垂足为E 点,连接BE ,根据△PAC≌△PBC ,可得BE ⊥PC.可得∠AEB 为A −PC −B 的平面角β,利用余弦定理等即可得出.本题考查了正三棱锥的性质、正三角形的性质、余弦定理勾股定理、二面角、三角形全等,考查了推理能力与计算能力,属于难题.14. 如图,顶点为P 的圆锥的轴截面是等腰直角三角形,母线PA =4,O 是底面圆心,B 是底面圆内一点,且AB ⊥OB ,C 为PA 的中点,OD ⊥PB ,垂足为D ,当三棱锥O −PCD 的体积最大时,OB =______. 【答案】2√63【解析】解:AB ⊥OB ,可得PB ⊥AB ,即AB ⊥面POB ,所以面PAB ⊥面POB . OD ⊥PB ,则OD ⊥面PAB ,OD ⊥DC ,OD ⊥PC ,又,PC ⊥OC ,所以PC ⊥面OCD.即PC 是三棱锥P −OCD 的高.PC =OC =2. 而△OCD 的面积在OD =DC =√2时取得最大值(斜边=2的直角三角形). 当OD =√2时,由PO =2√2,知∠OPB =30∘,OB =POtan30∘=2√63.故答案为:2√63. 画出图形,说明PC 是三棱锥P −OCH 的高,△OCH 的面积在OD =DC =√2时取得最大值,求出OB 即可.本题考查圆锥的结构特征,棱锥的体积等知识,考查空间想象能力,是中档题.15. 已数列{a n },令b k 为a 1,a 2,…,a k 中的最大值(k =1,2,…,n),则称数列{b n }为“控制数列”,数列{b n }中不同数的个数称为“控制数列”{b n }的“阶数”.例如:{a n }为1,3,5,4,2,则“控制数列”{b n }为1,3,5,5,5,其“阶数”为3,若数列{a n }由1,2,3,4,5,6构成,则能构成“控制数列”{b n }的“阶数”为2的所有数列{a n }的首项和是______.【答案】1044【解析】解:依题意得,首项为1的数列有1,6,a,b,c,d,故有A44=24种,首项为2的数列有2,1,6,b,c,d,或2,6,a,b,c,d,故有A44+A33=30种,首项为3的数列有3,6,a,b,c,d,或3,1,6,b,c,d,或3,2,6,b,c,d或3,1,6,c,d或,3,2,1,6,c,d,故有A44+2A33+2A22=40种,首项为4的数列有24+18+12+6=60种,即4,6,a,b,c,d,有A44=24种,4,1,6,b,c,d,或4,2,6,b,c,d,或4,3,6,b,c,d,有3A33=18种,4,a,b,6,c,d,(其中a,b∈{1,2,3}),则有A32A22=12种,4,a,b,c,6,d,(其中a,b,c∈{1,2,3}),则有6种,首项为5的数列有24×5=120种,即5,6,a,b,c,d,有A44=24种,5,1,6,b,c,d,或5,2,6,b,c,d,或5,3,6,b,c,d,或5,4,6,b,c,d有4A33=24种,5,a,b,6,c,d,(其中a,b∈{1,2,3,4}),则有A42A22=24种,5,a,b,c,6,d,(其中a,b,c∈{1,2,3,4}),则有24种,5,a,b,c,d,6,(其中a,b,c,d∈{1,2,3,4}),则有24种,综上,所有首项的和为24×1+30×2+40×3+60×4+120×5=1044.故答案为:1044由新定义,分别利用排列组合,求出首项为1,2,3,4,5的所有数列,再求出和即可.本题考查了排列组合问题,考查了新定义问题,考查了运算能力和转化能力,属于难题三、解答题(本大题共6小题,共60.0分)16.已知(ax −√x2)9的展开式中,x3的系数为94,则常数a的值为______.【答案】4【解析】解:(ax −√x2)9的展开式中,通项公式为Tr+1=C9r⋅(√2)−r⋅(−1)r⋅a9−r⋅x3r2−9,令3r2−9=3,求得r=8,故x3的系数为C98⋅116a=94,∴a=4,故答案为:4.先求出二项式展开式的通项公式,再令x的幂指数等于0=3,求得r的值,即可求得展开式中x3的系数,再由x3的系数为94,求得a的值.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.17.已知空间向量a⃗与b⃗ 的夹角为arccos√66,且|a⃗|=√2,|b⃗ |=√3,令m⃗⃗⃗ =a⃗−b⃗ ,n⃗=a⃗+2b⃗ .(1)求a⃗,b⃗ 为邻边的平行四边形的面积S;(2)求m⃗⃗⃗ ,n⃗的夹角θ.【答案】解:(1)根据条件,cos<a⃗,b⃗ >=√66;∴sin<a⃗,b⃗ >=√306;∴S=|a⃗||b⃗ |sin<a⃗,b⃗ >=√2×√3×√306=√5;(2)m⃗⃗⃗ ⋅n⃗=(a⃗−b⃗ )⋅(a⃗+2b⃗ )=a⃗2+a⃗⋅b⃗ −2b⃗ 2=2+√2×√3×√66−2×3=−3;|m⃗⃗⃗ |=√(a⃗−b⃗ )2=√a⃗2−2a⃗⋅b⃗ +b⃗ 2=√2−2+3=√3,|n⃗|=√(a⃗+2b⃗ )2=√2+4+12=3√2;∴cos<m⃗⃗⃗ ,n⃗>=m⃗⃗⃗ ⋅n⃗⃗|m⃗⃗⃗ ||n⃗⃗ |=√3×3√2=−√66;∴m⃗⃗⃗ ,n⃗的夹角θ=arccos(−√66).【解析】(1)根据向量a⃗,b⃗ 的夹角为arccos√66即可求出sin<a⃗,b⃗ >=√306,从而根据S=|a⃗||b⃗ |sin<a⃗,b⃗ >即可求出面积S;(2)根据条件即可求出m⃗⃗⃗ ⋅n⃗,|m⃗⃗⃗ |和|n⃗|的值,根据向量夹角的余弦公式,即可求出cos<m⃗⃗⃗ ,n⃗>,进而得出θ.考查向量夹角的概念,sin2α=1−cos2α,三角形的面积公式,向量数量积的运算,向量长度的求法,向量夹角的余弦公式.18.有3名女生和5名男生,按照下列条件排队,求各有多少种不同的排队方法?(1)3名女生排在一起;(2)3名女生次序一定,但不一定相邻;(3)3名女生不站在排头和排尾,也互不相邻;(4)每两名女生之间至少有两名男生;(5)3名女生中,A,B要相邻,A,C不相邻.【答案】解:(1)根据题意,分2步分析:①,3名女生看成一个整体,考虑其顺序有A33=6种情况,②,将这个整体与5名男生全排列,有A66=720种情况,则3名女生排在一起的排法有6×720=4320种;(2)根据题意,将8人排成一排,有A88种排法,由于3名女生次序一定,则有A88A33=6720种排法;(3)根据题意,分2步分析:①,将5名男生全排列,有A55=120种情况,②,除去两端,有4个空位可选,在其中任选3个,安排3名女生,有A43=24种情况,则3名女生不站在排头和排尾,也互不相邻的排法有120×24=2880种;(4)根据题意,将3名女生排成一排,有A33=6种情况,分2种情况讨论:①,两名女生之间有3名男生,另两名女生之间有2名男生,将5名男生分成3、2的两组,分别安排在3名女生之间,有6×C52×A22×A33×A22=1440种排法;②,任意2名女生之间都有2名男生,将5名男生分成2、2、1的三组,2个2人组安排在三名女生之间,1人安排在两端,有6×C52C32C11A22×A22×A22×A22×A21=1440种排法;则每两名女生之间至少有两名男生的排法有1440+1440=2880种;(5)根据题意,分2种情况分析:①,A、B、C三人相邻,则B在中间,A、C在两边,三人有A22=2种排法,将3人看成一个整体,与5名男生全排列,有A66=720种情况,则此时有2×720=1440种排法;②,A、B、C三人不全相邻,先将5名男生全排列,有A55=720种情况,将A、B看成一个整体,和C一起安排在5名男生形成的6个空位中,有720×A62×A22=4320种,则3名女生中,A,B要相邻,A,C不相邻的排法有1440+4320=5760种排法.【解析】(1)根据题意,用捆绑法分2步分析:①,3名女生看成一个整体,②,将这个整体与5名男生全排列,由分步计数原理计算可得答案;(2)根据题意,先计算8人排成一排的排法,由倍分法分析可得答案;(3)根据题意,分2步分析:①,将5名男生全排列,②,将3名女生安排在5名男生形成的空位中,由分步计数原理计算可得答案;(4)根据题意,分2种情况讨论:①,两名女生之间有3名男生,另两名女生之间有2名男生,②,任意2名女生之间都有2名男生,分别求出每种情况下的排法数目,由加法原理计算可得答案;(5)根据题意,分2种情况讨论:①,A 、B 、C 三人相邻,则B 在中间,A 、C 在两边,②,A 、B 、C 三人不全相邻,分别求出每种情况下的排法数目,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类、分步计数原理的应用,注意常见问题的处理方法,属于中档题.19. 在正四棱锥P −BCD 中,正方形ABCD 的边长为3√2,高OP =6,E 是侧棱PD 上的点且PE =13PD ,F是侧棱PA 上的点且PF =12PA ,G 是△PBC 的重心.如图建立空间直角坐标系. (1)求平面EFG 的一个法向量n ⃗ ;(2)求直线AG 与平面EFG 所成角θ的大小; (3)求点A 到平面EFG 的距离d .【答案】解:(1)∵在正四棱锥P −BCD 中,正方形ABCD 的边长为3√2,高OP =6,E 是侧棱PD 上的点且PE =13PD ,F 是侧棱PA 上的点且PF =12PA ,G 是△PBC 的重心.如图建立空间直角坐标系.∴D(0,−6,0),P(0,0,6),E(0,−2,4),A(6,0,0),F(3,0,3),B(0,6,0),C(−6,0,0),G(−2,2,2), EF ⃗⃗⃗⃗⃗ =(3,2,−1),EG ⃗⃗⃗⃗⃗ =(−2,4,−2),设平面EFG 的一个法向量n⃗ =(x,y ,z), 则{n ⃗ ⋅EF⃗⃗⃗⃗⃗ =3x +2y −z =0n ⃗ ⋅EG ⃗⃗⃗⃗⃗ =−2x +4y −2z =0,取y =1,得:平面EFG 的一个法向量n ⃗ =(0,1,2). (2)AG⃗⃗⃗⃗⃗ =(−8,2,2), 则sinθ=|cos <AG ⃗⃗⃗⃗⃗ ,n ⃗ >|=|AG ⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||AG ⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |=√5⋅√72=√1010, ∴直线AG 与平面EFG 所成角θ=arcsin √1010.(3)EA⃗⃗⃗⃗⃗ =(6,2,−4), ∴点A 到平面EFG 的距离d =|EA ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |=√5=6√55. 【解析】(1)建立空间直角坐标系,求出EF ⃗⃗⃗⃗⃗ =(3,2,−1),EG ⃗⃗⃗⃗⃗ =(−2,4,−2),设平面EFG 的一个法向量n ⃗ =(x,y ,z),由{n ⃗ ⋅EF⃗⃗⃗⃗⃗ =3x +2y −z =0n⃗ ⋅EG ⃗⃗⃗⃗⃗ =−2x +4y −2z =0,能求出平面EFG 的一个法向量n⃗ . (2)求出AG ⃗⃗⃗⃗⃗ =(−8,2,2),由sinθ=|cos <AG ⃗⃗⃗⃗⃗ ,n ⃗ >|,能求出直线AG 与平面EFG 所成角θ. (3)求出EA⃗⃗⃗⃗⃗ =(6,2,−4),由点A 到平面EFG 的距离d =|EA ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |,能求出结果.本题考查平面的法向量、线面角、点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20. 如图,在多面体ABCDEF 中,平面ADE ⊥平面ABCD ,四边形ABCD 是边长为2的正方形,△ADE 是等腰直角三角形且∠ADE =π2,EF ⊥平面ADE 且EF =1. (1)求异面直线AE 和DF 所成角的大小; (2)求二面角B −DF −C 的平面角的大小.【答案】解:∵平面ADE ⊥平面ABCD ,且∠ADE =π2,∴DE ⊥平面ABCD ,由四边形ABCD 是边长为2的正方形,∴DA ,DC ,DE 两两互相垂直,以D 为坐标原点建立如图所示空间直角坐标系,又EF ⊥平面ADE 且EF =1,∴D(0,0,0),A(2,0,0),E(0,0,2),C(0,2,0),B(2,2,0),F(0,1,2), (1)AE ⃗⃗⃗⃗⃗ =(−2,0,2),BF ⃗⃗⃗⃗⃗ =(−2,−1,2), 则cos <AE ⃗⃗⃗⃗⃗ ,BF⃗⃗⃗⃗⃗ >=AE ⃗⃗⃗⃗⃗ ⋅BF⃗⃗⃗⃗⃗ |AE⃗⃗⃗⃗⃗ |⋅|BF ⃗⃗⃗⃗⃗ |=2√2×3=2√23, ∴异面直线AE 和DF 所成角的大小为arccos2√23; (2)DB ⃗⃗⃗⃗⃗⃗ =(2,2,0),DF ⃗⃗⃗⃗⃗ =(0,1,2),设平面BDF 的一个法向量为n⃗ =(x,y,z), 由{n ⃗ ⋅DB⃗⃗⃗⃗⃗⃗ =2x +2y =0n ⃗ ⋅DF ⃗⃗⃗⃗⃗ =y +2z =0,取z =1,得n⃗ =(2,−2,1), 又平面DFC 的一个法向量为m ⃗⃗⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ |⋅|n ⃗⃗ |=23×1=23. 由图可知,二面角B −DF −C 为锐角, ∴二面角B −DF −C 的平面角的大小为arccos 23.【解析】由已知可得DA ,DC ,DE 两两互相垂直,以D 为坐标原点建立如图所示空间直角坐标系.(1)求出AE⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ 的坐标,利用数量积求夹角求解异面直线AE 和DF 所成角的大小; (2)分别求出平面BDF 与平面DFC 的一个法向量,由两法向量所成角的余弦值可得二面角B −DF −C 的平面角的大小.本题考查空间角的求法,训练了利用空间向量求解空间角,是中档题.21. 设点F 1,F 2分别是椭园C :x 22t 2+y 2t 2=1(t >0)的左、右焦点,且椭圆C 上的点到F 2的距离的最小值为2√2−2,点M ,N 是椭圆C 上位于x 轴上方的两点,且向量F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 与向量F 2N ⃗⃗⃗⃗⃗⃗⃗ 平行.(1)求椭圆C 的方程; (2)当F 1N ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =0时,求△F 1NF 2的面积;(3)当|F 2N ⃗⃗⃗⃗⃗⃗⃗ |−|F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ |=4√23时,求直线F 2N 的方程. 【答案】解:(1)点F 1、F 2分别是椭圆C :x 22t +y 2t =1(t >0)的左、右焦点, ∴a =√2t ,c =t ,∵椭圆C 上的点到点F 2的距离的最小值为2√2−2, ∴a −c =√2t −t =2√2−2, 解得t =2, ∴椭圆的方程为x 28+y 24=1;(2)由(1)可得F 1(−2,0),F 2(2,0), 点N 是椭圆C 上位于x 轴上方的点, 可设N(2√2cosθ,2sinθ), ∴F 1N ⃗⃗⃗⃗⃗⃗⃗ =(2√2cosθ+2,2sinθ),F 2N ⃗⃗⃗⃗⃗⃗⃗ =(2√2cosθ−2,2sinθ), ∵F 1N ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =0,∴(2√2cosθ+2)(2√2cosθ−2)+4sin 2θ=0, 解得cosθ=0,sinθ=1, ∴N(0,2),∴△F 1NF 2的面积S =12|F 1F 2|⋅y N =12×4×2=4; (3)∵向量F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 与向量F 2N ⃗⃗⃗⃗⃗⃗⃗ 平行,∴λF 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =F 2N ⃗⃗⃗⃗⃗⃗⃗ ,∵|F 2N ⃗⃗⃗⃗⃗⃗⃗ |−|F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ |=4√23, ∴(|λ|−1)|F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ |=4√23,即|λ|>1,设M(x 1,y 1),N(x 2,y 2),∴λ(x 1+2)=x 2−2,y 2=λy 1,∴x 2=λx 1+2(λ+1)∵x 228+y 224=1,∴x 22+2y 22=8, ∴[λx 1+2(λ+1)]2+2λ2y 12=12λ2+8λ+4+4λ(λ+1)x 1=8, ∴4λ(λ+1)x 1=(1−3λ)(λ+1),∴x 1=1−3λλ=1λ−3,∴y 12=4−(1−3λ)22λ2,则|F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ |2=(x 1+2)2+y 12=(1λ−3+2)2+4−(1−3λ)22λ2=(λ+1)22λ2, ∴|F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ |=√2λ, ∴(λ−1)√2λ=4√23, ∴3λ2−8λ−3=0,解得λ=3,或λ=−13(舍去).∴x 1=1λ−3=−83,y 12=4−(−8)22×9=49,∴y 1=23,则M(−83,23),∴k F 1M =23−0−83−(−2)=−1,∵向量F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 与向量F 2N ⃗⃗⃗⃗⃗⃗⃗ 平行,∴F 2N 所在直线当斜率为−1, ∴直线F 2N 的方程为y −0=−(x −2),即为x +y −2=0.【解析】(1)根据椭圆的简单性质可得a −c =√2t −t =2√2−2,求解t ,即可得到椭圆C 的方程;(2)可设N(2√2cosθ,2sinθ),根据向量的数量积求出点N 的坐标,由三角形面积公式可得△F 1NF 2的面积;(3)向量F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 与向量F 2N ⃗⃗⃗⃗⃗⃗⃗ 平行,不妨设λF 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =F 2N ⃗⃗⃗⃗⃗⃗⃗ ,设M(x 1,y 1),N(x 2,y 2),根据坐标之间的关系,求得M 的坐标,再根据向量的模,即可求出λ的值,根据斜率公式求出直线F 1M 的斜率,根据直线平行和点斜式即可求出直线F 2N 的方程.题考查了椭圆的标准方程及其性质、向量的运算和及其斜率计算公式等知识与基本方法,属于难题.。

2017-2018学年上海复旦附中高一(上)期末数学试卷(解析版)

2017-2018学年上海复旦附中高一(上)期末数学试卷(解析版)

2017-2018学年上海复旦附中高一(上)期末数学试卷一、选择题(本大题共4小题,共12.0分)1.下列函数中,在区间(0,+∞)上为增函数的是()A. B. C. D.2.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是()A. B. C. D.3.如果函数y=f(x)图象上任意一点的坐标(x,y)都满足方程 lg(x+y)=lg x+lg y,那么正确的选项是()A. 是区间上的减函数,且B. 是区间上的增函数,且C. 是区间上的减函数,且D. 是区间上的减函数,且4.若函数f(x)的反函数为f-1(x),则函数f(x-1)与f-1(x-1)的图象可能是()A. B. C. D.二、填空题(本大题共12小题,共48.0分)5.函数f(x)=的定义域是______.6.函数y=x2+2(-1≤x≤0)的反函数是f-1(x)=______.7.设,,则f(x)•g(x)=______.8.若正数a、b满足log a(4b)=-1,则a+b的最小值为______.9.幂函数f(x)=(t3-t+1)x3t+1是奇函数,则f(2)=______.10.函数的单调递减区间是______.11.函数y=的值域是______.12.设关于x的方程|x2-6x+5|=a的不同实数解的个数为n,当实数a变化时,n的可能取值组合的集合为______.13.对于函数f(x)=x2+ax+4,若存在x0∈R,使得f(x0)=x0,则称x0是f(x)的一个不动点,已知f(x)在x∈[1,3]恒有两个不同的不动点,则实数a的取值范围______.14.若函数f(x)=|x-1|+m|x-2|+6|x-3|在x=2时取得最小值,则实数m的取值范围是______.15.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-ax+a,其中a∈R.①f(-1)=______;②若f(x)的值域是R,则a的取值范围是______.16.已知函数,x∈[1,2]的最大值为f(t),则f(t)的解析式为f(t)=______.三、解答题(本大题共5小题,共60.0分)17.已知关于x的不等式log2(-2x2+3x+t)<0,其中t∈R.(1)当t=0时,求该不等式的解;(2)若该不等式有解,求实数t的取值范围.18.已知函数(x>0).(1)求函数f(x)的反函数f-1(x);(2)若x≥2时,不等式>恒成立,求实数a的范围.19.某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数f(x)与时刻x(时)的关系为,x∈[0,24),其中a是与气象有关的参数,且∈,.若用每天f(x)的最大值为当天的综合污染指数,并记作M(a).(1)令t=,x∈[0,24),求t的取值范围;(2)求M(a)的表达式,并规定当M(a)≤2时为综合污染指数不超标,求当a 在什么范围内时,该市市中心的综合污染指数不超标.20.指数函数y=g(x)满足g(2)=4,且定义域为R的函数是奇函数.(1)求实数m、n的值;(2)若存在实数t,使得不等式f(t2-2t)+f(2t2-k)>0成立,求实数k的取值范围.21.设集合M为下述条件的函数f(x)的集合:①定义域为R;②对任意实数x1、x2(x1≠x2),都有<.(1)判断函数f(x)=x2是否为M中元素,并说明理由;(2)若函数f(x)是奇函数,证明:f(x)∉M;(3)设f(x)和g(x)都是M中的元素,求证:F(x)=<也是M中的元素,并举例说明,G(x)=>不一定是M中的元素.答案和解析1.【答案】A【解析】解:A.在(0,+∞)上是增函数,满足条件,B.y=(x-1)2在(-∞,1]上为减函数,在[1,+∞)上为增函数,不满足条件.C.y=x-2在(0,+∞)上为减函数,不满足条件.D.y=log0.5(x+1)在(0,+∞)上为减函数,不满足条件.故选:A根据函数单调性的性质分别进行判断即可.本题主要考查函数单调性的判断,根据常见函数的单调性是解决本题的关键.比较基础.2.【答案】C【解析】解:作出函数f(x)的图象,如图所示,当x=1时,y最小,最小值是2,当x=2时,y=3,函数f(x)=x2-2x+3在闭区间[0,m]上上有最大值3,最小值2,则实数m的取值范围是[1,2].故选:C.本题利用数形结合法解决,作出函数f(x)的图象,如图所示,当x=1时,y最小,最小值是2,当x=2时,y=3,欲使函数f(x)=x2-2x+3在闭区间[0,m]上的上有最大值3,最小值2,则实数m的取值范围要大于等于1而小于等于2即可.本题考查二次函数的值域问题,其中要特别注意它的对称性及图象的应用,属于中档题.3.【答案】C【解析】解:由lg(x+y)=lgx+lgy,得,由x+y=xy得:,解得:x+y≥4.再由x+y=xy得:(x≠1).设x1>x2>1,则=.因为x1>x2>1,所以x2-x10,x2-1>0.则,即f(x1)<f(x2).所以y=f(x)是区间(1,+∞)上的减函数,综上,y=f(x)是区间(1,+∞)上的减函数,且x+y≥4.故选:C.由给出的方程得到函数y=f(x)图象上任意一点的横纵坐标x,y的关系式,利用基本不等式求出x+y的范围,利用函数单调性的定义证明函数在(1,+∞)上的增减性,二者结合可得正确答案.本题考查了函数单调性的判断与证明,考查了利用基本不等式求最值,训练了利用单调性定义证明函数单调性的方法,是基础题.4.【答案】A【解析】解:函数f(x-1)是由f(x)向右平移一个单位得到,f-1(x-1)由f-1(x)向右平移一个单位得到,而f(x)和f-1(x)关于y=x对称,从而f(x-1)与f-1(x-1)的对称轴也是由原对称轴向右平移一个单位得到即y=x-1,排除B,D;A,C选项中各有一个函数图象过点(2,0),则平移前的点坐标为(1,0),则反函数必过点(0,1),平移后的反函数必过点(1,1),由此得:A选项有可能,C 选项排除;故选:A.f(x)和f-1(x)关于y=x对称是反函数的重要性质;而将f(x)的图象向右平移a 个单位后,得到的图象的解析式为f(x-a)而原函数和反函数的图象同时平移时,他们的对称轴也相应平移.用整体平移的思想看问题,是解决本题的关键.5.【答案】{x|x≥-2且x≠1}【解析】解:由题意,要使函数有意义,则,解得,x≠1且x≥-2;故函数的定义域为:{x|x≥-2且x≠1},故答案为:{x|x≥-2且x≠1}.由题意即分母不为零、偶次根号下大于等于零,列出不等式组求解,最后要用集合或区间的形式表示.本题考查了求函数的定义域,最后要用集合或区间的形式表示,这是容易出错的地方.6.【答案】,x∈[2,3]【解析】解:∵y=x2+2(-1≤x≤0)∴x=-,2≤y≤3,故反函数为,x∈[2,3].故答案为:,x∈[2,3].由原函数的解析式解出自变量x的解析式,再把x和y交换位置,注明反函数的定义域(即原函数的值域).本题考查反函数的求法,考查计算能力,是基础题,反函数的定义域容易疏忽出错,注意反函数的定义域是原函数的值域.7.【答案】x,x∈(1,+∞)【解析】解:∵,,∴f(x)的定义域是(1,+∞),g(x)的定义域是[1,+∞),∴f(x)•g(x)=x,x∈(1,+∞),故答案为:x,x∈(1,+∞).根据f(x),g(x)的解析式求出f(x)•g(x)的解析式即可.本题考查了求函数的解析式问题,考查函数的定义域,是一道基础题.8.【答案】1【解析】解:根据题意,若正数a、b满足log a(4b)=-1,则有a=,即ab=,则a+b≥2=1,即a+b的最小值为1;故答案为:1.根据题意,由对数的运算性质可得a=,即ab=,进而由基本不等式的性质可得a+b≥2=1,即可得答案.本题考查基本不等式的性质以及应用,涉及对数的运算性质,关键是分析a、b的关系.9.【答案】2【解析】解:函数f(x)=(t3-t+1)x3t+1是幂函数,∴t3-t+1=1,解得t=0或t=±1;当t=0时,f(x)=x是奇函数,满足题意;当t=1时,f(x)=x4是偶函数,不满足题意;当t=-1时,f(x)=x-2是偶函数,不满足题意;综上,f(x)=x;∴f(2)=2.故答案为:2.根据幂函数的定义求出t的值,再验证f(x)是否为奇函数,从而求出f(2)的值.本题考查了幂函数的定义与应用问题,是基础题.10.【答案】(-2,1]【解析】解:要求函数的单调递减区间,需求函数y=,(8+2x-x2>0)的增区间,由8+2x-x2>0可得-2<x<4,对应的二次函数,开口向下,增区间为:(1,4),减区间为:(-2,1].由复合函数的单调性可知:函数的单调递减区间是:(-2,1].故答案为:(-2,1].由对数函数为增函数,要求复合函数的减区间,需求真数的减区间,分式的分母的增区间,利用函数的定义域以及二次函数的单调性转化求解即可.本题考查复合函数的单调性,分式函数、二次函数和对数函数的单调性,是中档题.11.【答案】(-1,)【解析】解:函数y===-1.∵2x+3>3,∴0<.∴函数y=的值域是(-1,)故答案为(-1,)分离常数后,根据指数函数的值域即可求函数y的范围.本题考查分离常数法转化为指数函数的值域的运用,属于基础题.12.【答案】{0,2,3,4}【解析】解:关于x的方程|x2-6x+5|=a,分别画出y=|x2-6x+5|与y=a的图象,如图:①若该方程没有实数根,则a<0;n=0;②若a=0,则该方程恰有两个实数解,n=2;③若a=4时,该方程有三个不同的实数根,n=3;④当0<a<4,该方程有四个不同的实数根,n=4;⑤当a>4,该方程有两个不同的实数根,n=2;n的可能取值组合的集合为{0,2,3,4}故答案为:{0,2,3,4}.将方程|x2-6x+5|=a的实数解的个数问题转化为函数图象的交点问题,作图分析即得答案.本题考查了根的存在性及根的个数判断.华罗庚曾说过:“数缺形时少直观,形缺数时难入微.数形结合百般好,隔离分家万事非.”数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质.13.【答案】,【解析】解:根据题意,f(x)=x2+ax+4在[1,3]恒有两个不同的不动点,得x=x2+ax+4在[1,3]有两个实数根,即x2+(a-1)x+4=0在[1,3]有两个不同实数根,令g(x)=x2+(a-1)x+4.在[1,3]有两个不同交点,∴,即,解得:a∈[-,-3);故答案为:[-,-3).不动点实际上就是方程f(x0)=x0的实数根.二次函数f(x)=x2+ax+4有不动点,是指方程x=x2+ax+4有实根.即方程x=x2+ax+4有两个不同实根,然后根据根列出不等式解答即可.本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,解答该题时,借用了一元二次方程的根的判别式与根这一知识点.14.【答案】[5,+∞)【解析】解:当x<1时,f(x)=1-x+2m-mx+18-6x=19+2m-(m+7)x,当1≤x<2时,f(x)=x-1+2m-m,x+18-6x=17+2m-(m+5)x,f(1)=12+m,2≤x<3时,f(x)=x-1+mx-2m+18-6x=17-2m+(m-5)x,f(2)=7,当x≥3时,f(x)=x-1+mz-2m+6x-18=-19-2m+(m+7)x,f(3)=m+2,若函数f(x)=|x-1|+m|x-2|+6|x-3|在x=2时取得最小值,则解得m≥5,故m的取值范围为[5,+∞),故答案为:[5,+∞),根据条件可得,化为分段函数,根据函数的单调性和函数值即可得到则解得即可.本题考查了函数最值和绝对值函数,并考查了函数的单调性,属于中档题.15.【答案】-1;(-∞,0]∪[4,+∞)【解析】解:①函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-ax+a,其中a∈R,f(-1)=-f(1)=-(1-a+a)=-1;②若f(x)的值域是R,由f(x)的图象关于原点对称,可得当x>0时,f(x)=x2-ax+a,图象与x轴有交点,可得△=a2-4a≥0,解得a≥4或a≤0,即a的取值范围是(-∞,0]∪[4,+∞).故答案为:①-1 ②(-∞,0]∪[4,+∞).①运用奇函数的定义,计算即可得到所求值;②由f(x)的图象关于原点对称,以及二次函数的图象与x轴有交点,由判别式不小于0,解不等式即可得到所求范围.本题考查函数的奇偶性的运用,考查函数的值域的应用,注意运用二次函数的性质和对称性,考查运算能力,属于中档题.16.【答案】,,<<,【解析】解:根据题意,函数,其导数g′(x)=(t-1)+=,令h(x)=(t-1)x2+4,令h(x)=0,即(t-1)x2+4=0可得,x2=,分5种情况讨论,①,t>1时,h(x)=(t-1)x2+4为开口向上的二次函数,在[1,2]上,有h(x)>0,则有g′(x)>0,函数g(x)为增函数,则g(x)在[1,2]上的最大值为g(2)=2(t-1)-=2t-4,②,t=1时,h(x)=4,在[1,2]上,有h(x)>0,则有g′(x)>0,函数g(x)为增函数,则g(x)在[1,2]上的最大值为g(2)=2(t-1)-=2t-4,③,0≤t<1时,h(x)=(t-1)x2+4为开口向下的二次函数,且h(0)=4,且h(2)=t >0,则在[1,2]上,有h(x)>0,则有g′(x)>0,函数g(x)为增函数,则g(x)在[1,2]上的最大值为g(2)=2(t-1)-=2t-4,④,当-3<t<0时,h(x)=(t-1)x2+4为开口向下的二次函数,令h(x)=0,即(t-1)x2+4=0可得x=±,有1<<2,则有在[1,)上,有h(x)>0,则有g′(x)>0,函数g(x)为增函数,在(,2]上,有h(x)<0,则有g′(x)<0,函数g(x)为减函数,此时g(x)在[1,2]上的最大值为g()=-4,⑤,当t≤-3时,h(x)=(t-1)x2+4为开口向下的二次函数,令h(x)=0,即(t-1)x2+4=0可得x=±,此时≤1,在[1,2]上,有h(x)<0,则有g′(x)<0,函数g(x)为减函数,此时g(x)在[1,2]上的最大值为g(1)=t-5;综合可得:;故答案为:.根据题意,由函数g(x)的解析式,对其求导可得数g′(x)=(t-1)+=,令h(x)=(t-1)x2+4,结合二次函数的性质,对t分5种情况讨论,每种情况下,分析h(x)的符号,即可得g′(x)的符号,分析可得函数g(x)的单调性,即可得g(x)在区间[1,2]上的最大值,综合即可得答案.本题考查函数最值的计算,涉及函数导数的性质以及应用,注意对k进行分类讨论.17.【答案】解:(1)关于x的不等式log2(-2x2+3x+t)<0,当t=0时,不等式为log2(-2x2+3x)<0,即0<-2x2+3x<1,等价于,解得<<<或>,即0<x<或1<x<;∴不等式的解集为(0,)∪(1,);(2)不等式log2(-2x2+3x+t)<0有解,∴0<-2x2+3x+t<1,化为2x2-3x<t<2x2-3x+1;设f(x)=2x2-3x,x∈R,∴f(x)min=f()=-,且f(x)无最大值;∴实数t的取值范围是(-,+∞).【解析】(1)t=0时不等式为log2(-2x2+3x)<0,化为0<-2x2+3x<1,求出解集即可;(2)由不等式log2(-2x2+3x+t)<0有解,得出0<-2x2+3x+t<1,化为2x2-3x<t<2x2-3x+1;设f(x)=2x2-3x,求出f(x)min即可得出结论.本题考查了对数函数的定义与不等式的解法和应用问题,是中档题.18.【答案】解:(1)∵y=()2=(1+)2(x>0).∴y>1(2分)由原式有:=,∴x+1=x∴x=(2分)∴f-1(x)=,x∈(1,+∞)(2分)(2)∵(x-1)f-1(x)>a(a-)∴(x-1)>a(a-)(x>0)∴(+1)(-1)>a(a-)∴+1>a2-a∴(a+1)>a2-1(2分)①当a+1>0即a>-1时>a-1对x≥2恒成立-1<a<+1②当a+1<0即a<-1时<a-1对x≥2恒成立∴a>+1此时无解(3分)综上-1<a<+1.(1分)a∈,.【解析】(1)从条件中函数式f(x)=()2=y,(x>0)中反解出x,再将x,y互换即得f(x)的反函数f-1(x).(2)利用(1)的结论,将不等式(x-1)f-1(x)>a(a-)化成(a+1)>a2-1,下面对a分类讨论:①当a+1>0;②当a+1<0.分别求出求实数a的取值范围,最后求它们的并集即可.本小题主要考查反函数、函数恒成立问题等基础知识,考查运算求解能力.求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).19.【答案】(本题满分14分)本题共有2个小题,第1小题满分(5分),第2小题满分(9分).解:(1)当x=0时,t=0;…(2分)当0<x<24时,因为x2+1≥2x>0,所以<,…(4分)即t的取值范围是,.…(5分)(2)当∈,时,由(1),令,则∈,,…(1分)所以=,,<…(3分)于是,g(t)在t∈[0,a]时是关于t的减函数,在∈,时是增函数,因为,,由,所以,当时,;当<时,,即,,<…(6分)由M(a)≤2,解得.…(8分)所以,当∈,时,综合污染指数不超标.…(9分)【解析】(1)利用取倒数,求导数,确定函数的单调性,可得t的取值范围;(2)分段求出每天的综合放射性污染指数不超过2时a的范围,即可得到结论.本题主要考查了函数模型的选择与应用及分类讨论的思想,考查学生分析解决问题的能力,属于中档题.20.【答案】解:(1)∵指数函数y=g(x)满足:g(2)=4,∴g(x)=2x;∴f(x)=是奇函数.∵f(x)是奇函数,∴f(0)=0,即=0,∴n=1;∴f(x)=,又由f(1)=-f(-1)知=-,∴m=2;(2)由(1)知f(x)==-=-+易知f(x)在(-∞,+∞)上为减函数.又∵f(x)是奇函数,从而不等式:f(t2-2t)+f(2t2-k)>0等价于f(t2-2t)>-f(2t2-k)=f(k-2t2),∵f(x)为减函数,∴t2-2t<k-2t2,∴k>3t2-2t=3(t-)2-,∴k>-.【解析】(1)根据指数函数y=g(x)满足:g(2)=4,即可求出y=g(x)的解析式;由题意知f(0)=0,f(1)=-f(-1),解方程组即可求出m,n的值;(2)由已知易知函数f(x)在定义域f(x)在(-∞,+∞)上为减函数.我们可将f (t2-2t)+f(2t2-k)>0转化为k>3t2-2t,根据二次函数的性质即可得到实数k的取值范围.本题考查的知识点:待定系数法求指数函数的解析式,函数的奇偶性和函数单调性的性质,体现了转化的思想,考查了运算能力和灵活应用知识分析解决问题的能力,属中档题.21.【答案】解:(1)函数f(x)=x2的定义域为R,由f(x1)+f(x2)=x12+x22,f(x1+x2)=(x1+x2)2=x12+x1x2+x22,f(x1+x2)-f(x1)-f(x2)=-x12+x1x2-x22=-(x1-x2)2<0,即有f(x1+x2)<f(x1)+f(x2),则函数f(x)=x2为M中元素;(2)证明:函数f(x)是奇函数,定义域为R,且f(-x)=-f(x),图象关于原点对称,若x>0时,f(x1+x2)<f(x1)+f(x2),则x<0时,f(x1+x2)>f(x1)+f(x2),则条件②不满足,则f(x)∉M;(3)证明:设f(x)和g(x)都是M中的元素,当x1,x2对应的点在f(x)或g(x)的图象上,由题设可得结论成立;若x1,x2对应的点一个在f(x)图象上,一个在g(x)的图象上,由f(x1)+g(x2)>g(x1)+g(x2)>g(x1+x2),或f(x1)+g(x2)>f(x1)+f(x2)>f(x1+x2),由题设可得结论成立,综上可得F(x)=<也是M中的元素;比如:f(x)=x2,g(x)=(x+3)2,如x≥-1.5,可得G(x)=x2,x<-1.5,可得G(x)=(x+3)2,取x1=-2,x2=-1,可得x1+x2=-,G(-)=,f(x1)+f(x2)=+=1,可得f(x1+x2)>f(x1)+f(x2),则G(x)不一定为M中的元素.【解析】(1)函数f(x)=x2的定义域为R,运用作差法结合新定义,即可得到结论;(2)运用奇函数的图象关于宇原点对称,即可得证;(3)运用新定义和分类讨论,即可得证;举例f(x)=x2,g(x)=(x+3)2,如x≥-1.5,可得G(x)=x2,x<-1.5,可得G(x)=(x+3)2,取x1=-2,x2=-1,即可得到结论.本题考查新定义的理解和运用,考查作差法和举反例法,考查推理能力和运算能力,属于中档题.。

2018-2019学年上海市复旦附中高二(上)期末数学试卷

2018-2019学年上海市复旦附中高二(上)期末数学试卷

2018-2019学年上海市复旦附中高二(上)期末数学试卷一、填空题(本大题共12题,每题3分,共36分)1.(3分)抛物线x2=4y的准线方程为.2.(3分)若方程表示椭圆,则实教m的取值范围是.3.(3分)若直线l1:ax+2y﹣10=0与直线l2:2x+(a+3)y+5=0平行,则l1与l2之间的距离为.4.(3分)过点(3,3)作圆(x﹣2)2+(y+1)2=1的切线,则切线所在直线的方程为.5.(3分)若一条双曲线与有共同渐近线,且与椭圆有相同的焦点,则此双曲线的方程为.6.(3分)已知三角形ABC的顶点A(﹣3,0),B(3,0),若顶点C在抛物线y2=6x上移动,则三角形ABC的重心的轨迹方程为.7.(3分)设P,Q分别为直线(t为参数,t∈R)和曲线:(θ为参数,θ∈R)上的点,则||PQ|的取值范围是.8.(3分)已知直线l:4x﹣3y+8=0,若P是抛物线y2=4x上的动点,则点P到直线l和它到y铀的距离之和的最小值为9.(3分)如果M为椭圆:上的动点,N为椭圆:上的动点,那么的最大值为.10.(3分)若关于x的方程有两个不相等的实数根,则实数a的取值范围是.11.(3分)已知直线l:ax+by=0与椭圆交于A,B两点,若C(5,5),则的取值范围是.12.(3分)在平面直角坐标系中,已知圆C:x2+y2=r2与曲线交于两点M,N(M 在第一象限),与y轴正半轴交于P点,若>,点Q(7,﹣2),则当m 和r变化时,|TP|+|NQ|的最小值为.二、选择题(本大题共4题,每题4分,共16分)13.(4分)方程3x2﹣8xy+2y2=0所表示的曲线的对称性是()A.关于x轴对称B.关于y轴对称C.关于y=x轴对称D.关于原点对称14.(4分)已知点(a,b)是圆x2+y2=r2外的一点,则直线ax+by=r2与圆的位置关系()A.相离B.相切C.相交且不过圆心D.相交且过圆心15.(4分)已知θ∈R,由所有直线L:x cosθ+(y﹣2)sinθ=1组成的集合记为M,则下列命题中的假命题是()A.存在一个圆与所有直线相交B.存在一个圆与所有直线不相交C.存在一个圆与所有直线相切D.M中的直线所能围成的正三角形面积都相等16.(4分)双曲线x2﹣y2=1的左右焦点分别为F1,F2,若P是双曲线左支上的一个动点,则△PF1F2的内切圆的圆心可能是()A.(﹣1,2)B.,C.,D.(﹣2,1)三、解答题(本大题共5题,共48分)17.已知圆C的圆心在直线x+y﹣8=0,并且圆C与直线l1:y=2x﹣21和l2:y=2x﹣11都相切.(1)求圆C的方程;(2)若直线l:2x+ay+6a=ax+14与圆C有两个不同的交点MN长的最小值.18.已知曲线C是到两定点F1(﹣2,0)、F2(2,0)的距离之差的绝对值等于定长2a的点的集合.(1)若a,求曲线C的方程;(2)若直线l过(0,1)点,且与(1)中曲线C只有一个公共点,求直线方程;(3)若a=1,是否存在一直线y=kx+2与曲线C相交于两点A、B,使得OA⊥OB,若存在,求出k的值,若不存在,说明理由.19.轮船在海上航行时,需要借助无线电导航确认自己所在的位置,以把握航向,现有A,B,C三个无线电发射台,其中A在陆地上,B在海上,C在某国海岸线上,(该国这段海岸线可以近似地看作直线的一部分),如下图,已知A,B两点距离10千米,C是AB 的中点,海岸线与直线AB的夹角为45°,为保证安全,轮船的航路始终要满足:接收到A点的信号比接收到B点的信号晩秒(注:无线电信号每秒传播3×105千米),在某时刻,测得轮船距离C点距离为4千米.(1)以点C为原点,直线AB为x轴建立平面直角坐标系(如图),求出该时刻轮船的位置(2)根据经验,船只在距离海岸线1.5千米以内的海域航行时,有搁浅的风险,如果轮船保持目前的航路不变,那么是否有搁浅风险?20.已知椭圆C的两个焦点分别为F1(﹣c,0),F2(c,0)(c>0),短袖的两个端点分别为B1,B2,且△F1B1B2为等边三角形.(1)若椭圆长轴的长为4,求椭圆C的方程;(2)如果在椭圆C上存在不同的两点P,Q关于直线对称,求实数c的取值范围;(3)已知点M(0,1),椭圆C上两点A,B满足,求点B横坐标的取值范围.21.已知F1,F2为双曲线:>的左、右焦点,过F2作垂直于x轴的垂线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.(1)求双曲线C的两条渐近线的夹角θ;(2)过点F2的直线l和双曲线C的右支交于A,B两点,求△AF1B的面积最小值;(3)过双曲线C上任意一点Q分别作该双曲线两条渐进线的平行线,它们分别交两条渐近线于Q1,Q2两点,求平行四边形OQ1QQ2的面积.。

2017-2018学年高二上学期期末数学试卷(文科) word版含解析

2017-2018学年高二上学期期末数学试卷(文科) word版含解析

2017-2018学年高二(上)期末数学试卷(文科)一、选择题(每小题5分,共60分.在所给的四个选项中,只有一项是符合题目要求的)1.cos600°=()A.B.﹣C.D.﹣【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.2.设集合A={x|x2﹣5x+6<0},B={x|2x﹣5>0},则A∩B=()A.B. C. D.【解答】解:由A中不等式变形得:(x﹣2)(x﹣3)<0,解得:2<x<3,即A=(2,3),由B中不等式解得:x>,即B=(,+∞),则A∩B=(,3),故选:C.3.复数(i是虚数单位)的共轭复数在复平面内对应的点是()A.(2,﹣2)B.(2,2) C.(﹣2,﹣2) D.(﹣2,2)【解答】解:==2﹣2i(i是虚数单位)的共轭复数2+2i在复平面内对应的点(2,2).故选:B.4.已知数列,则a2016=()A.1 B.4 C.﹣4 D.5【解答】解:数列,∴a3=a2﹣a1=4,同理可得:a4=﹣1,a5=﹣5,a6=﹣4,a7=1,a8=5,…,21·世纪*教育网可得an+6=an.则a2016=a335×6+6=a6=﹣4.故选:C.5.取一根长度为4m的绳子,拉直后在任意位置剪断,则剪得的两段长度都不小于1.5m的概率是()A.B.C.D.【解答】解:记“两段的长都不小于1.5m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1.5,所以事件A发生的概率P(A)=.6.已知==2,且它们的夹角为,则=()A. B. C.1 D.2【解答】解:根据条件:==12;∴.故选A.7.给出下列命题:①a>b⇒ac2>bc2;②a>|b|⇒a2>b2;③|a|>b⇒a2>b2;④a>b⇒a3>b3其中正确的命题是()A.①② B.②③ C.③④ D.②④【解答】解:①a>b⇒ac2>bc2在c=0时不成立,故①错误;②a>|b|⇒|a|>|b|⇒a2>b2,故②正确;③a=﹣2,b=1时,|a|>b成立,但a2>b2不成立,故③错误;④y=x3在R上为增函数,故a>b⇒a3>b3,故④正确;故选:D8.如图所示的程序的输出结果为S=1320,则判断框中应填()A.i≥9 B.i≤9 C.i≤10 D.i≥10【解答】解:首先给循环变量i和累积变量S赋值12和1,判断12≥10,执行S=1×12=12,i=12﹣1=11;判断11≥10,执行S=12×11=132,i=11﹣1=10;判断10≥10,执行S=132×10=1320,i=10﹣1=9;判断9<10,输出S的值为1320.故判断框中应填i≥10.故选:D.9.定义在R上的函数f(x)在(6,+∞)上为增函数,且函数y=f(x+6)为偶函数,则A .f (4)<f (7)B .f (4)>f (7)C .f (5)>f (7)D .f (5)<f (7) 【解答】解:根据题意,y=f (x+6)为偶函数,则函数f (x )的图象关于x=6对称, f (4)=f (8),f (5)=f (7); 故C 、D 错误;又由函数在(6,+∞)上为增函数,则有f (8)>f (7); 又由f (4)=f (8), 故有f (4)>f (7); 故选:B .10.已知一个几何体的三视图如图所示,则该几何体的体积是( )A .B .C .D .【解答】解:由已知中的三视图可得:该几何体是一个以侧视图为底面的四棱锥, 其底面面积S=2×2=4,高h=×2=,故体积V==,故选:C .11.气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”,现在甲、乙、丙三地连续五天的日平均温度的记录数据(记录数据都是正整数,单位℃):21教育名师原创作品甲地:五个数据的中位数是24,众数为22; 乙地:五个数据的中位数是27,平均数为24;丙地:五个数据中有一个数据是30,平均数是24,方差为10. 则肯定进入夏季的地区有( ) A .0个 B .1个 C .2个 D .3个【解答】解:气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”, 由此得到:甲地肯定进入夏季,∵五个数据的中位数是24,众数为22,∴22℃至少出现两次,若有一天低于22℃,中位数就不是24℃,故甲地进入夏季; 乙地不一定进处夏季,如13,23,27,28,29,故乙地不一定进入夏季; 丙地不一定进入夏季,10×5﹣(30﹣24)2≥(24﹣x )2, ∴(24﹣x )2≤14,x=21时,成立,故丙地不一定进入夏季. 故选:B .12.已知圆O 的半径为2,PA 、PB 为圆O 的两条切线,A 、B 为切点(A 与B 不重合),则的最小值为( )2·1·c ·n ·j ·yA .﹣12+4B .﹣16+4C .﹣12+8D .﹣16+8【解答】解:设PA 与PO 的夹角为α,则|PA|=|PB|=,y=•=||||cos2α=•cos2α=•cos2α=4记cos2α=μ.则y=4=4[(﹣μ﹣2)+]=﹣12+4(1﹣μ)+≥﹣12+8.当且仅当μ=1﹣时,y 取得最小值:8.即•的最小值为8﹣12.故选:C .二.填空题:本大题共4小题,每小题5分.13.若函数f (x )=x2﹣|x+a|为偶函数,则实数a= 0 . 【解答】解:∵f (x )为偶函数 ∴f (﹣x )=f (x )恒成立 即x2﹣|x+a|=x2﹣|x ﹣a|恒成立 即|x+a|=|x ﹣a|恒成立 所以a=0故答案为:0.14.某程序框图如图所示,则该程序运行后输出的k 的值是 5 .【解答】解:程序在运行过程中各变量的值如下表示:第一圈k=3 a=43 b=34第二圈k=4 a=44 b=44第三圈k=5 a=45 b=54此时a>b,退出循环,k值为5故答案为:5.15.若平面向量,满足||≤1,||≤1,且以向量,为邻边的平行四边形的面积为,则与的夹角θ的取值范围是.【解答】解:∵以向量,为邻边的平行四边形的面积为,∴.∵平面向量,满足||≤1,||≤1,∴,∵θ∈(0,π),∴.∴与的夹角θ的取值范围是.故答案为:.16.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=.【解答】解:由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,∵P(X=0)=,∴,∴p=,P(X=1)=+=P(X=2)==,P(X=3)=1﹣=,∴E(X)==,故答案为:三、解答题17.在△ABC中,内角A,B,C所对边长分别为a,b,c,,∠BA C=θ,a=4.(1)求bc的最大值;(2)求函数的值域.【解答】解:(1)∵=bc•cosθ=8,由余弦定理可得16=b2+c2﹣2bc•cosθ=b2+c2﹣16,∴b2+c2=32,又b2+c2≥2bc,∴bc≤16,即bc的最大值为16,当且仅当b=c=4,θ=时取得最大值;(2)结合(1)得,=bc≤16,∴cosθ≥,又0<θ<π,∴0<θ≤,∴=2sin(2θ+)﹣1∵0<θ≤,∴<2θ+≤,∴sin(2θ+)≤1,当2θ+=,即θ=时,f(θ)min=2×,当2θ+=,即θ=时,f (θ)max=2×1﹣1=1,∴函数f (θ)的值域为[0,1]18.已知函数的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1). (1)求函数f (x )的最小正周期;(2)若存在,使f (x0)=0,求λ的取值范围.【解答】(本题满分为12分)解:(1)=sin2ωx ﹣cos2ωx ﹣λ=2sin (2ωx ﹣)﹣λ,∵函数f (x )的图象关于直线x=π对称,∴解得:2ωx ﹣=kπ+,可得:ω=+(k ∈Z ),∵ω∈(,1).可得k=1时,ω=,∴函数f (x )的最小正周期T==…6分(2)令f (x0)=0,则λ=2sin (﹣),由0≤x0≤,可得:﹣≤﹣≤,则﹣≤sin (﹣)≤1,根据题意,方程λ=2sin (﹣)在[0,]内有解,∴λ的取值范围为:[﹣1,2]…12分19.向量与的夹角为θ,||=2,||=1,=t,=(1﹣t ),||在t0时取得最小值,当0<t0<时,夹角θ的取值范围是 .【解答】解:由题意可得=2×1×co sθ=2cosθ,=﹣=(1﹣t )﹣t,∴||2==(1﹣t )2+t2﹣2t (1﹣t )=(1﹣t )2+4t2﹣4t (1﹣t )cosθ =(5+4cosθ)t2+(﹣2﹣4cosθ)t+1由二次函数知当上式取最小值时,t0=,由题意可得0<<,解得﹣<cosθ<0,∴<θ<故答案为:20.在四棱锥P ﹣ABCD 中,AD ⊥平面PDC ,PD ⊥DC ,底面ABCD 是梯形,AB ∥DC ,AB=AD=PD=1,CD= (1)求证:平面PBC ⊥平面PBD ;(2)设Q 为棱PC 上一点,=λ,试确定 λ的值使得二面角Q ﹣BD ﹣P 为60°.【解答】(1)证明:∵AD ⊥平面PDC ,PD ⊂平面PCD ,DC ⊂平面PDC ,图1所示.∴AD ⊥PD ,AD ⊥DC ,在梯形ABCD 中,过点作B 作BH ⊥CD 于H , 在△BCH 中,BH=CH=1,∴∠BCH=45°, 又在△DAB 中,AD=AB=1,∴∠ADB=45°, ∴∠BDC=45°,∴∠DBC=90°,∴BC ⊥BD . ∵PD ⊥AD ,PD ⊥DC ,AD ∩DC=D . AD ⊂平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥平面ABCD ,∵BC ⊂平面ABCD ,∴PD ⊥BC ,∵BD ∩PD=D ,BD ⊂平面PBD ,PD ⊂平面PBD . ∴BC ⊥平面PBD ,∵BC ⊂平面PBC ,∴平面PBC ⊥平面PBD ;(2)解:过点Q 作QM ∥BC 交PB 于点M ,过点M 作MN ⊥BD 于点N ,连QN . 由(1)可知BC ⊥平面PDB ,∴QM ⊥平面PDB ,∴QM ⊥BD , ∵QM ∩MN=M ,∴BD ⊥平面MNQ ,∴BD ⊥QN ,图2所示. ∴∠QNM 是二面角Q ﹣BD ﹣P 的平面角,∴∠QNM=60°,∵,∴,∵QM∥BC,∴,∴QM=λBC,由(1)知,∴,又∵PD=1,MN∥PD,∴,∴MN===1﹣λ,∵tan∠MNQ=,∴,∴.21.已知椭圆C:+=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.21教育网(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.22.设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(1)分别求出f(x)、g(x)的导数,求得在x=1处切线的斜率,由两直线垂直的条件,解方程即可得到n;(2)求出y=f(x)﹣g(x)的导数,可得,得的最小值为负,运用基本不等式即可求得m﹣n的范围;(3)假设存在实数a,运用构造函数,求出导数,求得单调区间和最值,结合不等式恒成立思想即有三种解法.【解答】解:(1)当m=1时,,∴y=g(x)在x=1处的切线斜率,由,∴y=f(x)在x=1处的切线斜率k=1,∴,∴n=5.(2)易知函数y=f(x)﹣g(x)的定义域为(0,+∞),又,由题意,得的最小值为负,∴m(1﹣n)>4,由m>0,1﹣n>0,∴,∴m+(1﹣n)>4或m+1﹣n<﹣4(舍去),∴m﹣n>3;(3)解法一、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=,其中x>0,a>0,则θ'(x)=,设,∴δ(x)在(0,+∞)单调递减,δ(x)=0在区间(0,+∞)必存在实根,不妨设δ(x0)=0,即,可得(*)θ(x)在区间(0,x0)上单调递增,在(x0,+∞)上单调递减,所以θ(x)max=θ(x0),θ(x0)=(ax0﹣1)•ln2a﹣(ax0﹣1)•lnx0,代入(*)式得,根据题意恒成立.又根据基本不等式,,当且仅当时,等式成立即有,即ax0=1,即.代入(*)式得,,即,解得.解法二、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0根据条件对任意正数x恒成立,即(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,∴且,解得且,即时上述条件成立,此时.解法三、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0要使得(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,等价于(ax﹣1)(2a﹣x)≤0对任意正数x恒成立,即对任意正数x恒成立,设函数,则φ(x)的函数图象为开口向上,与x正半轴至少有一个交点的抛物线,因此,根据题意,抛物线只能与x轴有一个交点,即,所以.。

2017-2018学年高二上学期期末数学试卷(文科)_word版含_解析

2017-2018学年高二上学期期末数学试卷(文科)_word版含_解析

2017-2018学年高二(上)期末数学试卷(文科)一、选择题(每小题5分,共12小题)1.若命题P:∀x∈R,cosx≤1,则()A.¬P:∃x0∈R,cosx0>1 B.¬P:∀x∈R,cosx>1C.¬P:∃x0∈R,cosx0≥1 D.¬P:∀x∈R,cosx≥1【解答】解:因为全称命题的否定是特称命题,所以命题P:∀x∈R,cosx≤1,则¬P:∃x0∈R,cosx0>1.故选A.2.双曲线﹣=1的焦点到渐近线的距离为()A.2 B.C.3 D.2【解答】解:由题得:其焦点坐标为(±4,0).渐近线方程为y=±x所以焦点到其渐近线的距离d==2.故选:D.3.不等式x2>x的解集是()A.(﹣∞,0)B.(0,1) C.(1,+∞)D.(﹣∞,0)∪(1,+∞)【解答】解:∵不等式x2>x,∴x2﹣x>0,∴x(x﹣1)>0,解得x>1或x<0,故选D.4.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.5.执行如图所示的程序框图,输出的s值为()A.﹣10 B.﹣3 C.4 D.5【解答】解:按照程序框图依次执行为k=1,S=1;S=2×1﹣1=1,k=2;S=2×1﹣2=0,k=3;S=2×0﹣3=﹣3,k=4;S=2×(﹣3)﹣4=﹣10,k=4≥5,退出循环,输出S=﹣10.故选A.6.设函数f(x)=xex,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点【解答】解:由于f(x)=xex,可得f′(x)=(x+1)ex,令f′(x)=(x+1)ex=0可得x=﹣1令f′(x)=(x+1)ex>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)ex<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选D7.设抛物线y2=8x的焦点为F,过点F作直线l交抛物线于A、B两点,若线段AB的中点E 到y轴的距离为3,则弦AB的长为()A.5 B.8 C.10 D.12【解答】解:由抛物线方程可知p=4|AB|=|AF|+|BF|=x1++x2+=x1+x2+4由线段AB的中点E到y轴的距离为3得(x1+x2)=3∴|AB|=x1+x2+4=10故答案为:108.曲线y=x3﹣2在点(1,﹣)处切线的斜率是()A.B.1 C.﹣1 D.﹣【解答】解:y=x3﹣2的导数为y′=x2,即有在点(1,﹣)处切线的斜率为k=1.故选B9.定义在R上的函数f(x),其导函数是f′(x),若x•f′(x)+f(x)<0,则下列结论一定正确的是()A.3f(2)<2f(3)B.3f(2)>2f(3)C.2f(2)<3f(3)D.2f(2)>3f(3)【解答】解:设g(x)=xf(x),则g′(x)=[xf(x)]′=xf′(x)+f(x)<0,即函数g(x)=xf(x)单调递减,显然g(2)>g(3),则2f(2)>3f(3),故选:D.10.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于()A.2 B.3 C.6 D.9【解答】解:∵f′(x)=12x2﹣2ax﹣2b,又因为在x=1处有极值,∴a+b=6,∵a>0,b>0,∴,当且仅当a=b=3时取等号,所以ab的最大值等于9.故选:D.11.如图,已知椭圆+=1内有一点B(2,2),F1、F2是其左、右焦点,M为椭圆上的动点,则||+||的最小值为()A.4B.6C.4 D.6【解答】解:||+||=2a﹣(||﹣||)≥2a﹣||=8﹣2=6,当且仅当M,F2,B共线时取得最小值6.故选:B.12.已知xy>0,若+>m2+3m恒成立,则实数m的取值范围是()A.m≥﹣1或m≤﹣4 B.m≥4或m≤﹣1 C.﹣4<m<1 D.﹣1<m<4【解答】解:∵xy>0,∴,当且仅当时,等号成立.的最小值为4.将不等式转化为m2+3m﹣4<0解得:﹣4<m<1.故选:C.二、填空题(每小题5分,共4小题)13.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为100.【解答】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故答案为:100.14.已知x与y之间的一组数据:x 0 1 2 3 4y 1 3 5 7 9则y与x的线性回归方程=x+必过点(2,5).【解答】解:根据题意,计算=×(0+1+2+3+4)=2,=×(1+3+5+7+9)=5则y与x的线性回归方程必过样本中心点(2,5).故答案为:(2,5).15.如果实数x,y满足条件,则z=x+y的最小值为.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,直线在y轴上的截距最小,z有最小值为.故答案为:.16.定义在R上的函数f(x),如果存在函数g(x)=ax+b(a,b为常数),使得f(x)≥g (x)对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数.给出如下命题:2·1·c·n·j·y①函数g(x)=﹣2是函数f(x)=的一个承托函数;②函数g(x)=x﹣1是函数f(x)=x+sinx的一个承托函数;③若函数g(x)=ax是函数f(x)=ex的一个承托函数,则a的取值范围是[0,e];④值域是R的函数f(x)不存在承托函数;其中,所有正确命题的序号是②③.【解答】解:①,∵x>0时,f(x)=lnx∈(﹣∞,+∞),∴不能使得f(x)≥g(x)=﹣2对一切实数x都成立,故①错误;②,令t(x)=f(x)﹣g(x),则t(x)=x+sinx﹣(x﹣1)=sinx+1≥0恒成立,故函数g(x)=x﹣1是函数f(x)=x+sinx的一个承托函数,②正确;③,令h(x)=ex﹣ax,则h′(x)=ex﹣a,由题意,a=0时,结论成立;a≠0时,令h′(x)=ex﹣a=0,则x=lna,∴函数h(x)在(﹣∞,lna)上为减函数,在(lna,+∞)上为增函数,∴x=lna时,函数取得最小值a﹣alna;∵g(x)=ax是函数f(x)=ex的一个承托函数,∴a﹣alna≥0,∴lna≤1,∴0<a≤e,综上,0≤a≤e,故③正确;④,不妨令f(x)=2x,g(x)=2x﹣1,则f(x)﹣g(x)=1≥0恒成立,故g(x)=2x﹣1是f(x)=2x的一个承托函数,④错误;综上所述,所有正确命题的序号是②③.故答案为:②③.三、解答题(共6小题)17.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.【解答】解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]18.一边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒.(1)试把方盒的容积V表示为x的函数;(2)x多大时,方盒的容积V最大?【解答】解:(1)由于在边长为a的正方形铁片的四角截去四个边长为x的小正方形,做成一个无盖方盒,所以无盖方盒的底面是正方形,且边长为a﹣2x,高为x,则无盖方盒的容积V(x)=(a﹣2x)2x,0<x<;(2)∵V(x)=(a﹣2x)2x=4x3﹣4ax2+a2x,0<x<;∴V′(x)=12x2﹣8ax+a2=(6x﹣a)(2x﹣a),∴当x∈(0,)时,V′(x)>0;当x∈(,)时,V′(x)<0;故x=是函数V(x)的最大值点,即当x=时,方盒的容积V最大.19.设函数f(x)=x2+2ax﹣b2+4.(Ⅰ)若a是从﹣2、﹣1、0、1、2五个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求函数f(x)无零点的概率;(Ⅱ)若a是从区间[﹣2,2]任取的一个数,b是从区间[0,2]任取的一个数,求函数f(x)无零点的概率.【解答】解:(Ⅰ)函数f(x)=x2+2ax﹣b2+4无零点等价于方程x2+2ax﹣b2+4=0无实根,可得△=(2a)2﹣4(﹣b2+4)<0,可得a2+b2<4记事件A为函数f(x)=x2+2ax﹣b2+4无零点,总的基本事件共有15个:(﹣2,0),(﹣2,1),(﹣2,2),(﹣1,0),(﹣1,1),(﹣1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),事件A包含6个基本事件,∴P(A)=(Ⅱ)如图,试验的全部结果所构成的区域为(矩形区域)事件A所构成的区域为A={(a,b)|a2+b2<4且(a,b)∈Ω}即图中的阴影部分.∴20.某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:(Ⅰ)补全频率分布直方图;(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.【解答】解:(Ⅰ)分数在[120,130)内的频率1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3,因此补充的长方形的高为0.03,补全频率分布直方图为:…..(Ⅱ)估计平均分为…..(Ⅲ)由题意,[110,120)分数段的人数与[120,130)分数段的人数之比为1:2,用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,需在[110,120)分数段内抽取2人成绩,分别记为m,n,在[120,130)分数段内抽取4人成绩,分别记为a,b,c,d,设“从6个样本中任取2人成绩,至多有1人成绩在分数段[120,130)内”为事件A,则基本事件共有{(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)},共15个.事件A包含的基本事件有{(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)}共9个.∴P(A)==.…..21.已知曲线C上的任一点到点F(0,1)的距离减去它到x轴的距离的差都是1.(1)求曲线C的方程;(2)设直线y=kx+m(m>0)与曲线C交于A,B两点,若对于任意k∈R都有•<0,求m的取值范围.【考点】直线与抛物线的位置关系;轨迹方程.【分析】(1)由题意设曲线C上的任一点为P(x,y),列出,化简求解即可;(2)联立方程y=kx+m及x2=4y,设A(x1,y1),B(x2,y2),利用韦达定理x1+x2=4k,x1x2=﹣4m,通过=﹣4k2+(m﹣1)2﹣4m<0,求解m 即可.【解答】解:(1)曲线C上的任一点到点F(0,1)的距离减去它到x轴的距离的差都是1.由题意设曲线C上的任一点为P(x,y),则,即x2=2y+2|y|;当y≥0时,x2=4y,当y<0时,x=0.曲线C的方程:x2=4y,(y≥0)或x=0(y<0).(2)直线y=kx+m(m>0)与曲线C交于A,B两点,可知曲线C的方程:x2=4y,(y≥0).联立方程y=kx+m及x2=4y,得x2﹣4kx﹣4m=0,设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=﹣4m,所以=﹣4k2+(m﹣1)2﹣4m<0,对任意的k∈R恒成立,(m﹣1)2﹣4m<0,解得3﹣2.22.已知函数.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理;利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的定义域,在定义域内,求出导数大于0的区间,即为函数的增区间,求出导数小于0的区间即为函数的减区间.(Ⅱ)根据函数的单调区间求出函数的最小值,要使f(x)>2(a﹣1)恒成立,需使函数的最小值大于2(a﹣1),从而求得a的取值范围.(Ⅲ)利用导数的符号求出单调区间,再根据函数g(x)在区间[e﹣1,e]上有两个零点,得到,解出实数b的取值范围.【解答】解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞),因为,所以,,所以,a=1.所以,,.由f'(x)>0解得x>2;由f'(x)<0,解得0<x<2.所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2).(Ⅱ),由f'(x)>0解得;由f'(x)<0解得.所以,f(x)在区间上单调递增,在区间上单调递减.所以,当时,函数f(x)取得最小值,.因为对于∀x∈(0,+∞)都有f (x)>2(a﹣1)成立,所以,即可.则.由解得.所以,a的取值范围是.(Ⅲ)依题得,则.由g'(x)>0解得x>1;由g'(x)<0解得0<x<1.所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数g(x)在区间[e﹣1,e]上有两个零点,所以,解得.所以,b的取值范围是.。

2017-2018年上海市复旦附中高二上期中数学试卷(有答案)

2017-2018年上海市复旦附中高二上期中数学试卷(有答案)

复旦大学附属中学2017学年第一学期期中考试试卷高二数学 满分120分一、填空题(每题4分)1.计算矩阵乘积:则3001a b c d ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭__________ 2.若线性方程组的增广矩阵为3110m n -⎛⎫ ⎪-⎝⎭,解为12x y =⎧⎨=⎩,则m n -=__________ 3.平行于直线2350x y -+=,且过点()2,1的直线的点方向式方程为__________4.ABC ∆中,若90C ∠=,2AC BC ==,则AB BC ⋅= __________5.已知1124(3)211201734n n n n n n a n +++---=+-,则lim n n a →∞=__________ 6.已知直角坐标平面内的两个向量()2,1a =-,()1,3b m m =-+,使得平面内的任意一个c 都可以唯一分解成(,)c a b R λμλμ=+∈,则m 的取值范围是__________7.若行列式124cos 50116θ中元素2的代数余子式的值为3,且[]0,2θπ∈,则θ=__________8.设0,0a b >>,若关于,x y 的方程组1010ax y x by +-=⎧⎨+-=⎩无解,则a b +的取值范围为__________9. 在ABC ∆中,()()(),1,2,,38,10A a a B a C ---,若ABC ∆的面积不超过2,则a 的取值范围是__________10.平面直角坐标平面系中,已知()()013,1,5,2P P ,且111()2n n n n PP P P n N *+-=-∈,当n →∞时,点n P 无限接近于点M ,则点M 的坐标为__________11.如图,八个边长为1的小正方形拼成一个24⨯的矩形,,,,A B D E 均为小正方形的顶点。

(1,2,...,2018)AB AP i =⋅=22018.....M ++12. 在ABC ∆中,6AC =,7BC =,1cos 5A =,点O 是ABC ∆的内心,若OP xOA yOB =+,其中01,01x y ≤≤≤≤,则动点P 的轨迹所覆盖的面积为__________二、选择题(每题4分)13.下列命题正确的的是( )A. 若数列{}n a 、{}n b 的极限都存在,且(0)n n n na cb b =≠,则数列{}nc 的极限存在 B. 若数列{}n a 、{}n b 的极限都不存在,则数列{}n n a b +的极限也不存在C. 若数列{}n n a b +、{}n n a b -的极限都存在,则数列{}n a 、{}n b 的极限也都存在D.设12....n n S a a a =+++,若数列{}n a 的极限存在,则数列{}n S 的极限也存在14.设123,,e e e 为单位向量,且3121(0)2e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为( )A.215.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且l i m n n S S →∞=,下列条件中使得3()n S S n N *<∈恒成立的是( )A. 10a >,0.80.9q <<B. 10a <,0.90.8q -<<-C. 10a >,0.70.8q <<D. 10a <,0.80.7q -<<-16.设关于123,,x x x 的线性方程组2123123123000x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩的系数矩阵记为A ,且该方程组存在非零解。

复旦大学附属中学2017-2018学年高二上学期期末考试数学试题+Word版含答案

复旦大学附属中学2017-2018学年高二上学期期末考试数学试题+Word版含答案

绝密★启用前复旦大学附属中学2017-2018学年高二上学期期末考试数学试题2018.01一.填空题1.准线方程为10+=y 的抛物线标准方程为【解析】1=-y ,开口向上,24=x y2.已知圆225+=x y 和点()1,2A ,则过点A 的圆的切线方程为【解析】点()1,2A 在圆上,所以切线方程为25+=x y3.若椭圆221369+=x y 的弦被点(4,2)平分,则此弦在直线的斜率为 【解析】由中点弦结论21222914362=-⇒⋅=-⇒=-b k k k k a 4.参数方程2cos 2sin θθ=⎧⎨=+⎩x y (θ为参数,且θ∈R )化为普通方程是 【解析】由222sin cos 121θθ+=⇒-+=y x ,即23+=x y5.已知椭圆()222104+=>x y a a 与双曲线22193-=x y 有相同的焦点,则a 的值为 【解析】24934-=+⇒=a a6.设1F 和2F 为双曲线22421-=x y 的两个焦点,点P 在双曲线上,且满足1260∠=︒F PF ,则12F PF ∆的面积是【解析】由双曲线焦点三角形面积公式21cotcot 3022S b θ==︒= 7.已知抛物线24y x =的焦点F 和()1,1A ,点P 为抛物线上的动点,则PA PF +取到最小值时点P 的坐标为【解析】过点P 作PB 垂直于准线,过A 作AH 垂直于准线,PA PF PA PB AH +=+≤,此时最小,点P 与点A 的坐标为相同,所以点P 为1(1)4, 8.椭圆2211612x y +=上的点到直线2120x y --=的距离最大值为 【解析】设直线20x y b -+=,联立椭圆,08b ∆=⇒=±,最大值d ==9.双曲线22214x y b -=的左右焦点分别为1F 、2F ,P 为右支上一点,且16PF =,120PF PF ⋅=则双曲线渐近线的夹角为 【解析】根据题意22PF =,由焦点三角形面积公式2121cot 4562S b PF PF =︒=⨯⨯=,∴26b =,渐近线为y x =,夹角为2arctan π-10.已知定点()4,0P -和定圆22:8Q x y x +=,动圆M 和圆Q 外切,且经过点P ,求圆心M 的轨迹方程【解析】结合图像可得,4MQ MP -=,M 的轨迹为双曲线221412x y -=的左支 11.设直线l 与抛物线24y x =相交于A 、B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是【解析】设()11A x y ,、()22B x y ,、()00M x y ,,点差可得02AB k y =,设圆心为O ,则005OM y k x =-,AB OM ⊥ ,00002135y x y x ∴⋅=-⇒=-,在()30M ,处和(3M ,处,确定r 的范围为(2,4)12.已知1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆()()22:114C x y +++=的一条动弦,且AB =PA PB +的最小值是【解析】12l l ⊥,1l 过定点(3,1),2l 过定点(1,3),∴P 轨迹为圆()()22222x y -+-=, 作垂直线段CD AB ⊥,1CD =22PA PB PC CA PC CB PC CD PD +=+++=+=,结合图像可知,最小值为1。

复旦附中高二期末(2018.06)

复旦附中高二期末(2018.06)

复旦附中高二期末数学试卷2018.06一. 填空题1. 已知,{0,1,2,3}a b ∈,则不同的复数z a bi =+的个数是2. 一个竖直平面内的多边形,用斜二侧画法得到的水平放置的直观图是一个边长为2的正方形,该正方形有一组对边是水平的,则原多边形的面积是3. 若2018220180122018(12)x a a x a x a x -=+++⋅⋅⋅+,则0122018||||||||a a a a +++⋅⋅⋅+=4. 在9()2ax x -的展开式中,3x 的系数为94,则常数a = 5. 已知球的体积是V ,则此球的内接正方体的体积为6. 点(1,2,1)A 、(3,3,2)B 、(1,4,3)C λ+,若AB u u u r 、AC uuu r 的夹角为锐角,则λ的取值范围为7. 一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比值是8. 正四面体ABCD 的棱长为2,则所有与A 、B 、C 、D 距离相等的平面截这个四面体所得截面的面积之和为9. 从集合{1,2,,30}⋅⋅⋅中取出五个不同的数组成单调递增的等差数列,则所有符合条件的不同的数列个数是10. 在正三棱锥P -ABC 中,2PA =,1AB =,记二面角P -AB -C 、A -PC -B 的平面角依次为 α、β,则23sin 2cos αβ-=11. 如图,顶点为P 的圆锥的轴截面是等腰直角三角形,母线4PA =,O 是底面圆心,B 是底面圆内一点,且AB ⊥OB ,C 为P A 的中点,OD ⊥PB ,垂足为D ,当三棱锥O -PCD 的体积最大时,OB =12. 已知数列{}n a ,令k b 为1a 、2a 、…、k a 中的最大值()k ∈*N ,则称数列{}n b 为“控制 数列”,数列{}n b 中不同数的个数称为“控制数列”{}n b 的“阶数”,例如:{}n a 为1、3、 5、4、2,则“控制数列”{}n b 为1、3、5、5、5,其“阶数”为3,若数列{}n a 为1、2、3、 4、5、6构成,则能构成“控制数列”{}n b 的“阶数”为2的所有数列{}n a 的首项和是二. 选择题13. 在20183(23)x +的展开式中,系数为有理数的项数为( )A. 336项B. 337项C. 338项D. 1009项14. 如图,某几何体的三视图是三个边长为1的正方形,及每个正方形中的一条对角线,则该几何体的表面积是( )A. 42B. 93+C. 33+D. 32 15. 定义“创新01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意12k m ≤≤,1a 、2a 、…、k a 中0的个数不少于1的个数,若4m =,则不同的“创新01数列”{}n a 的个数为( )A. 12个B. 14个C. 16个D. 18个16. 已知椭圆方程为221425x y +=,将此椭圆绕y 轴旋转一周所得的旋转体的体积为1V ,满 足5022.5y x y x ≥-⎧⎪≤≤⎨⎪≤⎩的平面区域绕y 轴旋转一周所得的旋转体的体积为2V ,则( )A. 21V V =B. 2132V V =C. 2154V V = D. 21,V V 无明确大小关系三. 解答题 17. 已知空间向量a r 与b r 的夹角为66,且||2a =r ||3b =r , 令m a b =-u r r r ,2n a b =+r r r .(1)求a r 、b r 为邻边的平行四边形的面积S ;(2)求m u r 与n r 的夹角θ.18. 有3名女生和5名男生,按照下列条件排队,求各有多少种不同的排队方法?(1)3名女生排在一起;(2)3名女生次序一定,但不一定相邻;(3)3名女生不站在排头和排尾,也互不相邻;(4)每两名女生间至少有两名男生;(5)3名女生中,A 、B 要相邻,A 、C 不相邻.19. 在正四棱锥P -ABCD 中,正方形ABCD 的边长为32,高6OP =,E 是侧棱PD 上的 点且3PD PE =,F 是侧棱P A 上的点且2PA PF =,G 是 PBC 的重心,如图建立空间直 角坐标系.(1)求平面EFG 的一个法向量;(2)求直线AG 与平面EFG 所成角的大小;(3)求点A 到平面EFG 的距离.20. 如图,在多面体ABCDEF 中,平面ADE ⊥平面ABCD ,四边形ABCD 是边长为2的正 方形, ADE 是等腰直角三角形且∠AED 为直角,EF ⊥平面ADE 且1EF =.(1)求异面直线AE 和DF 所成角的大小;(2)求二面角B -DF -C 的平面角的大小.21. 已知p 、0q >,在()m px q +()m ∈*N 的二项展开式中,若存在连续三项的二项式系数成等差数列,将m 的所有可能值从小到大排列构成数列{}n a .(1)求数列{}n a 的通项n a ()n ∈*N ;(2)若在2()a px q +的二项展开式中,当且仅当第10项的系数最大,求q p的取值范围.参考答案一. 填空题1. 162.3. 201834. 45.6. (2,4)(4,)-+∞U7.212ππ+ 8. 3+ 9. 98 10. 2 11. 12. 1044 二. 选择题13. B 14. A 15. B 16. C三. 解答题17.(1)S =(2)θπ=-. 18.(1)63634320P P =;(2)456786720⨯⨯⨯⨯=;(3)35452880P P =;(4)122323542523(22)2880P P P P P P ⨯+⨯=;(5)152256526528640P P P P P ⨯+=.19.(1)(0,1,1);(2);(3. 20.(1)2π;(2)3π. 21.(1)242n a n n =++,n ∈*N ;(2)(0,10).。

2017-2018学年上海市复旦附中高二上学期期末考试数学试题(解析版)

2017-2018学年上海市复旦附中高二上学期期末考试数学试题(解析版)

2017-2018学年上海市复旦附中高二上学期期末考试数学试题一、单选题1.当时,方程所表示的曲线是()A.焦点在轴的椭圆B.焦点在轴的双曲线C.焦点在轴的椭圆D.焦点在轴的双曲线【答案】D【解析】【分析】先化简方程得,即得曲线是焦点在轴的双曲线.【详解】化简得,因为ab<0,所以>0,所以曲线是焦点在轴的双曲线.故答案为:D【点睛】本题主要考查双曲线的标准方程,意在考查学生对该知识的掌握水平和分析推理能力. 2.已知的方程,点是圆内一点,以为中心点的弦所在的直线为,直线的方程为,则()A.,且与圆相离B.,且与圆相交C.与重合,且与圆相离D.,且与圆相交【答案】A【解析】【分析】利用直线m是以P为中点的弦所在的直线可求得其斜率,进而根据直线n的方程可判断出两直线平行;表示出点到直线n的距离,根据点P在圆内判断出a,b和r的关系,进而判断出圆心到直线n的距离大于半径,判断出二者的关系是相离.【详解】直线m是以P为中点的弦所在的直线∴直线m⊥PO,∴m的斜率为﹣,∵直线n的斜率为﹣,∴n∥m圆心到直线n的距离为∵P在圆内,∴a2+b2<r2,∴>r,∴直线n与圆相离.故答案为:A【点睛】(1)本题主要考查直线的位置关系,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.(2)判断直线与圆的位置关系常用的方法,(几何法):比较圆心到直线的距离与圆的半径的大小关系:①②③3.椭圆上有个不同的点,椭圆右焦点,数列是公差大于的等差数列,则的最大值为()A.2017 B.2018 C.4036 D.4037【答案】C【解析】【分析】由已知求出c,可得椭圆上点到点F距离的最大最小值,由等差数列的通项公式求得公差,再由公差大于求得n的最大值.【详解】由已知椭圆方程可得:a2=16,b2=15,则c=1.∴|P1F|=a﹣c=3,当n最大时,|P n F|=a+c=5.设公差为d,则5=3+(n﹣1)d,∴d=,由,可得n<4037,∴n的最大值为4036.故答案为:C【点睛】(1)本题主要考查双曲线的简单几何性质,考查等差数列的通项,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)本题解题的关键是分析得到当n最大时,|P n F|=a+c=5.4.如图,过抛物线的焦点作直线交抛物线于、两点,若,则的大小为()A.15°B.30°C.45°D.不确定【答案】B【解析】【分析】画出图形,利用抛物线的简单几何性质转化求解即可.【详解】取AB中点C,连结MC,过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,以AB为直径的圆与准线l的公共点为M,根据抛物线性质,∴MC平行于x轴,且MF⊥AB,∵∠AMF=60°,∴∠CAM=∠CMA=30°,∴∠CMF=∠MFO=30°,故答案为:B【点睛】(1)本题主要考查抛物线的简单几何性质,考查平面几何知识,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是证明MC平行于x轴,且MF⊥AB.二、填空题5.准线方程为的抛物线标准方程为_______【答案】【解析】【分析】根据准线方程得到抛物线的开口方向和p的值,即得抛物线的标准方程.【详解】,所以抛物线的开口向上,设抛物线方程为,所以抛物线的标准方程为.故答案为:【点睛】(1)本题主要考查抛物线的标准方程的求法,意在考查学生对该知识的掌握水平和数形结合分析推理能力.(2)求抛物线的标准方程,一般利用待定系数法,先定位,后定量. 6.已知圆和点,则过点的圆的切线方程为______【答案】【解析】【分析】先由题得到点A在圆上,再设出切线方程为利用直线和圆相切得到k的值,即得过点A的圆的切线方程.【详解】因为,所以点在圆上,设切线方程为即kx-y-k+2=0,因为直线和圆相切,所以,所以切线方程为,所以切线方程为,故答案为:【点睛】(1)本题主要考查圆的切线方程的求法,意在考查学生对该知识的掌握水平和分析推理能力.(2)点到直线的距离.7.若椭圆的弦被点(4,2)平分,则此弦在直线的斜率为_______【答案】【解析】【分析】利用点差法求直线的斜率.【详解】设弦的端点为则,所以所以所以.故答案为:【点睛】(1)本题主要考查点差法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 如果已知中涉及圆锥曲线的弦的中点,一般利用点差法,可以减少运算,提高解题效率.使用点差法,一般先“设点代点”,再作差,最后化简,最后可以得到中点的坐标和直线的斜率的关系.8.参数方程(为参数,且)化为普通方程是_____【答案】【解析】【分析】由题得,再把两式相加即得参数方程的普通方程.【详解】由题得,两式相加得.所以普通方程为.故答案为:【点睛】(1)本题主要考查参数方程化普通方程,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 参数方程消参常用的方法有三种.①加减消参:直接把两个方程相加减即可消去参数.②代入消参:通过其中的一个方程求出参数的值,再代入另外一个方程化简.③恒等式消参:通过方程计算出,再利用三角恒等式消去参数.9.已知椭圆与双曲线有相同的焦点,则的值为______【答案】4【解析】【分析】由题得,解之即得a的值.【详解】由题得,所以a=4,故答案为:4【点睛】(1)本题主要考查椭圆和双曲线的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)椭圆中,双曲线中10.设和为双曲线的两个焦点,点在双曲线上,且满足,则的面积是_______【答案】【解析】【分析】先求出双曲线的a,b,c,再利用求出,即得三角形的面积.【详解】由题得.由题得所以.故答案为:【点睛】(1)本题主要考查双曲线的几何性质,考查余弦定理解三角形和三角形的面积,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)解答圆锥曲线问题时,看到焦点和焦半径要联想到曲线的定义提高解题效率.11.已知抛物线的焦点和,点为抛物线上的动点,则取到最小值时点的坐标为________【答案】【解析】【分析】设点P在准线上的射影为D,由抛物线的定义把问题转化为求|PA|+|PD|的最小值,同时可推断出当D,P,A三点共线时|PA|+|PD|最小,答案可得.【详解】过点P作PB垂直于准线,过A作AH垂直于准线,PA+PF=PA+PB≤AH,此时最小,点P与点A的坐标为相同,所以点P为.故答案为:【点睛】(1)本题主要考查抛物线的简单几何性质,考查抛物线的最值,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.(2) 解答圆锥曲线问题时,看到焦点和焦半径要联想到曲线的定义提高解题效率.12.双曲线的左右焦点分别为、,为右支上一点,且,则双曲线渐近线的夹角为_______【答案】,或【解析】【分析】利用双曲线的定义,求出,通过焦点三角形面积公式求出b,然后求出双曲线的渐近线方程,即可得到双曲线渐近线的夹角.【详解】根据题意,,由焦点三角形面积公式,渐近线为,夹角为,或.故答案为:,或【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,注意焦点三角形面积公式的应用.13.已知定点和定圆,动圆和圆外切,且经过点,求圆心的轨迹方程_______【答案】双曲线的左支【解析】【分析】画出图形,利用双曲线的定义转化求解即可.【详解】结合图象可得,|MQ|﹣|MP|=4,可得a=2,c=4,则b=,M的轨迹为双曲线的左支.故答案为:双曲线的左支.【点睛】(1)本题主要考查点的轨迹方程,意在考查学生对该知识的掌握水平和分析推理能力.(2)求轨迹方程的四种主要方法:①待定系数法:通过对已知条件的分析,发现动点满足某个曲线(圆、圆锥曲线)的定义,然后设出曲线的方程,求出其中的待定系数,从而得到动点的轨迹方程.②代入法:如果点的运动是由于点的运动引起的,可以先用点的坐标表示点的坐标,然后代入点满足的方程,即得动点的轨迹方程.③直接法:直接把已知的方程和条件化简即得动点的轨迹方程.④参数法:动点的运动主要是由于某个参数的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即,再消参.14.(题文)设直线与抛物线相交于、两点,与圆相切于点,且为线段的中点,若这样的直线恰有4条,则的取值范围是_______【答案】(2,4)【解析】设直线的方程为,,把直线的方程代入抛物线方程,整理可得:则,,则线段的中点由题意可得直线与直线垂直,且当时,有即,整理得把代入到可得,即由于圆心到直线的距离等于半径即,此时满足题意且不垂直于轴的直线有两条当时,这样的直线恰有条,即,综上所述,若这样的直线恰有条,则的取值范围是点睛:本题主要考查的知识点是直线与抛物线,圆的位置关系,考查了学生分析解决问题的能力,属于中档题。

2017-2018年高二上期末数学试卷(理科)含答案解析 (4)

2017-2018年高二上期末数学试卷(理科)含答案解析 (4)

2017-2018学年高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={0,l,3},B={x|x2﹣3x=0},则A∩B=()A.{0}B.{0,1}C.{0,3}D.{0,1,3}2.(5分)“x>2“是“x2+2x﹣8>0“成立的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件3.(5分)函数的最大值是()A.﹣1 B.1 C.6 D.74.(5分)已知双曲线的中心为原点,F(3,0)是双曲线的﹣个焦点,是双曲线的一条渐近线,则双曲线的标准方程为()A.B.C.D.5.(5分)若直线l的方向向量为,平面α的法向量为,则可能使l∥α的是()A.B.C.D.6.(5分)A(,1)为抛物线x2=2py(p>0)上一点,则A到其焦点F的距离为()A.B.+C.2 D.+17.(5分)执行如图所示的程序框图,如果输出的k的值为3,则输入的a的值可以是()A.20 B.21 C.22 D.238.(5分)为得到函数的图象,只需要将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度9.(5分)若,,则sin2α等于()A.B.C.D.10.(5分)若x,y满足约束条件,则的最大值是()A.B.1 C.2 D.311.(5分)某几何体的三视图如图所示,则其表面积为()A.B.9πC.D.10π12.(5分)函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,方程f(g(x))=0有m个实数根,方程g(f(x))=0有n个实数根,则m+n=()A.6 B.8 C.10 D.12二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知a>0,b>0,且a+b=1,则的最小值是.14.(5分)已知向量,,且⊥(+),则y的值为.15.(5分)已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2﹣2x﹣2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.16.(5分)椭圆上的任意一点P(短轴端点除外)与短轴上、下两个端点B1,B2的连线交x轴于点M和N,则|OM|+|ON|的最小值是.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知p:函数y=x2﹣2x+a在区间(1,2)上有1个零点;q:函数y=x2+(2a﹣3)x+1图象与x轴交于不同的两点.若“p∧q”是假命题,“p∨q”是真命题,求实数a的取值范围.18.(12分)在数列{a n}中,a1=,a n+1=•a n,n∈N*.(1)求证:数列{}为等比数列;(2)求数列{a n }的前n 项和S n .19.(12分)已知顶点在单位圆上的△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2acosA=ccosB +bcosC . (1)cosA 的值;(2)若b 2+c 2=4,求△ABC 的面积.20.(12分)某市电视台为了提高收视率而举办有奖问答活动,随机对该市15~65岁的人群抽样了n 人,回答问题统计结果及频率分布直方图如图表所示.(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.21.(12分)已知椭圆的离心率为,且过点.(1)求椭圆E的方程;(2)设不过原点O的直线l:y=kx+m(k≠0)与椭圆E交于P,Q两点,直线OP,OQ的斜率分别为k1,k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.22.(12分)如图,在三棱锥A﹣BCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求二面角B﹣AC﹣D的正弦值.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={0,l,3},B={x|x2﹣3x=0},则A∩B=()A.{0}B.{0,1}C.{0,3}D.{0,1,3}【解答】解:由B中方程变形得:x(x﹣3)=0,解得:x=0或x=3,即B={0,3},∵A={0,1,3},∴A∩B={0,3},故选:C.2.(5分)“x>2“是“x2+2x﹣8>0“成立的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件【解答】解:由x2+2x﹣8>0解得x>2,或x<﹣4.∴“x>2“是“x2+2x﹣8>0“成立的充分不必要条件.故选:B.3.(5分)函数的最大值是()A.﹣1 B.1 C.6 D.7【解答】解:函数,其定义域为{x|3≤x≤4},显然存在最大值是大于0的,则,当=0时,y取得最大值为1.故选:B.4.(5分)已知双曲线的中心为原点,F(3,0)是双曲线的﹣个焦点,是双曲线的一条渐近线,则双曲线的标准方程为()A.B.C.D.【解答】解:∵双曲线的中心为原点,F(3,0)是双曲线的﹣个焦点,∴设双曲线方程为,a>0,∵是双曲线的一条渐近线,∴=,解得a2=4,∴双曲线方程为.故选D.5.(5分)若直线l的方向向量为,平面α的法向量为,则可能使l∥α的是()A.B.C.D.【解答】解:在A中,=﹣2,不可能使l∥α;在B中,=1+0+5=6,不可能使l∥α;在C中,=﹣1,不可能使l∥α;在D中,=0﹣3+3=0,有可能使l∥α.故选:D.6.(5分)A(,1)为抛物线x2=2py(p>0)上一点,则A到其焦点F的距离为()A.B.+C.2 D.+1【解答】解:把A(,1)代入抛物线方程得:2=2p,∴p=1.∴抛物线的焦点为F(0,).∴抛物线的准线方程为y=﹣.∴A到准线的距离为1+=.∴AF=.故选:A.7.(5分)执行如图所示的程序框图,如果输出的k的值为3,则输入的a的值可以是()A.20 B.21 C.22 D.23【解答】解:由题意,模拟执行程序,可得k=0,S=0,满足条件S≤a,S=2×0+3=3,k=0+1=1满足条件S≤a,S=2×3+3=9,k=1+1=2满足条件S≤a,S=2×9+3=21,k=2+1=3由题意,此时,应该不满足条件21≤a,退出循环,输出k的值为3,从而结合选项可得输入的a的值为20.故选:A.8.(5分)为得到函数的图象,只需要将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度【解答】解:由函数y=sin(2x﹣)=sin2(x﹣),且函数y=cos2(﹣x)=cos(﹣2x)=sin2x;为得到函数的图象,只需要将函数的图象向右平移个单位长度.故选:D.9.(5分)若,,则sin2α等于()A.B.C.D.【解答】解:若,,则cosα+sinα=2(cos2α﹣sin2α),即1=4(cosα﹣sinα),平方可得1=16(1﹣sin2α),∴sin2α=,故选:A.10.(5分)若x,y满足约束条件,则的最大值是()A.B.1 C.2 D.3【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得A(1,2),则k OA==2,即的最大值为2.故选:C.11.(5分)某几何体的三视图如图所示,则其表面积为()A.B.9πC.D.10π【解答】解:由三视图可知几何体为圆柱与球的组合体.圆柱的底面半径为1,高为3,球的半径为1.所以几何体的表面积为π×12+2π×1×3+++=9π.故选B.12.(5分)函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,方程f(g(x))=0有m个实数根,方程g(f(x))=0有n个实数根,则m+n=()A.6 B.8 C.10 D.12【解答】解:由图象可知,若f(g(x))=0,则g(x)=﹣1或g(x)=0或g(x)=1;由图2知,g(x)=﹣1时,x=﹣1或x=1;g(x)=0时,x的值有3个;g(x)=1时,x=2或x=﹣2;故m=7;若g(f(x))=0,则f(x)==﹣1.5或f(x)=1.5或f(x)=0;由图1知,f(x)=1.5与f(x)=﹣1.5无解;f(x)=0时,x=﹣1,x=1或x=0;故n=3;故m+n=10;故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知a>0,b>0,且a+b=1,则的最小值是4.【解答】解:∵a>0,b>0,且a+b=1,则=(a+b)=2+≥2+2=4,当且仅当a=b=时取等号.∴的最小值是4.故答案为:4.14.(5分)已知向量,,且⊥(+),则y的值为12.【解答】解:+=(﹣2,y﹣1,5),∵⊥(+),∴•(+)=﹣4﹣(y﹣1)+15=0,则y=12.故答案为:12.15.(5分)已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2﹣2x﹣2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.【解答】解:∵圆的方程为:x2+y2﹣2x﹣2y+1=0∴圆心C(1,1)、半径r为:1根据题意,若四边形面积最小当圆心与点P的距离最小时,距离为圆心到直线的距离时,切线长PA,PB最小圆心到直线的距离为d=3∴|PA|=|PB|=∴故答案为:16.(5分)椭圆上的任意一点P(短轴端点除外)与短轴上、下两个端点B1,B2的连线交x轴于点M和N,则|OM|+|ON|的最小值是2a.【解答】解:设P(x0,y0),⇒化为b2x02=a2(b2﹣y02)直线B1P的方程为:y=x+b,可得M(,0);直线B2P的方程为:y=x﹣b,可得N(,0).则|OM|•|ON|==(定值)则|OM|+|ON|≥2=2a.故答案为:2a.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知p:函数y=x2﹣2x+a在区间(1,2)上有1个零点;q:函数y=x2+(2a﹣3)x+1图象与x轴交于不同的两点.若“p∧q”是假命题,“p∨q”是真命题,求实数a的取值范围.【解答】解:对于p:设f(x)=x2﹣2x+a.该二次函数图象开向上,对称轴为直线x=1,所以,所以0<a<1;对于q:函数y=x2+(2a﹣3)x+1与x轴交于不同的两点,所以(2a﹣3)2﹣4>0,即4a2﹣12a+5>0,解得或.因为“p∧q”是假命题,“p∨q”是真命题,所以p,q一真一假.①当p真q假时,有,所以;②当p假q真时,有,所以或a≤0.所以实数a的取值范围是.18.(12分)在数列{a n}中,a1=,a n+1=•a n,n∈N*.(1)求证:数列{}为等比数列;(2)求数列{a n}的前n项和S n.=a n知=•,【解答】解(1)证明:由a n+1∴{}是以为首项,为公比的等比数列.(2)由(1)知{}是首项为,公比为的等比数列,∴=()n,∴a n=,∴S n=++…+,①则S n=++…+,②①﹣②得S n=+++…+﹣=1﹣,∴S n=2﹣.19.(12分)已知顶点在单位圆上的△ABC中,角A、B、C的对边分别为a、b、c,且2acosA=ccosB+bcosC.(1)cosA的值;(2)若b2+c2=4,求△ABC的面积.【解答】解:(1)∵2acosA=ccosB+bcosC,由正弦定理得:2sinA•cosA=sinCcosB+sinBcosC⇒2sinA•cosA=sin(B+C)=sinA,又∵0<A<π⇒sinA≠0,∴.…(6分)(2)由,由于顶点在单位圆上的△ABC 中,2R=2,利用正弦定理可得:.由余弦定理可得:a 2=b 2+c 2﹣2bccosA ⇒bc=b 2+c 2﹣a 2=4﹣3=1.…(10分) ∴.…(12分)20.(12分)某市电视台为了提高收视率而举办有奖问答活动,随机对该市15~65岁的人群抽样了n 人,回答问题统计结果及频率分布直方图如图表所示.(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.【解答】解:(1)第1组人数5÷0.5=10,所以n=10÷0.1=100;第2组人数100×0.2=20,所以a=20×0.9=18;第3组人数100×0.3=30,所以x=27÷30=0.9;第4组人数100×0.25=25,所以b=25×0.36=9;第5组人数100×0.15=15,所以y=3÷15=0.2.(2)第2,3,4组回答正确的人的比为18:27:9=2:3:1,所以第2,3,4组每组应依次抽取2人,3人,1人.(3)记抽取的6人中,第2组的记为a1,a2,第3组的记为b1,b2,b3,第4组的记为c,则从6名学生中任取2名的所有可能的情况有15种,它们是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),(b2,b3),(b2,c),(b3,c),其中第2组至少有1人的情况有9种,它们是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),故所抽取的人中第2组至少有1人获得幸运奖的概率为p=.21.(12分)已知椭圆的离心率为,且过点.(1)求椭圆E的方程;(2)设不过原点O的直线l:y=kx+m(k≠0)与椭圆E交于P,Q两点,直线OP,OQ的斜率分别为k1,k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.【解答】解:(1)依题意,得,解得a2=4,b2=1.所以椭圆E的方程是.(2)当k变化时,m2为定值.证明如下:由得(1+4k2)x2+8kmx+4(m2﹣1)=0.设P(x1,y1),Q(x2,y2),,,(*)因为直线OP,直线OQ的斜率分别为k1,k2,且4k=k1+k2,所以,得2kx1x2=m(x1+x2),将(*)代入解得,经检验知成立.故当k变化时,m2为定值.22.(12分)如图,在三棱锥A﹣BCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求二面角B﹣AC﹣D的正弦值.【解答】证明:(1)设BD的中点为O,分别连接AO,EO.又因为AB=AD,所以AO⊥BD.因为E为BC的中点,O为BD的中点,所以EO∥CD.又因为CD⊥BD,所以EO⊥BD.又因为OA∩OE=O,OA,OE⊂平面AOE,所以BD⊥平面AOE.又因为AE⊂平面AOE,所以BD⊥AE,即AE⊥BD.解:(2)由(1)求解知AO⊥BD,EO⊥BD.因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,所以AO⊥平面BCD.又因为EO⊂平面BCD,所以AO⊥EO.所以OE,OD,OA两两相互垂直.因为CD⊥BD,BC=4,CD=2,所以.因为O为BD的中点,AO⊥BD,AD=2,所以,.以O为坐标原点,OE,OD,OA分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系O﹣xyz,则O(0,0,0),A(0,0,1),,,,所以,,.设平面ABC的一个法向量为,则,.所以,取,解得.所以是平面ABC的一个法向量.同理可求平面ADC的一个法向量.设二面角B﹣AC﹣D的大小为θ,则.因为0<θ<π,所以,所以二面角B﹣AC﹣D的正弦值为.。

上海高二上学期期末数学试题(解析版)

上海高二上学期期末数学试题(解析版)

一、填空题1.已知点在幂函数的图像上,则幂函数__.1,93⎛⎫⎪⎝⎭()f x =【答案】2x -【分析】设幂函数的解析式,将点坐标代入,得函数解析式. 【详解】设,则,所以,所以.()f x x α=193α⎛⎫= ⎪⎝⎭2α=-2()f x x -=故答案为:.2x -2.设,若复数在复平面内对应的点位于实轴上,则__________. a R ∈(1)()i a i ++=a 【答案】.1-【详解】试题分析:由题意得. (1)()1(1)1i a i a a i R a ++=-++∈⇒=-【解析】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.3.直线与直线的夹角为__(用反三角表示). 10x y +-=320x y --=【答案】3arctan 2【分析】确定斜率,,根据夹角公式计算得到答案. 1k =-3k '=【详解】因为直线的斜率为, 10x y +-=1tan 1k θ==-直线的斜率为, 320x y --=2tan 3k θ'==设两条直线的夹角为,则, θ()1212tan tan 11(1)323k k kk θθθ-'--=-===+'+-⋅因为,所以.π0,2θ⎛⎫∈ ⎪⎝⎭3arctan 2θ=故答案为:3arctan 24.以双曲线的右焦点为圆心,且与双曲线的渐近线相切的圆的方程是________.221916x y -=【答案】()22254x y -+=【分析】求得圆心和半径,由此求得圆的方程.【详解】依题意,所以渐近线为,右焦点,3,4,5a b c ===43y x =±()5,0右焦点到渐近线.44303y x x y =⇒-=4=所求圆的方程为. ()22254x y -+=故答案为:()22254x y -+=5.已知不等式的解集为空集,则实数的取值范围为__.22302 x x x a ⎧--≤⎪⎨-≤⎪⎩a 【答案】或.5a >3a <-【分析】分别解不等式得到,,根据题意得到或,解得13x -≤≤22a x a -≤≤+23a ->21a +<-答案.【详解】由得,由得, 2230x x --≤13x -≤≤||2x a -≤22a x a -≤≤+由题意得或,所以或. 23a ->21a +<-5a >3a <-故答案为:或.5a >3a <-6.已知为坐标原点,在直线上存在点,使得,则的取值范围为__. O (4)y k x =-P ||2OP =k【答案】k ≤≤【分析】解不等式即得解. 2d =≤【详解】由题得直线的方程为, 40kx y k --=所以原点到直线的距离,2d =≤所以,213k ≤解得k ≤≤故答案为:k ≤≤7.将矩形绕边旋转一周得到一个圆柱,,,圆柱上底面圆心为,ABCD AB 3AB =2BC =O EFG ∆为下底面圆的一个内接直角三角形,则三棱锥体积的最大值是_______. O EFG -【答案】4【分析】三棱锥O ﹣EFG 的高为圆柱的高,即高为ABC ,当三棱锥O ﹣EFG 体积取最大值时,△EFG 的面积最大,当EF 为直径,且G 在EF 的垂直平分线上时,(S △EFG )max =,由14242⨯⨯=此能求出三棱锥O ﹣EFG 体积的最大值.【详解】∵将矩形ABCD 绕边AB 旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O ,△EFG 为下底面圆的一个内接直角三角形, ∴三棱锥O ﹣EFG 的高为圆柱的高,即高为ABC , ∴当三棱锥O ﹣EFG 体积取最大值时,△EFG 的面积最大, 当EF 为直径,且G 在EF 的垂直平分线上时, (S △EFG )max =,14242⨯⨯=∴三棱锥O ﹣EFG 体积的最大值V max ==.1()3EFG max S AB ⨯⨯A 14343⨯⨯=故答案为4.【点睛】(1)求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.(2)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 8.直线m 和平面所成角为,则直线m 和平面内任意直线所成角的取值范围是_____α6πα【答案】,62ππ⎡⎤⎢⎥⎣⎦【分析】根据直线与平面所成角的定义得到所成角的最小值为,由三垂线定理可得当该平面内的6π直线与已知直线在平面内的射影垂直时,所成角为,达到最大值.由此即可得到本题答案.2π【详解】直线为,平面为,为内的任意一条直线.m αl α根据直线与平面所成角的定义,可得与平面所成的角是与平面内所有直线所成角中最小的角,m αm α直线与平面内的直线所成角的最小值为,∴m α6π当平面内的直线与直线在平面内的射影垂直时,,与也垂直, αl m n l m 此时,所成的角,达到所成角中的最大值.l m 2π因此,此直线与该平面内任意一条直线所成角的取值范围是.,62ππ⎡⎤⎢⎥⎣⎦故答案为: .,62ππ⎡⎤⎢⎥⎣⎦9.棱长为1的正方体的8个顶点都在球面O 的表面上,E 、F 分别是棱1111ABCD A B C D -、的中点,则直线EF 被球O 截得的线段长为________ 1AA 1DD. 【详解】分析:详解:正方体的外接球球心为O 2和线段EF 相较于HG 两点,连接OG ,取GH 的中点为D 连接OD ,则ODG 为直角三角形,OD=,根据勾股定理得到12,故.点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.10.已知双曲线的渐近线方程为,抛物线:的焦点与双222:1y E x b-=y =C 22(0)y px p =>F 曲线的右焦点重合,过的直线交抛物线于两点,为坐标原点,若向量与的E F l C ,M N O OM ON夹角为,则的面积为_____. 120 MON ∆【答案】【分析】根据双曲线的几何性质,求得抛物线的方程为,设直线的斜率为,则直线的28y x =l k l 方程为,代入抛物线的方程,由根与系数的关系,求得, (2)y k x =-121216,4y y x x =-=设,根据向量的数量积的运算,求得,即可求解的面积.,OM m ON n ==24mn =OMN ∆【详解】由题意,双曲线,可得双曲线的焦点在轴上,且,222:1y E x b -=x 1a =又由渐近线方程为,所以, y =b a =b =2213y x -=所以双曲线的右焦点,(2,0)又因为抛物线:的焦点与双曲线的右焦点重合,即, C 22(0)y px p =>F E 22p=解得,所以抛物线的方程为, 4p =28y x =设直线的斜率为,则直线的方程为,l k l (2)y k x =-代入抛物线的方程消去,可得, x 28160y y k--=设,由根与系数的关系,求得, 1122(,),(,)M x y N x y 121216,4y y x x =-=设,则,,OM m ON n ==1cos1202OA OB mn mn ⋅==-又因为, 121241612OA OB x x y y ⋅=+=-=- 则,解得,1122mn -=-24mn =所以的面积为 OMN ∆11sin1202422S mn ==⨯=【点睛】本题主要考查了双曲线的几何性质,直线与抛物线的位置关系的应用,其中解答中熟练应用双曲线的几何性质求得抛物线的方程,再根据直线抛物线的位置关系,利用根与系数的关系,利用向量的数量积求得的值是解答的关键,着重考查了推理与运算能力.mn 11.在平面直角坐标系中,直线的一般式方程为不全为,类似地,在空间直角0(,ax by c a b ++=0)坐标系中,平面的一般式方程为不全为,则以坐标原点为球心,且与平面0(,,ax by cz d a b c +++=0)相切的球的表面积为__.2360x y z ++-=【答案】727π【分析】利用球心到平面的距离公式以及球的表面积公式,计算可得答案.【详解】球心到平面的距离,d ==故所求球的表面积为. 27247ππ⋅=故答案为:727π12.已知P 为抛物线上的动点,点B 、C 在y 轴上,是△PBC 的内切圆.则22y x =()2211x y -+=最小值为_______.PBC S ∆【答案】8【详解】设、、, ()00,P x y ()0,B b ()0,C c 不妨设,,即. b c >00:PB y bl y b x x --=()0000y b x x y x b --+=又圆心到的距离为1.()1,0PB 1=故. ()()()222220000002y b x y b x b y b x b -+=-+-+易知,上式化简得.02x >()2000220x b y b x -+-=同理,.()2000220x c y c x -+-=所以,,.则. 0022y b c x -+=-002x bc x -=-()()222000204482x y x b c x +--=-因为是抛物线上的点,所以,.则. ()00,P x y 202y x =()()222004222x x b c b c x x -=⇒-=--故. ()()000000142448222PBC x S b c x x x x x =-=⋅=-++≥=--A 当时,上式取等号,此时,,. ()2024x -=04x =0y =±因此,的最小值为8.PBC S A二、单选题13.平面外的两条直线、,且,则是的( ) αa b //a α//a b //b αA .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【分析】利用线面的平行关系及充分必要条件的定义即可判断 【详解】,,且,故,充分; //a α//a b b α⊄//b α,,则,或相交,或异面,不必要.//a α//b α//a b ,a b ,a b 故为充分不必要条件, 故选:A14.设函数,则的最小正周期 2()sin sin f x x b x c =++()f x A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B【详解】试题分析:,其中21cos 2cos 21()sin sin sin sin 222x x f x x b x c b x c b x c -=++=++=-+++当时,,此时周期是;当时,周期为,而不影响周期.故0b =cos 21()22x f x c =-++π0b ≠2πc 选B .【解析】降幂公式,三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数,再判断和的取值是否影响函数()f x b c 的最小正周期.()f x15.已知,,为坐标原点,动点满足,其中、,且(2,1)A -(1,1)B -O P OP mOA nOB =+m R n ∈,则动点的轨迹是( )2222m n -=PA B .焦距为C D .焦距为【答案】D【分析】动点,由得到,,进而得到(,)P x y OP mOA nOB =+m x y =+2n x y =+,化简可得答案.222()(2)2x y x y +-+=【详解】设动点,因为点满足,其中、, (,)P x y P OP mOA nOB =+m R n ∈且,所以,所以,,2222m n -=(,)(2,)x y m n n m =--2x m n =-y n m =-所以,,所以,m x y =+2n x y =+222()(2)2x y x y +-+=即,表示焦距为. 2212x y -=故选:D16.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点ABC A 为,,,且欧拉线方程为,则的重心到垂心的距离为(0,0)A (,0)B m (2,)C n 250x y +-=ABC A ( )A B C D 【答案】D【分析】确定重心为,代入方程得到,确定垂心,代入方程得到,332G m n ⎛⎫⎪⎝⎭+213m n +=(2,)H a ,根据,解得,得到答案.32a =1HB AC k k ⋅=-45n m =⎧⎨=⎩【详解】的顶点为,,,所以重心, ABC A (0,0)A (,0)B m (2,)C n ,332G m n ⎛⎫⎪⎝⎭+代入欧拉线方程,得,即, 225033m n++-=213m n +=因为,都在轴,,故可设垂心, (0,0)A (,0)B m x (2,)C n (2,)H a 代入欧拉线方程,得,,垂心, 2250a +-=32a =32,2H ⎛⎫⎪⎝⎭,整理得到,13222HB ACk k n m =⋅-⋅=-438m n =+,解得,故重心为 213438m n m n +=⎧⎨=+⎩45n m =⎧⎨=⎩74,33G ⎛⎫ ⎪⎝⎭=故选:D三、解答题17.将边长为的正方形(及其内部)绕旋转一周形成圆柱,如图,长为,111AAO O 1OO A AC 23π长为,其中与在平面的同侧.A 11AB 3π1B C 11AAO O(1)求三棱锥的体积;111C O A B -(2)求异面直线与所成的角的大小. 1B C 1AA【答案】(1). 4π【详解】试题分析:(1)由题意可知,圆柱的高,底面半径,,再由三角1h =1r =1113π∠A O B =形面积公式计算后即得.111S O A B A (2)设过点的母线与下底面交于点,根据,知或其补角为直线与1B B 11//BB AA 1C ∠B B 1C B 1AA 所成的角,再结合题设条件确定,.得出即可. π3C ∠OB =1C B =1π4C ∠B B =试题解析:(1)由题意可知,圆柱的高,底面半径. 1h =1r =由的长为,可知. A 11A B π31113π∠A O B =11111111111sin 2S A O A B =O A ⋅O B ⋅∠O B =A1111111V 3C O A B S h -O A B =⋅=A (2)设过点的母线与下底面交于点,则, 1B B 11//BB AA 所以或其补角为直线与所成的角. 1C ∠B B 1C B 1AA 由长为,可知,A AC 2π32π3C ∠AO =又,所以, 111π3∠AOB =∠A O B =π3C ∠OB =从而为等边三角形,得. C OB A 1C B =因为平面,所以. 1B B ⊥C AO 1C B B ⊥B 在中,因为,,,所以, 1C B B A 1π2C ∠B B =1C B =11B B =1π4C ∠B B =从而直线与所成的角的大小为. 1C B 1AA π4【解析】几何体的体积、空间角【名师点睛】此类题目是立体几何中的常见问题.解答本题时,关键在于能利用直线与直线、直线与平面、平面与平面位置关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.18.在△ABC 中,(1)求B 的大小;222a c b +=(2)cos A +cos C 的最大值. 【答案】(1)(2)1 π4【详解】试题分析:(1)由余弦定理及题设得;(2)222cos 2a c b B ac +-===⇒4B π∠=由(1)知当时,34A C π∠+∠=⇒3cos cos()4A C A A π+=+-cos()4A π=-⇒4A π∠=取得最大值.cos A C +1试题解析: (1)由余弦定理及题设得 222cos 2a c b B ac +-==又∵,∴;(2)由(1)知,0B π<∠<4B π∠=34A C π∠+∠=3cos cos()4A C A A π+=+-A A A =,因为,所以当取得最大cos()4A A A π==-304A π<∠<4A π∠=cos A C +值.1【解析】1、解三角形;2、函数的最值.19.已知椭圆:()过点,其左、右焦点分别为,且E 22221x y a b+=0a b >>(3,1)P 12, F F . 126F P F P ⋅=-(1)求椭圆的方程;E (2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明,M N 5x =12F M F N ⊥MN C 理由.【答案】(1) (2) 圆必过定点和 221182x y +=(8,0)(2,0)【详解】试题分析:解:(1)设点的坐标分别为,则12,F F (,0),(,0)(0)c c c ->,故,可得,12(3,1),(3,1)F P c F P c =+=- 212(3)(3)1106F P F P c c c ⋅=+-+=-=- 4c =所以,122a PF PF =+==a =∴,所以椭圆的方程为. 22218162b a c =-=-=E 221182x y +=(2)设的坐标分别为,则,. 由,可得,M N (5,),(5,)m n 1(9,)F M m = 2(1,)F N n = 12F M F N ⊥ ,即,1290F M F N mn ⋅=+= 9mn =-又圆的圆心为半径为,故圆的方程为,即C (5,),2m n +2m n -C 222(5)(()22m n m n x y -+-+-=,也就是,令,可得或, 22(5)()0x y m n y mn -+-++=22(5)()90x y m n y -+-+-=0y =8x =2故圆必过定点和.C (8,0)(2,0)【解析】椭圆的定义,直线与圆的位置关系点评:主要是考查了直线与圆的位置关系,以及椭圆的定义的运用属于九重天。

2017-2018学年上海复旦附中高一上学期期末考数学试卷含详解

2017-2018学年上海复旦附中高一上学期期末考数学试卷含详解

2017-2018学年上海复旦附中高一(上)期末数学试卷一、选择题(本大题共4小题,共12.0分)1.下列函数中,在区间(0,)+∞上为增函数的是A.y = B.2(1)y x =-C.2xy -= D.0.5log (1)y x =+2.已知函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值2,则m 的取值范围是()A.[1,)+∞ B.[0,2]C.(,2]-∞D.[1,2]3.如果函数()y f x =图象上任意一点的坐标(),x y 都满足方程()lg lg lg x y x y +=+,那么正确的选项是()A.()y f x =是区间()0,∞+上的减函数,且4x y +≤B.()y f x =是区间()1,+∞上的增函数,且4x y +≥C.()y f x =是区间()1,+∞上的减函数,且4x y +≥D.()y f x =是区间()1,+∞上的减函数,且4x y +≤4.若函数()f x 的反函数为()1fx -,则函数()1f x -与()11f x --的图象可能是()A. B.C.D.二、填空题(本大题共12小题,共48.0分)5.函数()1f x x =-的定义域是________.6.函数()2210y x x =+-≤≤的反函数()1f x -=______.7.设2()f x =()g x x=,则()()f x g x ⋅=__________﹒8.若log 41,a b =-则a b +的最小值为_________.9.幂函数()()3311t f x t t x+=-+是奇函数,则()2f =______.10.函数21lg82y x x=+-的单调递减区间是______.11.函数1223xxy -=+的值域是______.12.设关于x 的方程265x x a -+=的不同实数解的个数为n ,当实数a 变化时,n 的可能取值组合的集合为______.13.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.14.若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()2f x x ax a =-+,其中a R ∈.①()1f -=______;②若()f x 的值域是R ,则a 的取值范围是______.16.已知函数()()41g x t x x=--,[]1,2x ∈的最大值为()f t ,则()f t 的解析式为()f t =______.三、解答题(本大题共5小题,共60.0分)17.已知关于x 的不等式()22log 230x x t -++<,其中t R ∈.(1)当0=t 时,求该不等式的解;(2)若该不等式有解,求实数t 的取值范围.18.已知函数()()210x f x x x +⎛⎫=> ⎪⎝⎭(1)求函数()f x 的反函数()1fx -;(2)若2x ≥时,不等式()()(11x fx a a --->恒成立,求实数a 的范围.19.某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数()f x 与时刻x (时)的关系为()23214x f x a a x =-+++,[)0,24x ∈,其中a 是与气象有关的参数,且102a ⎡⎤∈⎢⎥⎣⎦,.若用每天()f x 的最大值为当天的综合污染指数,并记作()M a .(1)令21xt x =+,[)0,24x ∈,求t 的取值范围;(2)求()M a 的表达式,并规定当()2M a ≤时为综合污染指数不超标,求当a 在什么范围内时,该市市中心的综合污染指数不超标.20.指数函数()y g x =满足()24g =,且定义域为R 的函数()()()2g x n f x g x m-+=+是奇函数.(1)求实数,m n 的值;(2)若存在实数t ,使得不等式()()22220f t t f t k -+->成立,求实数k 的取值范围.21.设集合M 为下述条件的函数()f x 的集合:①定义域为R ;②对任意实数()1212,x x x x ≠,都有()()121212123333f x x f x f x ⎛⎫++ ⎪⎝⎭<.(1)判断函数()2f x x =是否为M 中元素,并说明理由;(2)若函数()f x 是奇函数,证明:()f x M ∉;(3)设()f x 和()g x 都是M 中的元素,求证:()()()()()()(),,f x f x g x F x g x f x g x ⎧≥⎪=⎨<⎪⎩也是M 中的元素,并举例说明,()()()()()()(),,f x f x g x G x g x f x g x ⎧≤⎪=⎨>⎪⎩不一定是M 中的元素.2017-2018学年上海复旦附中高一(上)期末数学试卷一、选择题(本大题共4小题,共12.0分)1.下列函数中,在区间(0,)+∞上为增函数的是A.y = B.2(1)y x =-C.2xy -= D.0.5log (1)y x =+【答案】A【详解】试卷分析:对A ,函数在上为增函数,符合要求;对B ,在上为减函数,不符合题意;对C ,为上的减函数,不符合题意;对D ,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.2.已知函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值2,则m 的取值范围是()A.[1,)+∞B.[0,2]C.(,2]-∞D.[1,2]【答案】D【分析】根据二次函数223y x x =-+的关系式,可求出对称轴、顶点坐标、与y 轴交点坐标,可画出大致图象,再根据二次函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值2,确定m 的取值范围.【详解】解: 二次函数2223(1)2y x x x =-+=-+,∴抛物线开口向上,对称轴为1x =,顶点坐标为(1,2),与y 轴的交点为(0,3)其大致图象如图所示:由对称性可知,当3y =时,0x =或2x =,二次函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值2,12m ∴.故选:D .3.如果函数()y f x =图象上任意一点的坐标(),x y 都满足方程()lg lg lg x y x y +=+,那么正确的选项是()A.()y f x =是区间()0,∞+上的减函数,且4x y +≤B.()y f x =是区间()1,+∞上的增函数,且4x y +≥C.()y f x =是区间()1,+∞上的减函数,且4x y +≥D.()y f x =是区间()1,+∞上的减函数,且4x y +≤【答案】C【分析】由给出的方程得到函数()y f x =图象上任意一点的横纵坐标,x y 的关系式,利用基本不等式求出x y +的范围,整理出()1111y x x =+≠-,可得函数在()1,+∞上的增减性,二者结合可得正确答案.【详解】()lg lg lg lg x y x y xy+=+= 00x y x y xy >⎧⎪∴>⎨⎪+=⎩22x y xy +⎛⎫≤ ⎪⎝⎭(当且仅当x y =时取等号)22x y x y +⎛⎫∴+≤ ⎪⎝⎭,解得:4x y +≥由x y xy +=得:()11111111x x y x x x x -+===+≠---当()1,x ∈+∞时,11y x =-为减函数111y x ∴=+-在()1,+∞上为减函数故选C【点睛】本题考查了函数单调性的判断,利用基本不等式求最值等知识,关键是能利用对数方程得到真数之间的关系,属于基础题.4.若函数()f x 的反函数为()1fx -,则函数()1f x -与()11f x --的图象可能是()A.B.C.D.【答案】A【分析】f (x )和f ﹣1(x )关于y=x 对称是反函数的重要性质;而将f (x )的图象向右平移a 个单位后,得到的图象的解析式为f (x ﹣a )而原函数和反函数的图象同时平移时,他们的对称轴也相应平移.【详解】函数f (x ﹣1)是由f (x )向右平移一个单位得到,f ﹣1(x ﹣1)由f ﹣1(x )向右平移一个单位得到,而f (x )和f ﹣1(x )关于y=x 对称,从而f (x ﹣1)与f ﹣1(x ﹣1)的对称轴也是由原对称轴向右平移一个单位得到即y=x ﹣1,排除B ,D ;A ,C 选项中各有一个函数图象过点(2,0),则平移前的点坐标为(1,0),则反函数必过点(0,1),平移后的反函数必过点(1,1),由此得A 选项有可能,C 选项排除;故答案为:A【点睛】本题主要考查函数与其反函数的关系,考查函数的图像的变换,意在考查学生对这些知识的掌握水平和分析推理能力.用整体平移的思想看问题,是解决本题的关键.二、填空题(本大题共12小题,共48.0分)5.函数()1f x x =-的定义域是________.【答案】{|2x x -且1}x ≠【分析】根据分明不为零以及偶次根式下被开方数非负列不等式求解.【详解】由题意,要使函数有意义,则1020x x -≠⎧⎨+≥⎩,解得,1x ≠且2x ≥-;故函数的定义域为:{|2x x -且1}x ≠.故答案为:{|2x x -且1}x ≠.【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.6.函数()2210y x x =+-≤≤的反函数()1fx -=______.【答案】()1fx -=,[]2,3x ∈【分析】由原函数的解析式解出自变量x 的解析式,再把x 和y 交换位置,注明反函数的定义域(即原函数的值域)即可.【详解】()2210y x x =+-≤≤ []2,3y ∴∈又x =()1f x -∴=,[]2,3x ∈故答案为()1fx -=,[]2,3x ∈【点睛】本题考查反函数的求解,反函数的定义域容易疏忽出错,注意反函数的定义域是原函数的值域.7.设2()f x =()g x x=,则()()f x g x ⋅=__________﹒【答案】x ,x >1【分析】求f (x )·g (x )的定义域,然后化简f (x )·g (x )即可﹒【详解】()()f x g x ⋅定义域为(1,+∞),2()()x f x xx g ⋅==,∴()()f x g x ⋅=x ,x >1.故答案为:x ,x >1.8.若log 41,a b =-则a b +的最小值为_________.【答案】1【详解】试卷分析:由log 41,a b =-得104a b=>,所以114a b b b +=+≥=(当且仅当14b b =即12b =时,等号成立)所以答案应填1.考点:1、对数的运算性质;2、基本不等式.9.幂函数()()3311t f x t t x+=-+是奇函数,则()2f =______.【答案】2【分析】根据幂函数的定义求出t 的值,再验证()f x 是否为奇函数,从而求出()2f 的值.【详解】()()3311t f x t t x+=-+ 为幂函数311t t ∴-+=,解得:1t =±或0当1t =时,()4f x x =为偶函数,不合题意当1t =-时,()2f x x -=为偶函数,不合题意当0=t 时,()f x x =为奇函数,符合题意()22f ∴=综上所述:()22f =故答案为2【点睛】本题考查了幂函数的定义、奇偶性的应用,属于基础题.10.函数21lg 82y x x =+-的单调递减区间是______.【答案】(]2,1-【分析】根据对数函数定义域要求求得函数的定义域;根据复合函数单调性,由对数函数为增函数,要求复合函数的减区间,需求真数的减区间,即分式的分母的增区间,利用二次函数的单调性求解即可得到结果.【详解】由题意得:21082x x >+-,解得:24-<<x ∴函数21lg82y x x=+-的定义域为()2,4-根据复合函数单调性可知,要求21lg 82y x x=+-的单调递减区间,只需求282y x x =+-在()2,4-上的单调递增区间即可282y x x =+-在(]2,1-上单调递增,在[)1,4上单调递减∴函数21lg82y x x=+-的单调递减区间为(]2,1-故答案为(]2,1-【点睛】本题考查复合函数的单调性的求解,涉及到分式函数、二次函数和对数函数的单调性;易错点是忽略函数定义域的要求,造成求解错误.11.函数1223xxy -=+的值域是______.【答案】11,3⎛⎫- ⎪⎝⎭【分析】采用分离常数法得到4123x y =-++,根据指数函数的值域和不等式的性质即可求得函数的值域.【详解】()2341241232323x x x x x y -++-===-++++233x +> 440233x ∴<<+4111233x ∴-<-+<+∴函数1223xx y -=+的值域为11,3⎛⎫- ⎪⎝⎭故答案为11,3⎛⎫- ⎪⎝⎭【点睛】本题考查分离常数法求解分式型函数的值域问题,涉及到指数函数值域的运用,属于基础题.12.设关于x 的方程265x x a -+=的不同实数解的个数为n ,当实数a 变化时,n 的可能取值组合的集合为______.【答案】{}0,2,3,4【分析】将方程265x x a -+=的实数解的个数问题转化为265y x x =-+与y a =交点的个数问题,作图分析即得答案.【详解】由题意知:n 为265y x x =-+与y a =交点的个数在平面直角坐标系中画出265y x x =-+与y a =的图象,如图:①当a<0时,该方程没有实数根,0n =;②当0a =时,该方程恰有两个实数解,2n =;③当04a <<时,该方程有四个不同的实数根,4n =;④当4a =时,该方程有三个不同的实数根,3n =;⑤当4a >时,该方程有两个不同的实数根,2n =;n ∴的可能取值组合的集合为{}0,2,3,4故答案为{}0,2,3,4【点睛】本题考查了根的存在性及根的个数判断,关键是能够将问题转化为函数交点个数问题,通过数形结合的方法来进行求解.13.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.【答案】10,33⎡⎫--⎪⎢⎣⎭【分析】不动点实际上就是方程f (x 0)=x 0的实数根,二次函数f (x )=x 2+ax +4有不动点,是指方程x =x 2+ax +4有实根,即方程x =x 2+ax +4有两个不同实根,然后根据根列出不等式解答即可.【详解】解:根据题意,f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,得x =x 2+ax +4在[1,3]有两个实数根,即x 2+(a ﹣1)x +4=0在[1,3]有两个不同实数根,令g (x )=x 2+(a ﹣1)x +4在[1,3]有两个不同交点,∴2(1)0(3)01132(1)160g g a a ≥⎧⎪≥⎪⎪⎨-<<⎪⎪-->⎪⎩,即24031001132(1)160a a a a +≥⎧⎪+≥⎪⎪⎨-<<⎪⎪-->⎪⎩,解得:a ∈10,33⎡⎫--⎪⎢⎣⎭;故答案为:10,33⎡⎫--⎪⎢⎣⎭.【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.14.若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;【答案】[)5,+∞【分析】根据条件可化为分段函数,根据函数的单调性和函数值即可得到()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩解不等式组即可.【详解】当1x <时,()()121861927f x x m mx x m m x =-+-+-=+-+,当12x ≤<时,()()121861725f x x m mx x m m x =-+-+-=+-+,且()112f m =+,当23x ≤<时,()()121861725f x x mx m x m m x =-+-+-=-+-,且()27f =,当3x ≥时,()()126181927f x x mx m x m m x =-+-+-=--++,且()32f m =+,若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,根据一次函数的单调性和函数值可得()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩,解得5m ≥,故实数m 的取值范围为[)5,+∞故答案为:[)5,+∞【点睛】本题考查了由分段函数的单调性和最值求参数的取值范围,考查了分类讨论的思想,属于中档题.15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()2f x x ax a =-+,其中a R ∈.①()1f -=______;②若()f x 的值域是R ,则a 的取值范围是______.【答案】①.1-②.(][),04,-∞+∞ 【分析】①运用奇函数的定义,计算即可得到所求值;②由()f x 的图象关于原点对称,可知二次函数的图象与x 轴有交点,得到0∆≥,解不等式即可得到所求范围.【详解】①由题意得:()111f a a =-+=()f x 为R 上的奇函数()()f x f x ∴-=-()()111f f ∴-=-=-②若()f x 的值域为R 且()f x 图象关于原点对称∴当0x >时,()2f x x ax a =-+与x 轴有交点240a a ∴∆=-≥解得:0a ≤或4a ≥a ∴的取值范围为(][),04,-∞+∞ 故答案为1-;(][),04,-∞+∞ 【点睛】本题考查函数的奇偶性的运用,根据函数的值域求解参数范围,涉及到函数函数对称性和二次函数的性质的应用,属于中档题.16.已知函数()()41g x t x x=--,[]1,2x ∈的最大值为()f t ,则()f t 的解析式为()f t =______.【答案】24,0305,3t t t t t -≥⎧⎪--<<⎨⎪-≤-⎩【分析】当1t =和1t >时,可知函数单调递增,则()()2f t g =;当1t <时,结合对号函数性质得到()g x 在()0,∞+2≥、12<<和1≤三种情况下确定()g x在[]1,2上的单调性,进而可确定最大值点,代入求得最大值;综合各种情况可得最终结果.【详解】①当1t=时,()4g xx=-,可知()g x在[]1,2上单调递增()()22f t g∴==-②当1t>时,()()41g x t xx=--,可知()g x在[]1,2上单调递增()()222224f tg t t∴==--=-③当1t<时,()()()4411g x t x t xx x⎡⎤=--=--+⎢⎥⎣⎦由对勾函数性质可知:()g x在⎛⎝上单调递增,在⎫+∞⎪⎭上单调递减2≥,即01t≤<时,()g x在[]1,2上单调递增()()224f tg t∴==-⑵当12<<,即30t-<<时()g x在⎡⎢⎣上单调递增,在2⎤⎥⎦上单调递减()f t g∴==--1≤,即3t£-时,()g x在[]1,2上单调递减()()15f tg t∴==-综上所述:()24,0305,3t tf t tt t-≥⎧⎪=--<<⎨⎪-≤-⎩故答案为24,0305,3t ttt t-≥⎧⎪--<<⎨⎪-≤-⎩【点睛】本题考查含参数的函数最值的求解,涉及到对号函数性质的应用;关键是能够通过分类讨论的方式,将变量所处不同范围时函数的单调性确定,进而根据函数单调性得到最值.三、解答题(本大题共5小题,共60.0分)17.已知关于x的不等式()22log230x x t-++<,其中t R∈.(1)当0=t时,求该不等式的解;(2)若该不等式有解,求实数t 的取值范围.【答案】(1)130,1,22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ ;(2)9,8⎛⎫-+∞ ⎪⎝⎭【分析】(1)根据对数函数性质可得20231x x <-+<,解不等式求得结果;(2)不等式有解等价于2223231x x t x x -<<-+能成立;分别求出不等式左右两侧函数的最小值和最大值,从而得到t 的范围.【详解】(1)当0=t 时,不等式为:()22log 230x x -+<,即20231x x <-+<等价于22231230x x x x ⎧-+<⎨-+>⎩,解得:102x <<或312x <<∴不等式的解集为130,1,22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭(2) 不等式()22log 230x x t -++<有解20231x x t ∴<-++<有解2223231x x t x x ∴-<<-+能成立令()223f x x x =-,则()min 39994848f x f ⎛⎫==-=-⎪⎝⎭令()2231g x x x =-+,则x →+∞或x →-∞时,()g x →+∞98t ∴>-,即实数t 的取值范围为9,8⎛⎫-+∞ ⎪⎝⎭【点睛】本题考查对数不等式的求解、能成立问题的求解;解决能成立问题的关键是能通过分离变量的方式将问题转化为变量与函数最值之间的大小比较,通过求解函数最值求得结果;易错点是求解对数不等式时,忽略定义域的要求.18.已知函数()()210x f x x x +⎛⎫=> ⎪⎝⎭(1)求函数()f x 的反函数()1fx -;(2)若2x ≥时,不等式()()(11x f x a a --->恒成立,求实数a 的范围.【答案】(1)())11fx x -=>;(2)()1-+【分析】(1)首先确定()f x 的值域,再根据解析式反解出x ,再将,x y 互换,标注出定义域(即()f x 的值域)即可得到结果;(2)利用(1)的结论,将不等式化成(211a a +>-,分别在1a =-、1a >-和1a <-三种情况下,利用恒成立的思想求解出实数a 的取值范围.【详解】(1)()22111x f x x x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭x >111x∴+>()()1,y f x ∴=∈+∞又11x+=,解得:x =())11f x x -∴=>(2)由(1)得:((11x a a -=>(211a a ∴+>-①当1a =-时,00>,不成立②当1a >-2111a a a ->=-+对2x ≥恒成立11a ∴-<<+③当1a <-1a <-对2x ≥恒成立x →+∞→+∞∴此时a 无解综上所述:()1a ∈-+【点睛】本小题主要考查反函数、函数恒成立问题等知识,考查运算求解能力;求反函数,一般应分以下步骤:求解出()y f x =的值域,即为所求反函数的定义域;由解析式反求出()x g y =;交换()x g y =中,x y 的位置,标注出定义域即可得到()1fx -.19.某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数()f x 与时刻x (时)的关系为()23214x f x a a x =-+++,[)0,24x ∈,其中a 是与气象有关的参数,且102a ⎡⎤∈⎢⎥⎣⎦,.若用每天()f x 的最大值为当天的综合污染指数,并记作()M a .(1)令21xt x =+,[)0,24x ∈,求t 的取值范围;(2)求()M a 的表达式,并规定当()2M a ≤时为综合污染指数不超标,求当a 在什么范围内时,该市市中心的综合污染指数不超标.【答案】(1)10,2⎡⎤⎢⎣⎦;(2)答案见解析,50,12⎡⎤⎢⎥⎣⎦【分析】(1)当0x =时,得到0=t ;当024x <<时,11t x x=+,利用对勾函数性质可求得10,2t ⎛⎤∈ ⎥⎝⎦,取并集得到结果;(2)由(1)可将()f x 化为()33034231442a t t a g t t a a t a a t ⎧-+≤≤⎪⎪=-++=⎨⎪++<≤⎪⎩,,,得到()g t 的单调性后,可知最大值在0=t 或12t =处取得;分别在104a ≤≤和1142a <≤两种情况下确定()g t 的最大值,即()M a ,由()2M a ≤得到不等式,解不等式求得结果.【详解】(1)当0x =时,0=t 当024x <<时,11t x x=+12x x +≥ (当且仅当1x x =,即1x =时取等号),又0x →时,1x x +→+∞[)12,x x∴+∈+∞110,12t x x⎛⎤∴=∈ ⎥⎝⎦+综上所述:10,2t ⎡⎤∈⎢⎥⎣⎦(2)由(1)知:令21x t x =+,则10,2t ⎡⎤∈⎢⎥⎣⎦,当10,2a ⎡⎤∈⎢⎥⎣⎦时,()()33034231442a t t a f x g t t a a t a a t ⎧-+≤≤⎪⎪==-++=⎨⎪++<≤⎪⎩,当[]0,t a ∈时,()g t 单调递减;1,2t a ⎛⎤∈ ⎥⎝⎦时,()g t 单调递增又()3034g a =+,1524g a ⎛⎫=+⎪⎝⎭()110222g g a ⎛⎫∴-=-⎪⎝⎭①当104a ≤≤时,1202a -≤()1524M a g a ⎛⎫∴==+⎪⎝⎭由()2M a ≤得:34a ≤10,4a ⎡⎤∴∈⎢⎥⎣⎦②当1142a <≤时,1202a ->()()3034M a g a ∴==+由()2M a ≤得:512a ≤15,412a ⎛⎤∴∈ ⎥⎝⎦综上所述:当50,12a ⎡⎤∈⎢⎥⎣⎦时,综合污染指数不超标【点睛】本题主要考查了利用给定函数模型求解实际问题,涉及到函数值域的求解、根据函数性质求解不等式等知识,考查学生分析解决问题的能力,属于中档题.20.指数函数()y g x =满足()24g =,且定义域为R 的函数()()()2g x n f x g x m-+=+是奇函数.(1)求实数,m n 的值;(2)若存在实数t ,使得不等式()()22220f t t f t k -+->成立,求实数k 的取值范围.【答案】(1)2m =,1n =;(2)1,3⎛⎫-+∞ ⎪⎝⎭【分析】(1)由指数函数定义可求得()g x ;利用()f x 为R 的奇函数可利用特殊值()00f =和()()11f f -=-构造方程求得,m n ;(2)由(1)结论可得()11221x f x =-++,可知()f x 为减函数;利用奇偶性将不等式化为()()2222f t t f k t ->-,由单调性得自变量大小关系,整理可得232k t t >-,由不等式有解可得()2min32k t t >-,根据二次函数最小值可求得结果.【详解】(1)()y g x = 为指数函数,即x y a =,又()24g =2a ∴=,即()2xg x =()122x x n f x m+-+∴=+()f x 是定义域为R 的奇函数()00f ∴=,即102n m -=+1n ∴=又()()11f f -=-1121214m m -+-+∴=-++,解得:2m =(2)由(1)得:()()()1212121122221221x x x x x f x +-++-===-++++2x y = 在R 上单调递增()f x \在R 上单调递减()f x 为奇函数()()22220f t t f t k ∴-+->可化为()()()222222f t t f t k f k t ->--=-2222t t k t ∴-<-,即232k t t>-令()232h t t t =-,则()min 11213333h t h ⎛⎫==-=- ⎪⎝⎭13k ∴>-即k 的取值范围为1,3⎛⎫-+∞ ⎪⎝⎭【点睛】本题考查的知识点包括:待定系数法求指数函数的解析式,利用函数的奇偶性和函数单调性求解函数不等式,根据不等式能成立求解参数范围的问题;关键是能够利用函数性质将函数值的比较转化为自变量的大小关系,从而利用分离变量法得到所求变量与函数最值之间的关系.21.设集合M 为下述条件的函数()f x 的集合:①定义域为R ;②对任意实数()1212,x x x x ≠,都有()()121212123333f x x f x f x ⎛⎫++ ⎪⎝⎭<.(1)判断函数()2f x x =是否为M 中元素,并说明理由;(2)若函数()f x 是奇函数,证明:()f x M ∉;(3)设()f x 和()g x 都是M 中的元素,求证:()()()()()()(),,f x f x g x F x g x f x g x ⎧≥⎪=⎨<⎪⎩也是M 中的元素,并举例说明,()()()()()()(),,f x f x g x G x g x f x g x ⎧≤⎪=⎨>⎪⎩不一定是M 中的元素.【答案】(1)()2f x x =为M 中元素,理由见解析;(2)详见解析;(3)详见解析【分析】(1)函数()2f x x =的定义域为R ,运用作差法结合新定义,可判断出满足条件,即可得到结论;(2)根据()()f x f x -=-,得到当210x x ->->时,()()121212123333f x x f x f x ⎛⎫+>+⎪⎝⎭,即可得证;(3)分别讨论12,x x 对应点都在()f x 或()g x 上、12,x x 分别在两个函数上两种情况,可验证出结论;举例()2f x x =,()()23g x x =+,取12x =-,21x =-,可验证出不符合条件,即可得到结论.【详解】(1)函数()2f x x =的定义域为R ,满足条件①()()22121212123333f x f x x x +=+ ,2221212112212121443333999f x x x x x x x x ⎛⎫⎛⎫+=+=++ ⎪ ⎪⎝⎭⎝⎭,()()()222121211221212122422033339999f x x f x f x x x x x x x ⎛⎫∴+--=-+-=--< ⎪⎝⎭即:()()121212123333f x x f x f x ⎛⎫+<+⎪⎝⎭,满足条件②∴函数()2f x x =是M 中元素(2)()f x 为奇函数,()()f x f x ∴-=-若当210x x ->->时,()()121212123333f x x f x f x ⎛⎫--<-+- ⎪⎝⎭则121212123333f x x fx x ⎛⎫⎛⎫+=---⎪ ⎪⎝⎭⎝⎭,()()()()121212123333f x f x f x f x +=----()()121212123333f x x f x f x ⎛⎫∴+>+ ⎪⎝⎭,不满足条件②,()f x M∴∉(3)①若12,x x 对应的点在()f x 或()g x 图象上()(),f x g x Q 都是M 中的元素()()121212123333f x x f x f x ⎛⎫∴+<+ ⎪⎝⎭,()()121212123333g x x g x g x ⎛⎫+<+ ⎪⎝⎭可知结论必然成立②若12,x x 对应的点一个在()f x 上,一个在()g x 上()()()()121212121212333333f x g x g x g x g x x ⎛⎫∴+>+>+ ⎪⎝⎭或()()()()121212121212333333f x g x f x f x f x x ⎛⎫+>+>+ ⎪⎝⎭∴题设结论成立综上所述:()()()()()()(),,f x f x g x F x g x f x g x ⎧≥⎪=⎨<⎪⎩是M 中元素当()2f x x =,()()23g x x =+,满足()(),f x g x 均为M 中元素当32x ≥-时,()2G x x =;当32x <-时,()()23G x x =+取12x =-,21x =-1212433332x x ∴+=->-,41639G ⎛⎫∴-= ⎪⎝⎭又()()12121213333G x G x +=+=,()()121212123333G x x G x x ⎛⎫∴+>+ ⎪⎝⎭()G x ∴存在不满足条件的情况,不一定为M 中的元素【点睛】本题考查新定义的理解与运用,涉及到函数奇偶性的应用、作差法和反例法的应用,考查学生的推理能力和计算能力,相对较抽象,属于中档题.。

2017-2018年上海市复旦附中高二上期末数学试卷含答案

2017-2018年上海市复旦附中高二上期末数学试卷含答案

复旦大学附属中学2017学年第一学期高二年级数学期末考试试卷一、填空(每题4分,共48分)1、准线方程为10y +=的抛物线标准方程为 .2、已知圆225x y +=和点()1,2A ,则过点A 圆的切线方程为 .3、若椭圆221369x y +=的弦被点()4,2平分,则此弦所在直线的斜率为 . 4、参数方程2cos 2sin x y θθ=⎧⎨=+⎩(θ为参数,且R θ∈)化为普通方程是 . 5、已知椭圆()222104x y a a +=>与双曲线22193x y -=有相同的焦点,则a 的值为 . 6、设1F 和2F 为双曲线22421x y -=的两个焦点,点P 在双曲线上,且满足1260F PF ∠=,则12F PF 的面积是 .7、已知抛物线24y x =的焦点F 和点()1,1A ,点P 为抛物线上的动点,则PA PF +取得最小值时点P 的坐标为 .8、椭圆2211612x y +=上的点到直线2120x y --=的距离最大值为 . 9、双曲线22214x y b-=的左右焦点分别为12,F F ,P 为右支上一点,且1126,0PF PF PF =⋅=,则双曲线渐近线的夹角为 .10、已知定点()4,0P -和定圆22:8Q x y x +=,动圆M 与圆Q 外切,且经过点P ,求圆心M 的轨迹方程 .11、设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是 .12、已知直线1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆()()22:114C x y +++=的一条动弦,且AB =PA PB +的最小值是 .二、选择题:(每题4分,共16分)13.当0ab <时,方程22ax ay b -=所表示的曲线是( )A.焦点在x 轴的椭圆B. 焦点在x 轴的双曲线C. 焦点在y 轴的椭圆D. 焦点在y 轴的双曲线14、已知圆O 的方程为()2220x y r r +=>,点()(),0P a b ab ≠是圆O 内一点,以P 为中点的弦所在的直线为m ,直线n 的方程为2ax by r +=,则( ) A.//m n ,且n 与圆O 相离 B. //m n ,且n 与圆O 相交 C. m 与n 重合,且n 与圆O 相离D. m n ⊥,且n 与圆O 相离15、椭圆2211615x y +=上有n 个不同的点123,,,...n P P P P ,椭圆的右焦点F ,数列{}nP F 是公差大于12018的等差数列,则n 的最大值为( )A.2017B.2018C.4036D. 403716、如图,过抛物线()220y px p =>的焦点F 作直线交抛物线于,A B 两点,以AB 为直径的圆与准线l 的公共点为M ,若60AMF ∠=,则MFO ∠的大小为( ) A.15 B.30 C.45 D.不确定三、解答题(共56分)17.(满分10分,各小题5分)已知抛物线2:4C y x =与直线l 交于,A B 两点。

2017-2018学年上海复旦附中高一(上)期末数学试卷

2017-2018学年上海复旦附中高一(上)期末数学试卷

2017-2018学年上海复旦附中高一(上)期末数学试卷一、选择题(本大题共4小题,共12.0分)1. 下列函数中,在区间(0,+∞)上为增函数的是()A. B. C. D.2. 3.已知函数y=x-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是()A. B. C. D.如果函数y=(f x)图象上任意一点的坐标(x,y)都满足方程l g(x+y)=lg x+lg y,那么正确的选项是()A.B.C.D.是区间上的减函数,且是区间上的增函数,且是区间上的减函数,且是区间上的减函数,且4.若函数f(x)的反函数为f(x),则函数f(x-1)与f (x-1)的图象可能是()A. B. C. D.二、填空题(本大题共12小题,共48.0分)5.函数f(x)=的定义域是______.6.7.8. 9.函数y=x+2(-1≤x≤0)的反函数是f(x)=______.设,,则f(x)•g(x)=______.若正数a、b满足log(4b)=-1,则a+b的最小值为______.a幂函数f(x)=(t -t+1)x是奇函数,则f(2)=______.10.函数11.函数y=的单调递减区间是______.的值域是______.12. 设关于x的方程|x-6x+5|=a的不同实数解的个数为n,当实数a变化时,n的可能取值组合的集合为______.13. 对于函数f(x)=x +ax+4,若存在x∈R,使得f(x)=x,则称x是f(x)的一个不动点,已知f0000在x∈[1,3]恒有两个不同的不动点,则实数a的取值范围______.14.若函数f(x)=|x-1|+m|x-2|+6|x-3|在x=2时取得最小值,则实数m的取值范围是______.15.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x-ax+a,其中a∈R.①f(-1)=______;②若f(x)的值域是R,则a的取值范围是______.16.已知函数,x∈[1,2]的最大值为f(t),则f(t)的解析式为f(t)=______.三、解答题(本大题共5小题,共60.0分)17.已知关于x的不等式log(-2x+3x+t)<0,其中t∈R.(1)当t=0时,求该不等式的解;(x)2-1-12-133t+122222(2)若该不等式有解,求实数 t的取值范围.18. 已知函数(x >0).(1)求函数 f (x )的反函数 f (x ); (2)若 x ≥2 时,不等式 >恒成立,求实数 a 的范围.19. 某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数 f (x )与时刻 (x 时)的关系为,x ∈[0,24),其中a 是与气象有关的参数,且 ∈用每天 f (x )的最大值为当天的综合污染指数,并记作 M (a )., .若(1)令 t =,x ∈[0,24),求 t的取值范围;(2)求 M (a )的表达式,并规定当 M (a )≤2 时为综合污染指数不超标,求当 a 在什么范围内时,该 市市中心的综合污染指数不超标.20. 指数函数 y =g (x )满足 g (2)=4,且定义域为 R 的函数是奇函数.(1)求实数 m 、n 的值;(2)若存在实数 t ,使得不等式 f (t -2t )+f (2t -k )>0 成立,求实数 k 的取值范围. -12 221. 设集合 M 为下述条件的函数 f (x )的集合:①定义域为 R ;②对任意实数 x 、x (x ≠x1212),都有<.(1)判断函数 f (x )=x 是否为 M 中元素,并说明理由; (2)若函数 f (x )是奇函数,证明:f (x )∉M ;(3)设 f (x )和 g (x )都是 M 中的元素,求证:F (x )=<也是 M 中的元素,并举例说明,G (x )=>不一定是 M 中的元素.21.【答案】A 【解析】解:A.答案和解析在(0,+∞)上是增函数,满足条件,B .y =(x-1)在(-∞,1]上为减函数,在[1,+∞)上为增函数,不满足条件.C .y=x 在(0,+∞)上为减函数,不满足条件.D .y =log (x+1)在(0,+∞)上为减函数,不满足条件.故选:A根据函数单调性的性质分别进行判断即可.本题主要考查函数单调性的判断,根据常见函数的单调性是解决本题的关键.比较基础.2.【答案】C【解析】解:作出函数 f (x )的图象,如图所示,当 x=1 时,y 最小,最小值是 2,当 x=2 时,y=3,函数 f (x )=x -2x+3 在闭区间[0,m]上上有最大值 3,最小值2,则实数 m 的取值范围是[1,2].故选:C .本题利用数形结合法解决,作出函数 f (x )的图象,如图所示,当 x=1 时,y 最小,最小值是 2,当x=2 时,y=3,欲使函数 f (x )=x -2x+3 在闭区间[0,m]上的上有最大值 3,最小值 2,则实数 m 的 取值范围要大于等于 1 而小于等于 2 即可.本题考查二次函数的值域问题,其中要特别注意它的对称性及图象的应用,属于中档题.3.【答案】C【解析】2 -2 0.5 22解:由 lg (x+y )=lgx+lgy ,得,由 x+y=xy 得: 解得:x+y≥4.,再由 x+y=xy 得:(x ≠1).设 x >x >1,则因为 x >x >1,12所以 x -x 0,x -1>0.2 12则,即 f (x )<f (x ).=.所以 y=f (x )是区间(1,+∞)上的减函数,综上,y=f (x )是区间(1,+∞)上的减函数,且 x+y≥4. 故选:C .由给出的方程得到函数 y=f (x )图象上任意一点的横纵坐标 x ,y 的关系式,利用基本不等式求出x+y 的范围,利用函数单调性的定义证明函数在(1,+∞)上的增减性,二者结合可得正确答案.本题考查了函数单调性的判断与证明,考查了利用基本不等式求最值,训练了利用单调性定义 证明函数单调性的方法,是基础题.4.【答案】A【解析】解:函数 f (x-1)是由 f (x )向右平移一个单位得到,f (x-1)由 f (x )向右平移一个单位得到,而 f (x )和 f (x )关于 y=x 对称,从而 f (x-1)与 f (x-1)的对称轴也是由原对称轴向右平移一个单位得到即 y=x-1,排除 B ,D ;A ,C 选项中各有一个函数图象过点(2,0),则平移前的点坐标为(1,0),则反函数必过点(0,1),1 21 2-1 -1-1 -1平移后的反函数必过点(1,1),由此得:A 选项有可能,C 选项排除;故选:A .f (x )和 f (x )关于 y=x 对称是反函数的重要性质;而将 f (x )的图象向右平移 a 个单位后,得到的图象的解析式为 f (x-a )而原函数和反函数的图象同时平移时,他们的对称轴也相应平移. 用整体平移的思想看问题,是解决本题的关键.5.【答案】{x|x ≥-2 且 x ≠1}【解析】解:由题意,要使函数有意义,则,解得,x≠1 且 x ≥-2;故函数的定义域为:{x|x≥-2 且 x≠1},故答案为:{x|x≥-2 且 x ≠1}.由题意即分母不为零、偶次根号下大于等于零,列出不等式组求解,最后要用集合或区间的形 式表示.本题考查了求函数的定义域,最后要用集合或区间的形式表示,这是容易出错的地方.6.【答案】,x ∈[2,3]【解析】解:∵y =x +2(-1≤x≤0)∴x=-,2≤y≤3,故反函数为故答案为:,x ∈[2,3].,x ∈[2,3].由原函数的解析式解出自变量 x 的解析式,再把 x 和 y 交换位置,注明反函数的定义域(即原函 数的值域).本题考查反函数的求法,考查计算能力,是基础题,反函数的定义域容易疏忽出错,注意反函 数的定义域是原函数的值域.7.【答案】x ,x ∈(1,+∞)【解析】-12解:∵, ,∴f (x )的定义域是(1,+∞),g (x )的定义域是[1,+∞),∴f (x )•g (x )=x ,x ∈(1,+∞),故答案为:x ,x ∈(1,+∞).根据 f (x ),g (x )的解析式求出 f (x )•g (x )的解析式即可.本题考查了求函数的解析式问题,考查函数的定义域,是一道基础题.8.【答案】1【解析】解:根据题意,若正数 a 、b 满足 log (4b )=-1,则有 a=a,即 ab= ,=1,则 a+b≥2即 a+b 的最小值为 1;故答案为:1.根据题意,由对数的运算性质可得 a =,即 ab= ,进而由基本不等式的性质可得 a+b ≥2=1,即可得答案.本题考查基本不等式的性质以及应用,涉及对数的运算性质,关键是分析 a 、b 的关系.9.【答案】2【解析】解:函数 f (x )=(t -t+1)x是幂函数,∴t-t+1=1,解得 t=0 或 t=±1;当 t=0 时,f (x )=x 是奇函数,满足题意;当 t=1 时,f (x )=x 是偶函数,不满足题意;当 t=-1 时,f (x )=x 是偶函数,不满足题意; 综上,f (x )=x ;∴f (2)=2.故答案为:2.根据幂函数的定义求出 t的值,再验证 f (x )是否为奇函数,3 3t+13 4 -2从而求出 f (2)的值.本题考查了幂函数的定义与应用问题,是基础题.10.【答案】(-2,1] 【解析】 解:要求函数需求函数 y=的单调递减区间,,(8+2x-x >0)的增区间,由 8+2x-x >0 可得-2<x <4,对应的二次函数,开口向下, 增区间为:(1,4),减区间为:(-2,1].由复合函数的单调性可知:函数的单调递减区间是:(-2,1].故答案为:(-2,1].由对数函数为增函数,要求复合函数的减区间,需求真数的减区间,分式的分母的增区间,利 用函数的定义域以及二次函数的单调性转化求解即可.本题考查复合函数的单调性,分式函数、二次函数和对数函数的单调性,是中档题.11.【答案】(-1, )【解析】 解:函数 y=∵2 +3>3, ∴0<∴函数 y== =-1.的值域是(-1, ).故答案为(-1, )分离常数后,根据指数函数的值域即可求函数 y 的范围.本题考查分离常数法转化为指数函数的值域的运用,属于基础题.12.【答案】{0,2,3,4}【解析】22x解:关于 x 的方程|x -6x+5|=a ,分别画出 y=|x -6x+5|与 y=a 的图象,如图:①若该方程没有实数根,则 a <0;n=0;②若 a=0,则该方程恰有两个实数解,n=2;③若 a=4 时,该方程有三个不同的实数根,n=3;④当 0<a <4,该方程有四个不同的实数根,n=4;⑤当 a >4,该方程有两个不同的实数根,n=2;n 的可能取值组合的集合为{0,2,3,4}故答案为:{0,2,3,4}.将方程|x -6x+5|=a 的实数解的个数问题转化为函数图象的交点问题,作图分析即得答案.本题考查了根的存在性及根的个数判断.华罗庚曾说过:“数缺形时少直观,形缺数时难入微.数形结合百般好,隔离分家万事非.”数形结合是数学解题中常用的思想方法,能够变抽象 思维为形象思维,有助于把握数学问题的本质.13.【答案】,【解析】解:根据题意,f (x )=x +ax+4 在[1,3]恒有两个不同的不动点,得 x=x +ax+4 在[1,3]有两个实数根,即 x +(a-1)x+4=0 在[1,3]有两个不同实数根,令 g (x )=x +(a-1)x+4.在[1,3]有两个不同交点,22 2 22 2 2∴,即 ,解得:a ∈[-故答案为:[-,-3);,-3).不动点实际上就是方程 f (x )=x 的实数根.二次函数 f (x )=x +ax+4 有不动点,是指方程 0x=x +ax+4 有实根.即方程 x=x +ax+4 有两个不同实根,然后根据根列出不等式解答即可.本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,解答该题时,借用了一元 二次方程的根的判别式与根这一知识点.14.【答案】[5,+∞)【解析】解:当 x <1 时,f (x )=1-x+2m-mx+18-6x=19+2m-(m+7)x ,当 1≤x <2 时,f (x )=x-1+2m-m ,x+18-6x=17+2m-(m+5)x ,f (1)=12+m , 2≤x <3 时,f (x )=x-1+mx-2m+18-6x=17-2m+(m-5)x ,f (2)=7,当 x ≥3 时,f (x )=x-1+mz-2m+6x-18=-19-2m+(m+7)x ,f (3)=m+2, 若函数 f (x )=|x-1|+m|x-2|+6|x-3|在 x=2 时取得最小值,则解得 m ≥5,故 m 的取值范围为[5,+∞),故答案为:[5,+∞),22 2根据条件可得,化为分段函数,根据函数的单调性和函数值即可得到则解得即可.本题考查了函数最值和绝对值函数,并考查了函数的单调性,属于中档题.15.【答案】-1;(-∞,0]∪[4,+∞)【解析】解:①函数 f (x )是定义在 R 上的奇函数,当 x >0 时,f (x )=x -ax+a ,其中 a ∈R , f (-1)=-f (1)=-(1-a+a )=-1;②若 f (x )的值域是 R ,由 f (x )的图象关于原点对称,可得当 x >0 时,f (x )=x -ax+a ,图象与 x 轴有交点,可得△=a △ -4a ≥0,解得 a ≥4 或 a≤0,即 a 的取值范围是(-∞,0]∪[4,+∞).故答案为:①-1 ②(-∞,0]∪[4,+∞).①运用奇函数的定义,计算即可得到所求值;②由 f (x )的图象关于原点对称,以及二次函数的图象与 x 轴有交点,由判别式不小于 0,解不等 式即可得到所求范围.本题考查函数的奇偶性的运用,考查函数的值域的应用,注意运用二次函数的性质和对称性, 考查运算能力,属于中档题.2 2 2,16.【答案】,<<,【解析】解:根据题意,函数其导数g′(x)=(t-1)+令h(x)=(t-1)x+4,=,,令h(x)=0,即(t-1)x +4=0可得,x=分5种情况讨论,,①,t>1时,h(x)=(t-1)x +4为开口向上的二次函数,在[1,2]上,有h(x)>0,则有g′(x)>0,函数g(x)为增函数,则g(x)在[1,2]上的最大值为g(2)=2(t-1)- =2t-4,②,t=1时,h(x)=4,在[1,2]上,有h(x)>0,则有g′(x)>0,函数g(x)为增函数,则g(x)在[1,2]上的最大值为g(2)=2(t-1)- =2t-4,③,0≤t<1时,h(x)=(t-1)x+4为开口向下的二次函数,且h(0)=4,且h(2)=t>0,则在[1,2]上,有h(x)>0,则有g′(x)>0,函数g(x)为增函数,则g(x)在[1,2]上的最大值为g(2)=2(t-1)- =2t-4,④,当-3<t<0时,h(x)=(t-1)x +4为开口向下的二次函数,令h(x)=0,即(t-1)x +4=0可得x=±,有1<则有在[1,<2,)上,有h(x)>0,则有g′(x)>0,函数g(x)为增函数,2222222在(,2]上,有 h (x )<0,则有 g ′(x )<0,函数 g (x )为减函数,此时 g (x )在[1,2]上的最大值为 g ()=-4,, ⑤,当 t≤-3 时,h (x )=(t-1)x +4 为开口向下的二次函数, 令 h (x )=0,即(t-1)x +4=0 可得x=±此时≤1,在[1,2]上,有 h (x )<0,为减函数,则有 g ′(x )<0,函数 g (x )此时 g (x )在[1,2]上的最大值为 g (1)=t-5;综合可得:;故答案为:.根据题意,由函数 g (x )的解析式,对其求导可得数 g ′(x )=(t-1)+=,令 h (x )=(t-1)x +4,结合二次函数的性质,对 t分 5 种情况讨论,每种情况下,分析 h (x )的符号,即可得 g ′(x )的符号,分析可得函数 g (x )的单调性,即可得 g (x )在区间[1,2]上的最大值,综合即可得答案. 本题考查函数最值的计算,涉及函数导数的性质以及应用,注意对 k 进行分类讨论.17.【答案】解:(1)关于 x 的不等式 log (-2x +3x +t )<0, 2当 t =0 时,不等式为 log (-2x +3x )<0, 2即 0<-2x +3x <1,等价于,< <解得<或 >,即 0<x < 或 1<x < ;∴不等式的解集为(0, )∪(1, );(2)不等式 log (-2x +3x +t )<0 有解, 2 ∴0<-2x +3x +t <1, 化为 2x -3x <t <2x -3x +1; 2222 2 2 2 2 2 2设 f (x )=2x -3x ,x ∈R ,∴f (x ) =f ( )=- ,且 f (x )无最大值;min∴实数 t的取值范围是(-,+∞).【解析】(1)t=0 时不等式为 log (-2x +3x)<0,化为 0<-2x +3x <1,2求出解集即可;(2)由不等式 log (-2x +3x+t )<0 有解,2得出 0<-2x +3x+t <1,化为 2x -3x <t <2x -3x+1;设 f (x )=2x -3x ,求出 f (x ) 即可得出结论.本题考查了对数函数的定义与不等式的解法和应用问题,是中档题.18.【答案】解:(1)∵y =() =(1+ ) (x >0).∴y >1(2 分)由原式有:=,∴x +1= x∴x =(2 分)∴f (x )=,x ∈(1,+∞)(2 分)(2)∵(x -1)f (x )>a (a -)∴(x -1)>a (a -)(x >0)∴(∴+1)( +1>a -a-1) >a (a -)∴(a +1) >a -1(2 分)①当 a +1>0 即 a >-1 时 >a -1 对 x ≥2 恒成立-1<a < ②当 a +1<0 即 a <-1 时 <a -1 对 x ≥2 恒成立 ∴a > +1 此时无解(3 分)综上-1<a < +1.(1 分) a ∈ , .【解析】+1(1)从条件中函数式 f (x )=( (x ).2 -1(2)利用(1)的结论,将不等式(x-1)f (x )>a (a-)化成(a+1) >a2-1,下面对 a 分类讨论:2 2 2 22 2 2 2 min 2 2 -1 -1 2 2) =y ,(x >0)中反解出 x ,再将 x换即得 f (x )的反函数 f ,y 互 -1①当a+1>0;②当a+1<0.分别求出求实数a的取值范围,最后求它们的并集即可.本小题主要考查反函数、函数恒成立问题等基础知识,考查运算求解能力.求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).19.【答案】(本题满分14分)本题共有2个小题,第1小题满分(5分),第2小题满分(9分).解:(1)当x=0时,t=0;…(2分)当0<x<24时,因为x2+1≥2x>0,所以<,…(4分)即t的取值范围是,.…(5分)(2)当∈,时,由(1),令,则∈,,…(1分)所以=,,<…(3分)于是,g(t)在t∈[0,a]时是关于t的减函数,在∈,时是增函数,因为,,由,所以,当当<时,;时,,即,,<…(6分)由M(a)≤2,解得.…(8分)所以,当∈【解析】,时,综合污染指数不超标.…(9分)(1)利用取倒数,求导数,确定函数的单调性,可得t的取值范围;(2)分段求出每天的综合放射性污染指数不超过2时a的范围,即可得到结论.本题主要考查了函数模型的选择与应用及分类讨论的思想,考查学生分析解决问题的能力,属于中档题.20.【答案】解:(1)∵指数函数y=g(x)满足:g(2)=4,∴g(x)=2;∴f(x)=是奇函数.∵f(x)是奇函数,∴f(0)=0,即=0,∴n=1;∴f(x)=,又由f(1)=-f(-1)知∴m=2;(2)由(1)知f(x)==-,=-=-+易知f(x)在(-∞,+∞)上为减函数.又∵f(x)是奇函数,从而不等式:f(t-2t)+f(2t-k)>0等价于f(t -2t)>-f(2t -k)=f(k-2t ∵f(x)为减函数,),∴t-2t<k-2t,∴k>3t -2t=3(t-∴k>-.)-,【解析】(1)根据指数函数y=g(x)满足:g(2)=4,即可求出y=g(x)的解析式;由题意知f(0)=0,f(1)=-f (-1),解方程组即可求出m,n的值;(2)由已知易知函数f(x)在定义域f(x)在(-∞,+∞)上为减函数.我们可将f(t -2t)+f(2t-k)>0转化为k>3t2-2t,根据二次函数的性质即可得到实数k的取值范围.本题考查的知识点:待定系数法求指数函数的解析式,函数的奇偶性和函数单调性的性质,体现了转化的思想,考查了运算能力和灵活应用知识分析解决问题的能力,属中档题.21.【答案】解:(1)函数f(x)=x的定义域为R,由f(x)+f(x)=x+x,1212f(x+x)=(x + x)1212=x+x x + x,1122x22222222222222222f ( x + x )- f (x )- f (x )=- x + x x - x1 2 1 2 1 1 2 2=- (x -x ) <0, 1 2即有 f ( x + x )< f (x )+ f (x ),1 2 1 2则函数 f (x )=x 为M 中元素; (2)证明:函数 f (x )是奇函数,定义域为 R , 且 f (-x )=-f (x ),图象关于原点对称,若 x >0 时,f ( x + x )< f 1 2则 x <0 时,f ( x + x )> f 1 2(x )+ f (x ),1 2(x )+ f (x ), 1 2则条件②不满足,则 f (x )∉M ;(3)证明:设 f (x )和 g (x )都是 M 中的元素, 当 x ,x 对应的点在 f (x )或 g (x )的图象上,1 2由题设可得结论成立;若 x ,x 对应的点一个在 f (x )图象上,一个在 g (x )的图象上, 12由 f (x )+ g (x )> g (x )+ g (x )>g ( x + x ), 121212或 f (x )+ g (x )> f (x )+ f (x )>f ( x + x ),1 2 1 2 1 2由题设可得结论成立,综上可得 F (x )=<也是 M 中的元素;比如:f (x )=x ,g (x )=(x +3) , 如 x ≥-1.5,可得 G (x )=x ,x <-1.5,可得 G (x )=(x +3) , 取 x =-2,x =-1,12可得 x + x =- ,G (- 1 2)= ,f (x )+ f (x )= + =1, 1 2可得 f ( x + x )> f (x )+ f (x ),1 2 1 2则 G (x )不一定为 M 中的元素.【解析】(1)函数 f (x )=x 的定义域为 R ,运用作差法结合新定义,即可得到结论; (2)运用奇函数的图象关于宇原点对称,即可得证;2 22 2 2 2 2 2 2(3)运用新定义和分类讨论,即可得证;举例 f (x )=x ,g (x )=(x+3) ,如 x ≥-1.5,可得 G (x )=x ,x<-1.5,可得 G (x )=(x+3) ,取 x =-2,x =-1,即可得到结论.12本题考查新定义的理解和运用,考查作差法和举反例法,考查推理能力和运算能力,属于中档 题.2 2 22。

上海市复旦附中2018-2019学年高二上期末数学期末试卷(答案不全)

上海市复旦附中2018-2019学年高二上期末数学期末试卷(答案不全)

2018-2019学年复旦附中第一学期高二年级期末考试卷2019.01一、填空题(本大题共12题,每题3分,共36分) 1、抛物线24x y =,的准线方程是____. 答案:y=-12、若方程22171x y m m +=--表示椭圆,则实教m 的取值范围是_______.答案:1<m<7且m ≠43、若直线1:2100l ax y +-=与直线()2:2350l x a y +++=平行,则1l 与2l 之间的距离为______.答案:5根号5÷24、过点(3,3)作圆()()22211x y -++=的切线,则切线所在直线的方程为__________. 答案:x=3或者y=15/8 x-21/85、若一条双曲线与2218x y -=有共同渐近线,且与椭圆21202x y +=有相同的焦点,则此双曲线的方程为______.答案:x^2÷16-y^2÷2=16、已知三角形ABC 的顶点()()3,0,3,0A B -,若顶点C 在抛物线26y x =上移动,则三角形ABC 的重心的轨迹方程为____________.答案:y^2=2x x ≠07、设,P Q 分别为直线182x t y t =-⎧⎨=-⎩(t 为参数,t R ∈)和曲线1:2x C y θθ⎧=⎪⎨=-+⎪⎩(θ为参数,R θ∈)上的点,则|PQ 的取值范围是_______.答案:[根号5÷5,11根号5÷5]8、已知直线:4380l x y -+=,若P 是抛物线24y x =上的动点,则点P 到直线l 和它到y 铀的距离之和的最小值为_______答案:7/59、如果M 为椭圆2211259x y C +=上的动点,N 为椭圆222:199x y C +=上的动点,那么OM ON ⋅的最大值为_________.答案:1510、若关于x x a a =--有两个不相等的实数根,则实数a 的取值范围是__________.答案:(-根号2÷2,0.5]11、已知直线:0l ax by +=与椭圆2219y x +=交于,A B 两点,若()5,5C ,则CA CB ⋅的取值范围是_______.答案:[40,50]12、在平面直角坐标系中,已知圆222:C x y r +=与曲线x =交于两点,M N (M 在第一象限),与y 轴正半轴交于P 点,若()0OT mOM m =>,点()7,2Q -,则当m 和r 变化时,+TP NQ 的最小值为_________. 答案:二、选择题(本大题共4题,每题4分,共16分) 13、方程223820x xy y -+=所表示的曲线的对称性是()A 关于x 轴对称B 关于y 轴对称 C.关于y x =轴对称 D 关于原点对称 答案:D14、若点(),a b 是圆222x y r +=外一点,则直线2ax by r +=与圆的位置关系为() A 相离 B 相切C 相交不过圆心D 相交且过圆心答案:A15、已知R θ∈,由所有直线():2cos 1L x θ-=组成的集合记为M ,则下列命题中的假命题是()A 存在一个圆与所有直线相交B 存在一个圆与所有直线不相交C 存在一个圆与所有直线相切D M 中的直线所能围成的正三角形面积都相等答案:ACD16、双曲线221x y -=的左右焦点分别为12,F F ,若P 是双曲线左支上的一个动点,则12PF F ∆的内切圆的圆心可能是() A.(-1,2) B.1(1,)2-C.1(,1)2-D.(-2,1)答案:三、解答题(本大题共5题,共48分)17、已知圆C 的圆心在直线80x y +-=,并且圆C 与直线1:221l y x =-和2:211l y x =-都相切.(1)求圆C 的方程;(2)若直线:2614l x ay a ax ++=+与圆C 有两个不同的交点MN 长的最小值. 答案:18、在平面直角坐标系xoy 中,动圆M 圆心的轨迹为曲线C .(1)如果直线l 过点(0,4)且和曲线C 只有一个公共点,求直线l 的方程;(2)已知不经过原点的直线l 与曲线C 相交于,A B 两点,判断命题“如果90AOB ∠=,那么直线l 经过点()4,0T ”是真命题还是假命题,并说明理由.19、轮船在海上航行时,需要借助无线电导航确认自己所在的位置,以把握航向,现有,,A B C 三个无线电发射台,其中A 在陆地上,B 在海上,C 在某国海岸线上,(该国这段海岸线可以近似地看作直线的一部分),如下图,已知,A B 两点距离10千米,C 是AB 的中点,海岸线与直线AB 的夹角为45°,为保证安全,轮船的航路始终要满足:接收到A 点的信号比接收到B 点的信号晩137500秒(注:无线电信号每秒传播3×105千米),在某时刻,测得轮船距离C 点距离为4千米.(1)以点C 为原点,直线AB 为x 轴建立平面直角坐标系(如图),求出该时刻轮船的位置 (2)根据经验,船只在距离海岸线1.5千米以内的海域航行时,有搁浅的风险,如果轮船保持目前的航路不变,那么是否有搁浅风险? 答案:20、已知椭圆C 的两个焦点分别为()()()12,0,,00F c F c c ->,短袖的两个端点分别为12,B B ,且112F B B ∆为等边三角形.(1)若椭圆长轴的长为4,求椭圆C 的方程; (2)如果在椭圆C 上存在不同的两点,P Q 关于直线112y x =+对称,求实数c 的取值范围;(3)已知点()0,1M ,椭圆C 上两点,A B 满足2AM MB =,求点B 横坐标的取值范围.21、已知12,F F 为双曲线()222:10y C x b b-=>的左、右焦点,过2F 作垂直于x 轴的垂线,在x轴上方交双曲线C 于点M ,且1230MF F ∠=. (1)求双曲线C 的两条渐近线的夹角θ;(2)过点2F 的直线l 和双曲线C 的右支交于,A B 两点,求1AF B ∆的面积最小值; 过双曲线C 上任意一点Q 分别作该双曲线两条渐进线的平行线,它们分别交两条渐近线于12,Q Q 两点,求平行四边形12OQ QQ 的面积.答案:(1)2arctan 二分之根号二 (2)。

上海市复旦大学附属中学2018-2019学年高二上学期期末考试数学试题+Word版含解析

上海市复旦大学附属中学2018-2019学年高二上学期期末考试数学试题+Word版含解析

复旦大学附属中学2018-2019学年第一学期高二年级数学期末考试试卷 2019.01一、填空题(本大题共12题)1.抛物线的准线方程是_______【答案】【解析】【分析】先根据抛物线的标准方程得到焦点在y轴上以及,再直接代入即可求出其准线方程. 【详解】因为抛物线的标准方程为,焦点在y轴上,所以:,即,所以,所以准线方程为:,故答案是:.【点睛】该题考查的是有关抛物线的几何性质,涉及到的知识点是已知抛物线的标准方程求其准线方程,属于简单题目.2.若方程表示椭圆,则实数的取值范围是_____.【答案】【解析】【分析】根据题意,可得关于m的不等式组,解之即可得到实数m的取值范围.【详解】根据椭圆的标准方程的形式,可知方程表示椭圆的条件是:,解得,所以实数的取值范围是,故答案是:.【点睛】该题考查的是有关方程表示椭圆的条件,明确椭圆的标准方程的形式,即可得到其对应的不等式组,求解即可.3.若直线与直线平行,则与之间的距离为______ .【答案】【解析】【分析】利用直线平行可求得,代入距离公式即可得出结果.【详解】根据两直线平行,可得,解得,所以两直线的方程为:,整理得,根据平行线间的距离公式可得,两平行线间的距离,故答案是:.【点睛】该题考查的是有关两条平行线间的距离问题,涉及到的知识点有两条直线平行的条件,平行线间的距离公式,属于简单题目.4.过点作圆的切线,则切线所在直线的方程为______ .【答案】或【解析】【分析】首先考虑斜率不存在的时候直线与圆的位置关系,再考虑直线斜率存在时,设出直线的方程,利用圆心到直线的距离等于半径求得的值,综合到一起,得出切线的方程.【详解】过点,直线斜率不存在时方程为,圆心到直线的距离为1,等于半径,所以是圆的切线;过点,切线斜率存在时,直线设为,即,圆心到直线的距离为,整理解得;切线方程为或,故答案是:或.【点睛】该题考查的是有关过圆外一点的圆的切线的方程,涉及到的知识点有直线与圆的位置关系,直线方程的点斜式,点到直线的距离公式,注意考虑斜率不存在的情况.5.若一条双曲线与有共同渐近线,且与椭圆有相同的焦点,则此双曲线的方程为______.【答案】【解析】【分析】由椭圆方程求出椭圆及双曲线的半焦距,设出与双曲线有相同渐近线的双曲线方程为,化为标准方程,结合双曲线中的隐含条件求得值,求得结果.【详解】由得,所以,得,即椭圆的半焦距为,设与双曲线有相同渐近线的双曲线方程为,因为所求双曲线的焦点在轴上,则,双曲线方程化为,根据椭圆和双曲线共焦点,所以有,解得,所以所求双曲线的方程为:,故答案是:.【点睛】该题考查的是有关共渐近线的双曲线的方程的求解问题,涉及到的知识点有已知椭圆的方程求椭圆的焦点坐标,与某双曲线共渐近线的双曲线方程的设法,注意平时对有关结论的理解.6.已知三角形的顶点、,若顶点在抛物线上移动,则三角形的重心的轨迹方程为______【答案】【解析】【分析】首先设出三角形的重心和三角形的顶点C的坐标,利用三角形的重心坐标公式,将两点坐标之间的关系建立,结合点C在曲线上,利用相关点法求得对应曲线的方程,之后利用三角形的三个顶点不共线,去掉相应的点,即可得到结果.【详解】设的重心,,则有,即,因为点C在曲线上,所以有,即,因为三角形的三个顶点不能共线,所以,所以的重心的轨迹方程为:,故答案是:.【点睛】该题考查的是有关动点的轨迹方程的求解问题,涉及到的知识点有三角形重心坐标公式,用相关点法求动点的轨迹方程,注意对不满足条件的点要去掉.7.设、分别为直线(为参数,)和曲线(为参数,)上的点,则的取值范围是______.【答案】【解析】【分析】首先将直线和曲线的参数方程化为普通方程,结合点P、Q分别为直线和圆上的动点,从而得到的最小值即为圆心到直线的距离减去半径,从而得到相应的范围.【详解】由(t为参数)可得直线的普通方程为,由(为参数)可得曲线的普通方程为,因为点P、Q分别为直线和圆上的动点,所以,可以无穷远,所以的取值范围是,故答案是:.【点睛】该题考查的是有关直线与圆上的点的距离的范围问题,涉及到的知识点有曲线的参数方程向普通方程的转化,圆上的点到直线的距离的最小值,认真审题是正确解题的关键.8.已知直线,若是抛物线上的动点,则点到直线和它到轴的距离之和的最小值为______【答案】【分析】首先利用抛物线的定义,将抛物线上的点到y轴的距离转化为其到抛物线的焦点的距离减1,从而将其转化为求抛物线的焦点到直线的距离减1,从而求得结果.【详解】,故答案是:.【点睛】该题考查的是有关抛物线上的点到两条定直线的距离之和的最小值问题,涉及到的知识点有抛物线的定义,利用抛物线的定义将距离转化为抛物线上的点到焦点的距离和到定直线的距离之和的最小值问题,属于简单题目.9.如果为椭圆上的动点,为椭圆上的动点,那么的最大值为______.【答案】15【解析】【分析】首先利用椭圆的参数方程,设出点M、N的坐标,之和应用向量的数量积坐标公式,结合余弦差角公式将其化简,结合余弦函数的值域求得结果.【详解】利用椭圆的参数方程:设、,则,所以最大值是:15.【点睛】该题考查的是有关向量数量积的取值范围的问题,涉及到的知识点有椭圆的参数方程,向量的数量积坐标公式,余弦的差角公式,余弦函数的值域,属于中档题目.10.若关于的方程有两个不相等的实数根,则实数的取值范围是____ .【答案】【分析】首先将关于的方程有两个不相等的实数根,转化为曲线(上半个单位圆)与的图像有两个不同的交点,画出图形,分类讨论,最后求得结果. 【详解】转化为(上半个单位圆)与的图像有两个不同的交点,如图,当时,要满足条件,则,∴;类似,当时,;综上,实数的取值范围是.【点睛】该题考查的是有关根据方程解的个数求参数的取值范围的问题,涉及到的知识点有将方程的解转化Wie曲线的交点,数形结合,分类讨论求得结果.11.已知直线与椭圆交于、两点,若,则的取值范围是_____.【答案】【解析】【分析】根据直线过坐标原点,结合椭圆的对称性,可知点A、B关于原点对称,设出两个点的坐标、,利用向量的运算法则以及向量数量积坐标运算公式,求得,之后结合,求得结果,也可以应用参数方程来解决.【详解】直线过原点,结合椭圆图形的对称性可知、两点关于原点对称,方法一:设、,则,,即,∴.方法二:利用参数方程,设、,则.【点睛】该题考查的是有关一个点与椭圆上两个关于原点对称的点所构成的向量的数量积的取值范围的问题,在解题的过程中,注意两点关于原点对称这个条件非常关键,也可以应用参数方程来设点的坐标.12.在平面直角坐标系中,已知圆与曲线交于两点、(在第一象限),与轴正半轴交于点.若,点,则当和变化时,的最小值为______.【答案】7【解析】【分析】首先根据题意画出相应的图形,根据曲线,可得,对m与1的大小关系进行分类讨论,最后结合图形,得出结果.【详解】易得,从而可证,∴,点关于的对称点为,记,则,∴.【点睛】该题考查的是有关线段和的最值的问题,在解题的过程中,注意利用对称将问题转化,从而求得结果,注意对m与1的大小关系进行分类讨论.二、选择题(本大题共4题)13.方程所表示的曲线的对称性是()A. 关于轴对称B. 关于轴对称C. 关于轴对称D. 关于原点对称【答案】D【解析】【分析】将方程中的分别换为,以及将换成,比较所得方程与原方程,看相同与否,再将方程中的换为,比较所得方程与原方程是否相同,最后得到结果.【详解】将方程中的换为,方程变为,与原方程相同,故关于轴对称;将方程中的换为,方程变为,与原方程相同,故关于轴对称;将方程中的换为,方程变为,与原方程不同,故不关于直线对称;可知曲线既关于轴对称,又关于轴对称,从而得到其关于原点对称;故选D.【点睛】该题考查的是利用方程判断曲线的对称性,属于简单题目.14.若点是圆外一点,则直线与圆的位置关系是()A. 相离B. 相切C. 相交且不过圆心D. 相交且过圆心【答案】C【解析】【分析】由已知条件推导出,从而圆心到直线的距离,由此能判断出直线与该圆的位置关系,从而求得结果.【详解】由题意,得,从而圆心到直线的距离为,∴选C.【点睛】该题考查的是有关判断直线与圆的位置关系的问题,涉及到的知识点有点与圆的位置关系,利用圆心到直线的距离与半径比较大小得到直线与圆的位置关系,属于简单题目.15.已知,由所有直线组成的集合记为,则下列命题中的假命题是()A. 存在一个圆与所有直线相交B. 存在一个圆与所有直线不相交C. 存在一个圆与所有直线相切D. M中的直线所能围成的正三角形面积都相等【答案】D【解析】【分析】首先能够确定直线是表示的圆的所有切线,所以可以将圆心定住,改变半径的大小,得到与直线相交,相离和相切,从而确定出A,B,C三项都是正确的,对于D项,已经找到两种大小不相等的正三角形,从而得到结果.【详解】根据点到L的距离为,表示圆的所有切线,符合选项A、B、C的圆依次为、、,对于选项D,存在如下图的两种大小不相等的正三角形,∴D错误,故选D.【点睛】该题考查的是有关定圆的切线系方程,利用点到直线的距离可以确定直线系L是定圆的切线系,之后对选项逐项分析,找到对应的结果,从而得到答案.16.双曲线的左右焦点分别为、,若是双曲线左支上的一个动点,则的内切圆的圆心可能是()A. B. C. D.【答案】B【解析】【分析】首先根据题意,结合切线的性质以及双曲线的定义,可以判断出其三角形的内切圆的圆心的横坐标为,并且根据题意判断出其落在渐近线的下方,从而得到正确的结果.【详解】设内切圆圆心为,内切圆与、、的切点分别为、、,则由切线长定理,知、、,∴,∴为双曲线的左顶点且轴,设所在直线与的交点为,由角平分线定理,知,由于,∴点一定位于上,因此,若内心在第二象限,则其一定位于渐近线的下方,在第三象限,则其一定位于渐近线的上方,即的坐标一定为,其中,∴选B.【点睛】该题考查的是双曲线的焦点三角形的内心的位置,涉及到的知识点有双曲线的定义,圆的切线的性质,属于中档题目.三、解答题(本大题共5题)17.已知圆的圆心在直线上,并且圆与直线和都相切.(1)求圆的方程;(2)若直线与圆有两个不同的交点、,求弦长的最小值.【答案】(1)(2)【解析】【分析】(1)根据两条直线和是平行的,从而断定圆心是与的交点,解方程组求得,由两平行线间的距离求得圆的半径,从而得到圆的方程;(2)由直线的方程可以断定直线过定点,根据垂径定理,得到最小值求得结果.【详解】(1)圆心为与的交点,解得,圆的直径为两平行线与间的距离,可求出半径,∴圆的方程为;(2)直线过定点,由垂径定理知,当为直线的法向量时,弦心距最长,弦最短,∴.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有圆的方程的求解,直线与圆的位置关系,直线过定点,根据垂径定理求圆的最短弦长,属于中档题目.18.在平面直角坐标系中,动圆经过点并且与直线相切,设动圆圆心的轨迹为曲线.(1)如果直线过点(0,4),且和曲线只有一个公共点,求直线的方程;(2)已知不经过原点的直线与曲线相交于、两点,判断命题“如果,那么直线经过点”是真命题还是假命题,并说明理由.【答案】(1)直线的方程为、、;(2)见解析【解析】【分析】(1)根据抛物线的定义,求得曲线C的方程,之后分直线的斜率存在与不存在两种情况,根据直线与抛物线有一个公共点,得出结果;(2)根据图形的对称性,得出对应的定点在x轴上,设出直线的方程,利用韦达定理,根据向量垂直向量的数量积等于零,求得对应的结果.【详解】(1)根据题意,可知曲线C的方程为,①直线的斜率不存在,即的方程为,符合题意,②直线的斜率存在,设,与抛物线方程联立得,(ⅰ),符合题意,此时的方程为,(ⅱ),则,解得,此时的方程为,综上,符合题意的直线的方程为、、;(2)由图形的对称性,若直线过定点,则该定点必定落在轴上,设定点坐标为、、、,,则,∵,∴,即,解得或(舍),∴命题为真命题.【点睛】该题考查的是有关直线与抛物线的综合题,涉及到的知识点有根据抛物线的定义求抛物线的方程,直线与抛物线的位置关系,属于中档题目.19.轮船在海上航行时,需要借助无线电导航确认自己所在的位置,以把握航向.现有、、三个无线电发射台,其中在陆地上,在海上,在某国海岸线上,(该国这段海岸线可以近似地看作直线的一部分),如下图.已知、两点距离10千米,是的中点,海岸线与直线的夹角为.为保证安全,轮船的航路始终要满足:接收到点的信号比接收到点的信号晚秒.(注:无线电信号每秒传播千米).在某时刻,测得轮船距离点距离为4千米.(1)以点为原点,直线为轴建立平面直角坐标系(如图),求出该时刻轮船的位置;(2)根据经验,船只在距离海岸线1.5千米以内的海域航行时,有搁浅的风险.如果轮船保持目前的航路不变,那么是否有搁浅风险?【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据题意,设出点P的坐标,根据题意得出点P的轨迹是双曲线的一支,根据对应的量,从而求得点P的坐标,得到结果;(2)根据题意,找出对应的关系,从而求得结果,得到结论.【详解】(1)设轮船在点处,则由题意,得,∴为以、为焦点,实轴长为8,焦距为10的双曲线右支上的点,其方程为,又,解得;(2)海岸线所在直线的方程为,与其平行,且距离为1.5的直线的方程为,考虑与是否有交点,,∴与没有交点,即轮船保持目前的航路不变,没有搁浅风险.【点睛】该题考查的是应用所学知识解决实际问题,在解题的过程中,涉及到的知识点有应用定义得出曲线的方程,利用直线与曲线的位置关系得到相应的结果,属于中档题目. 20.已知椭圆的两个焦点分别为、,短轴的两个端点分别为、,且为等边三角形.(1)若椭圆长轴的长为4,求椭圆的方程;(2)如果在椭圆上存在不同的两点、关于直线对称,求实数的取值范围;(3)已知点,椭圆上两点、满足,求点横坐标的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据为等边三角形,可得,结合椭圆长轴的长为4,即,得,从而求得椭圆的方程;(2)根据等边三角形,得出a,b,c之间的关系,从而设出椭圆的方程,根据椭圆中中点弦所在直线的斜率所满足的条件,结合对称的条件,求得弦的中点坐标,保证点在椭圆内,得到相应的不等关系,得到结果;(3)利用向量的关系,得到点的坐标之间的关系,结合隐含条件,得到相应的范围,求得结果【详解】(1)由题意,得,,∴椭圆的方程为;(2)“点差法”设椭圆的方程为,即,设、、中点,则,得,又,解得,显然在椭圆内,∴,得,又,∴;(3)设椭圆方程,即,方法一:(常规解法)①过、的直线斜率不存在,即直线方程为时,、,由,得,②过、的直线斜率存在,设直线方程为、、,由,得,,则,由,可得,∴,综上,点横坐标的取值范围是.方法二:设,则,,又,∴,∴,∴,即点横坐标的取值范围是.【点睛】该题考查的是有关直线与椭圆的综合问题,涉及到的知识点有椭圆中a,b,c三者之间的关系,正三角形的特征,点关于直线的对称点的特征,椭圆中中点弦所在直线的斜率的条件,向量之间的关系,属于较难题目.21.已知点、为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.(1)求双曲线的两条渐近线的夹角;(2)过点的直线和双曲线的右支交于、两点,求的面积的最小值;(3)过双曲线上任意一点分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于、两点,求平行四边形的面积.【答案】(1)(2)(3)【解析】【分析】(1)首先根据双曲线的定义,结合题中所给的角的大小,求得,从而求得b的值,进而得到双曲线的渐近线方程,利用直线的方向向量所成的角,求得两条渐近线的夹角余弦值,利用反余弦求出结果;(2)设出直线的方程,与双曲线的方程联立,利用三角形的面积公式,结合函数的单调性,求得最值,得到结果;(3)根据所学的知识将四边形的面积表示出来,进而求得结果.【详解】(1)由题意,得,,∴,∴双曲线的方程为,∴,∴;(2)【注:若设点斜式,需补上斜率不存在的情况】设,、,将直线的方程代入双曲线方程,消去,得,则,得,,令,,则,其中在上单调递减,∴在上单调递增,∴当时,取得最小值,此时,的方程为;(3)设,其中方法一:设,与联立,可求出,由三阶行列式表示的三角形面积公式可得.方法二:如图,,设到和的距离为、,则,,∴【点睛】该题考查的是有关双曲线与直线的综合题,涉及到的知识点有双曲线的渐近线的夹角,双曲线中三角形的面积,四边形的面积,属于较难题目.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复旦大学附属中学2017学年第一学期
高二年级数学期末考试试卷
一、填空(每题4分,共48分)
1、准线方程为10y +=的抛物线标准方程为 .
2、已知圆225x y +=和点()1,2A ,则过点A 圆的切线方程为 .
3、若椭圆22
1369
x y +
=的弦被点()4,2平分,则此弦所在直线的斜率为 . 4、参数方程2
cos 2sin x y θ
θ=⎧⎨=+⎩
(θ为参数,且R θ∈)化为普通方程是 . 5、已知椭圆()222104x y a a +
=>与双曲线22
193
x y -=有相同的焦点,则a 的值为 . 6、设1F 和2F 为双曲线22421x y -=的两个焦点,点P 在双曲线上,且满足1260F PF ∠=,则12F PF 的面积是 .
7、已知抛物线24y x =的焦点F 和点()1,1A ,点P 为抛物线上的动点,则PA PF +取得最小值时点
P 的坐标为 .
8、椭圆
2211612
x y +=上的点到直线2120x y --=的距离最大值为 . 9、双曲线
22
2
14x y b -=的左右焦点分别为12,F F ,P 为右支上一点,且1126,0PF PF PF =⋅=,则双曲线渐近线的夹角为 .
10、已知定点()4,0P -和定圆22:8Q x y x +=,动圆M 与圆Q 外切,且经过点P ,求圆心M 的轨迹方程 .
11、设直线l 与抛物线24y x =相交于,A B 两点,与圆()()2
2250x y r r -+=>相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是 .
12、已知直线1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆
()()22
:114C x y +++=的一条动弦,且AB =PA PB +的最小值是 .
二、选择题:(每题4分,共16分)
13.当0ab <时,方程22ax ay b -=所表示的曲线是( )
A.焦点在x 轴的椭圆
B. 焦点在x 轴的双曲线
C. 焦点在y 轴的椭圆
D. 焦点在y 轴的双曲线
14、已知圆O 的方程为()2220x y r r +=>,点()(),0P a b ab ≠是圆O 内一点,以P 为中点的弦所在的直线为m ,直线n 的方程为2ax by r +=,则( ) A.//m n ,且n 与圆O 相离 B. //m n ,且n 与圆O 相交 C. m 与n 重合,且n 与圆O 相离D. m n ⊥,且n 与圆O 相离
15、椭圆2211615x y +=上有n 个不同的点123,,,...n P P P P ,椭圆的右焦点F ,数列{}n
P F 是公差大于1
2018
的等差数列,则n 的最大值为( )
A.2017
B.2018
C.4036
D. 4037
16、如图,过抛物线()220y px p =>的焦点F 作直线交抛物线于,A B 两点,以AB 为直径的圆与准线l 的公共点为M ,若60AMF ∠=,则MFO ∠的大小为( ) A.15 B.30 C.45 D.不确定
三、解答题(共56分)
17.(满分10分,各小题5分)
已知抛物线2:4C y x =与直线l 交于,A B 两点。

(1)若直线l 的方程为24y x =-,求弦AB 的长度;
(2)O 为坐标原点,直线l 过抛物线的焦点,且AOB 面积为l 的方程.
18.(满分10分,各小题5分)
已知双曲线22
:143
x y C -=. (1)求与双曲线C 有共同的渐近线,且实轴长为20的双曲线的标准方程; (2)P 为双曲线C 右支上一动点,点A 的坐标是()4,0,求PA 的最小值.
19、(满分10分,各小题5分)
已知曲线221:4C x y +=,点N 是曲线1C 上的动点,O 是坐标原点.
(1)已知定点()3,4M -,动点P 满足OP OM ON =+,求动点P 的轨迹方程; (2)如图,设点A 为曲线1C 与x 轴的正半轴交点,将点A 绕原点逆时针旋转23
π
得到点,点N 在曲线1C 上运动,若ON mOA nOB =+,求m n +的最大值.
20、(满分13分,4+4+5=13)
已知椭圆()2222:10x y C a b a b +=>>,四点()()12341,1,0,1,,P P P P ⎛⎛- ⎝
⎭⎝⎭中恰有三点在椭圆C 上。

(1)求C 的方程;
(2)椭圆C 上是否存在不动的两点,M N 关于直线1x y +=对称?若存在,请求出直线MN 的方程,若不存在,请说明理由;
(3)设直线l 不经过点2P 且与C 相交于,A B 两点,若直线2P A 与直线2P B 的斜率的和为1,求证:l 过定点. 21、(满分13分,4+4+5=13)
已知曲线()()2:2240,a x by b a b R Γ--+-=∈.
(1)若4a b ==,求经过点()1,0-且与曲线Γ只有一个公共点的直线方程;
(2)若4a =,请在直角坐标平面内找出纵坐标不同的两个点,此两点满足条件:无论b 如何变化,这两个点都不在曲线Γ上;
(3)若曲线Γ与线段()01y x x =≤≤有公共点,求22a b +的最小值.
参考答案
1、24x y =
2、250x y +-=
3、12
-
4、23y x =-+,[]1,1x ∈-
5、4 6
7、14
8、9、2
y x =±
10、()22
12412
x y x -=<-
11、()2,4
12、2
13-16、DACB 17.略 18.略
19、(1)()()22341x y ++-=;(2)2
20、(1)2214
x y +=;(2),(3)略
21、
(1)4a b ==时,曲线为:2y x =,设经过()1,0-的直线方程为1x my =-
I)若m 不存在,则该方程为0y =,当0y =时,代入抛物线方程有0x =,此时有唯一交点()0,0符合题意;
II)若m 存在,联立方程得:21
y x
x my ⎧=⎨=-⎩,消去x ,整理得210y my -+=;
若仅有唯一交点,则方程只有唯一解,求得2m =±,故方程为210x y ±+=; 综上所述,满足题意的直线方程为:210x y ++=、210x y -+=,0y =. (2)4a =时,曲线为:()()
224404410x by b x y b -+-=⇒-+-= 若无论b 如何变化,点都不在曲线Γ上,则这样的点(),m n 只要满足:
2
44010m n -≠⎧⎨-=⎩即可,即1
1
m n ≠⎧⎨=±⎩;可取点()0,1A ,()3,1B --满足题意; (3)方法一:若曲线Γ与线段()01y x x =≤≤有公共点,将y x =代入曲线方程有:
()22240bx a x b -+-+-=,即该方程在[]0,1x ∈上有解.
记函数()()2
224f x bx a x b =-+-+-,即函数与x 轴,在[]0,1上至少有一个交点;
(i )恰有一个交点,则()()010f f ⋅≤,即()()()()4282440b a b a --=--≤
若将(),a b 对应到直角坐标系中,其所在区域如图1所示;该范围内,距离原点最近点为()4,0和
()0,4,即
()
2
2min
16a
b +=
(ii )若有2个交点,则()()()()()
()()()()()()222
440010
224424402220120
20004b a f f a b a b b a a a b b b f b -⋅-≥⎧⎧⋅≥⎪⎪-+-≥∆=-+-≥⎪⎪⎪⎪
⇒⎨⎨≥-≤-≤⎪⎪--≤-⎪⎪⎪⎪-⋅≥≤≤⎩⎩
若将(),a b 对应到直角坐标系中,其所在区域如图2所示;
该范围内,距离原点的距离2OM r ≥+=,即此时(
)
(
)
2
22
min
2
1216a b +==+>;
综上所述,(
)
22
min
16a b
+=
方法二:若曲线Γ与线段()01y x x =≤≤有公共点,将y x =代入曲线方程有:()22240bx a x b -+-+-=,即该方程在[]0,1x ∈上有解.
将方程改写为:()
()221440x a x b x ⋅+-⋅-+=,可看作是关于(),P a b 所满足的一条直线,
因此原点到直线距离,不大于PO
,即:
在[]0,1
x ∈上
恒成立; ()211
4421121
x x x x +≥⋅
=⋅
+++
-+
图2
∵[]0,1x ∈,则(
)211x x ⎡⎤++
∈⎣⎦+,故(
)144,22121
x x ⎡⎤⋅∈⎣⎦++
-+
()
22
min
416a b ≥⇒+=.。

相关文档
最新文档