中考数学平行四边形-经典压轴题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以
4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.
【答案】(1)见解析;(2)能,t=10;(3)t=15
2
或12.
【解析】
【分析】
(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.
【详解】
解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,
∴AB=1
2AC=
1
2
×60=30cm,
∵CD=4t,AE=2t,
又∵在Rt△CDF中,∠C=30°,
∴DF=1
2
CD=2t,∴DF=AE;
(2)能,
∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;
(3)若△DEF为直角三角形,有两种情况:
①如图1,∠EDF=90°,DE∥BC,
则AD=2AE,即60﹣4t=2×2t,解得:t=15
2
,
②如图2,∠DEF=90°,DE⊥AC,
则AE=2AD,即2t2(604t)
=-,解得:t=12,
综上所述,当t=15
2
或12时,△DEF为直角三角形.
2.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;
(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;
(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).
【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.
【解析】
【分析】
(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=1
2
BC,GH∥BC,GH=
1
2
BC,推出
EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;
(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出
S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出
S△PGH=1
2
S△AEF=S△APF,即可得出结果.
【详解】
(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,
∴EG∥AP,EF∥BC,EF=1
2BC,GH∥BC,GH=
1
2
BC,
∴EF∥GH,EF=GH,
∴四边形EGHF是平行四边形,
∵AB=AC,
∴AD⊥BC,
∴EF⊥AP,
∵EG∥AP,
∴EF⊥EG,
∴平行四边形EGHF是矩形;
(2)∵PE是△APB的中线,
∴△APE与△BPE的底AE=BE,又等高,
∴S△APE=S△BPE,
∵AP是△AEF的中线,
∴△APE与△APF的底EP=FP,又等高,
∴S△APE=S△APF,
∴S△APF=S△BPE,
∵PF是△APC的中线,
∴△APF与△CPF的底AF=CF,又等高,
∴S△APF=S△CPF,
∴S△CPF=S△BPE,
∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,
∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,
∴△PGH底边GH上的高等于△AEF底边EF上高的一半,
∵GH=EF,
∴S△PGH=1
2
S△AEF=S△APF,
综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.
【点睛】
本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.
3.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作
PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.
证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)
(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;
请运用上述解答中所积累的经验和方法完成下列两题:
(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.
(迁移拓展)(3)在直角坐标系中,直线l1:y=-4
3
x+8与直线l2:y=﹣2x+8相交于点
A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.
【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】
【变式探究】
连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;
【结论运用】