洛伦兹变换

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洛伦兹变换
/wiki/%E6%B4%9B%E4%BC%A6%E5%85%B9%E5%8F%98%E6%8D%A2 洛伦兹变换
维基百科,自由的百科全书
跳转到:导航, 搜索
汉漢▼
显示↓
洛伦兹变换是观测者在不同惯性参照系之间对物理量进行测量时所进行的转换关系,在数学上表现为一套方程组。

洛伦兹变换因其创立者——荷兰物理学家亨德里克·洛伦兹而得名。

洛伦兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。

目录
[隐藏]
• 1 洛伦兹变换的提出
• 2 洛伦兹变换的数学形式
• 3 洛伦兹变换的四维形式
• 4 洛伦兹变换的推论
• 5 洛伦兹变换的几何理解
• 6 外部链接
沿着快速加速的观察者的世界线来看的时空。

竖直方向表示时间。

水平方向表示距离,虚划线是观察者的时空轨迹(“世界线”)。

图的下四分之一表示观察者可以看到的事件。

上四分之一表示光锥- 将可以看到观察者的事件点。

小点是时空中的任意的事件。

世界线的斜率(从竖直方向的偏离)给出了相对于观察者的速度。

注意看时空的图像随着观察者加速时的变化。

洛伦兹提出洛伦兹变换是基于以太存在的前提的,然而以太被证实是不存在的,根据光速不变原理,相对于任何惯性参照系,光速都具有相同的数值。

爱因斯坦据此提出了狭义相对论。

在狭义相对论中,空间和时间并不相互独立,而是一个统一的四维时空整体,不同惯性参照系之间的变换关系式与洛伦兹变换在数学表达式上是一致的,即:
y' = y
z' = z
其中x、y、z、t分别是惯性坐标系Σ下的坐标和时间,x'、y'、z'、t'分别是惯性坐标系Σ'下的坐标和时间。

v是Σ'坐标系相对于Σ坐标系的运动速度,方向沿x轴。

由狭义相对性原理,只需在上述洛伦兹变换中把v变成-v,x'、y'、z'、t'分别与x、y、z、t互换,就得到洛伦兹变换的反变换式:
y = y'
z = z'
洛伦兹变换是高速运动的宏观物体在不同惯性参照系之间进行坐标
和时间变换的基本规律。

当相对速度v远远小于光速c时,洛伦兹变换退化为经典力学中的伽利略变换:
x' = x-vt
y' = y
z' = z
t' = t
所以,狭义相对论与经典力学并不矛盾,狭义相对论将经典力学扩展到了宏观物体在一切运动速度下的普遍情况,经典力学只是相对论在低速时(v远远小于c)的近似情况。

一般在处理运动速度不太高的物体时(如天体力学中计算行星的运行轨道),不需考虑到相对论效应,因为用相对论进行处理时计算往往变得非常繁琐,而结果与经典情况相差不大。

当处理高速运动的物理时,比如高能加速器中的电子,则必须要考虑相对论效应对结果带来的修正。

[编辑]洛伦兹变换的四维形式
在狭义相对论中,某一事件可以用带有四个参数的时空坐标
(t,x,y,z)来描述,洛伦兹变换就是在不同惯性参考系中观察同一事件的时空坐标变换关系,并且是满足四维空间中间隔
(s2=c2t2-x2-y2-z2)不变的变换。

如果将x、y、z记成x1、x2、x3,并且令:
x0 = ct
那么洛伦兹变换可以写成如下的矩阵形式:
其中
,称为洛伦兹因子。

[编辑]洛伦兹变换的推论
由洛伦兹变换可以得到相对论的速度变换公式。

设u x、u y、u z分别是物体在惯性坐标系Σ下沿各坐标轴的速度分量,u'x、u'y、u'z分别是物体在惯性坐标系Σ'下沿各坐标轴的速度分量,那么:
如果把v变成-v,u x、u y、u z分别与u'x、u'y、u'z互换,就得到上述速度变换的反变换式。

当速度v远小于光速时,上述速度变换式退化为经典的速度变换式:u'x = u x−v
u'y = u y
u'z = u z
[编辑]洛伦兹变换的几何理解
在平面几何,一个矢量在某座标系统为(x,y)。

如果我们在原点以θ旋转原本座标轴做新的座标系统。

在新系统内,同一矢量座标为::
当然虽然矢量的座标在不同座标系统里面不一样,它的长度不变:。

另外如果我们以另外角度φ再旋转一次,那矢量新座标和原座标关系为:
即:连续的转角可加。

我们可以相似般把洛伦兹变换看成一种类似的座标旋转。

定义快度w = arctanhβ。

那以上洛伦兹变换公式可以写成(略去不受影响的x2和x3):
也就是说:洛伦兹变换数学上等同于双曲角旋转。

此座标“旋转”中类似“长度”的不变量是:。

如果我们先转换到相对原本叁考系统速度为β21的叁考系统,然后再转换到相对第二个叁考系统速度为β32的叁考系统。

令w21 = arctanh β21、w32= arctanhβ32。

那么在原本叁考系统座标为(x0,x1)的事件在两次转换后叁考系统内座标为:
所以我们发现洛伦兹变换里直接相加的数量不是速度β而是这个类似角度的w = arctanhβ。

日常经验我们使用的伽利略变换把速度直接相加减。

这是因为在速度远小于光速()的时候w近似速度。

当然我们也可以直接从原本的叁考系统直接转换到最后的叁考系统。

如果两者速度为β31,那么
因此得到相对论速率加法公式。

相关文档
最新文档