实验二 系统对随机信号响应的统计特性分析、功率谱分析及应用实验
随机信号分析实验报告
《随机信号分析》实验报告二班级_______学号______姓名_______实验二高斯噪声的产生和性能测试1.实验目的(1)掌握加入高斯噪声的随机混合信号的分析方法。
(2)研究随机过程的均值、相关函数、协方差函数和方差。
⒉实验原理(1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。
(2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。
⒊实验报告要求(1)简述实验目的及实验原理。
(2)采用幅度为1,频率为25HZ的正弦信号为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。
试求随机过程的均值、相关函数、协方差函数和方差。
用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。
(3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。
(4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。
(5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。
4、源程序及功能注释(逐句注释)(1):clear all;clc;t=0:320;x=sin(2*pi*t*25);x1=wgn(1,321,0);z=x+x1;y=trapz(t,z);%y=int(z,x,0,t);subplot(3,2,1),plot(z);title('随机信号序列')meany=mean(z);subplot(3,2,3),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(3,2,4),plot(t,vary,'.');title('随机信号方差')cory=xcorr(z,'unbiased');%自相关函数subplot(3,2,2),plot(cory);title('随机信号自相关函数')covv=cov(y);subplot(3,2,5),plot(t,covv,'.');title('随机信号协方差')(2):t=[0:0.0005:0.045];X1=sin(2*pi*25*t);%正弦subplot(3,4,1);plot(t,X1);gridtitle('正弦函数序列');X2=randn(1,length(t)); %产生均值为0,方差σ^2=1,标准差σ=1的正态分布的随机数或矩阵的函数高斯随机信号%X2=normrnd(2,0.04); %高斯随机序列均值,标准差subplot(3,4,2);plot(t,X2);title('高斯噪声序列');X=X1+X2; %混合随机信号X(t)subplot(3,4,3);plot(t,X);gridtitle('混合随机信号');meany1=mean(X1); %原信号的均值subplot(3,4,6),plot(t,meany1);title('原信号均值');vary1=var(X1); %原信号的方差subplot(3,4,7),plot(t,vary1);title('原信号方差');cory1=xcorr(X1,'unbiased'); %原信号的自相关函数subplot(3,4,8),plot(cory1);title('原信号自相关函数');meany=mean(X); %混合信号的均值subplot(3,4,10),plot(t,meany);title('混合信号均值');vary=var(X); %混合信号的方差subplot(3,4,11),plot(t,vary);title('混合信号方差')cory=xcorr(X,'unbiased'); %混合信号的自相关函数subplot(3,4,12),plot(cory);title('混合信号自相关函数')covy=cov(X1,X); %协方差subplot(3,4,4),plot(covy);title('协方差');[f1,xi]=ksdensity(X1); %原信号的概率密度subplot(3,4,5);plot(xi,f1);title('原信号的概率密度分布)');[f2,xi]=ksdensity(X); %混合信号的概率密度subplot(3,4,9);plot(xi,f2);title('混合信号概率密度分布');(3):clcclear allclose allA = imread('dadian.jpg'); % 读入图像V=0.01;Noisy=imnoise(A,'gaussian',0,V);subplot(1,2,1),imshow(A),title('原图像');subplot(1,2,2),imshow(Noisy),title('加噪后图像'); (4):clcclear allclose allt=0:320;A = wavread('alert.wav'); % 读入音频x = double(A);y=awgn(x,2,0.04);%x1 = double(z);%y=x+x1;subplot(2,3,1),plot(y);title('随机信号序列')meany=mean(y);subplot(2,3,2),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(2,3,3),plot(t,vary,'.');title('随机信号方差')cory=xcorr(y,'unbiased');%自相关函数subplot(2,3,4),plot(cory);title('随机信号自相关函数')fy=fft(y);ym=abs(fy);subplot(2,3,5),plot(ym);title('随机信号频谱图')fz=fft(cory);zm=abs(fz);subplot(2,3,6),plot(zm);title('随机信号功率谱密度图')5. 实验总结(手写)可给出实验过程中遇到的问题、解决方法、自己的收获、可否有改进办法等。
随机信号的功率谱
功率谱分析在信号处 理中的应用
功率谱分析在信号处理领域具有 广泛的应用,如语音信号分析、 雷达信号处理、通信信号处理等 。通过功率谱分析,可以提取信 号的特征信息,实现信号检测、 识别和分类等任务。
未来发展趋势预测
• 高分辨率功率谱估计:随着信号处理技术的发展,对功率谱估计的分辨率要求 越来越高。未来将继续研究高分辨率的功率谱估计方法,以提高信号处理的精 度和性能。
杂波背景下目标检测
在雷达和声呐应用中,接 收到的信号往往包含杂波 ,即非目标反射的信号。 杂波可能来自地面、海面 、大气等环境因素。
功率谱分析可用于区分目 标回波和杂波。目标和杂 波在功率谱上通常具有不 同的特征,如频率范围、 幅度和形状等。
通过设定合适的阈值和滤 波器,可以在杂波背景下 准确地检测出目标。
定义
随机信号是一种无法用确 定函数描述,但具有一定 统计规律性的信号。
统计规律性
随机信号在大量重复观测 下呈现出一定的统计规律 ,如均值、方差等。
连续性
随机信号通常是时间连续 的,可以用连续时间函数 表示。
随机信号分类
根据信号性质分类
01
非平稳随机信号:统计特性随时间变化的 随机信号。
03
02
平稳随机信号:统计特性不随时间变化的随 机信号。
ARMA模型法
将随机信号建模为自回归滑动平均模型(ARMA),通过求解模型参数得到功率谱估计。 该方法适用于短数据和复杂信号,但模型定阶和参数估计较困难。
不同方法比较与选择
性能比较
现代谱估计方法通常具有更高的分辨率和更低的方差,性能优于经典谱估计方法。其中,MEM和MVM在分辨率 和方差性能方面表现较好,而ARMA模型法在处理短数据和复杂信号时具有优势。
随机信号分析实验报告
随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。
随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。
实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。
实验原理:随机信号可以分为离散随机信号和连续随机信号。
离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。
常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。
实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。
实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。
2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。
3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。
4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。
5.计算统计特性:计算随机信号的均值、方差等统计特性。
6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。
实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。
通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。
通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。
通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。
结论:本实验通过对随机信号的分析,加深了对随机信号的理解。
通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。
2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。
统计信号分析与处理实验报告
实验2 随机过程的计算机模拟一、实验目的1、给定功率谱(相关函数)和概率分布,通过计算机模拟分析产生相应的随机过程;2、通过该随即过程的实际功率谱(相关函数)和概率分布验证该实验的有效性;3、学会运用Matlab 函数对随机过程进行模拟。
二、实验原理1、标准正态分布随机序列的产生方法:利用随机变量函数变换的方法。
设r1,r2为两个相互独立的(0,1)均匀分布的随机数,如果要产生服从均值为m,方差为正态分布的随机数x,则可以按如下变换关系产生:2、正态随机矢量的模拟:设有一 N 维正态随机矢量,其概率密度为为协方差矩阵,且是正定的。
3、具有有理谱的正态随机序列的模拟根据随机过程通过线性系统的理论,白噪声通过线性系统后,输出是正态的,且输出功率谱只与系统的传递函数有关。
利用这一性质,我们可以产生正态随机过程。
如上图所示,输入W(n)为白噪声,假定功率谱密度为G (z) = 1 W ,通过离散线性系统后,输出X (n)是正态随机序列,由于要求模拟的随机序列具有有理谱,则G (z) X 可表示为:其中,G (z) X+ 表示有理谱部分,即所有的零极点在单位圆之内,G (z) X? 表示非有理谱部分,即所有零极点在单位圆之外。
4、满足一定相关函数的平稳正态随机过程的模拟,当已知平稳随机过程的相关函数而要确定该随机过程的模拟算法。
很显然,只要我们设计一个合适的滤波器,使得该白噪声通过滤波器后,输出的功率谱满足上述相关函数的傅里叶变换,就可以模拟得到该随机过程。
三、实验内容1、产生两组相互独立的(0,1)均匀分布的随机数(随机数个数:500)程序及图形如下:clear;x=randn(1,500);y= randn(1,500);subplot(2,1,1);plot(x);title('第二组');subplot(2,1,2);plot(y);title('第一组')2、按照实验原理中的方法产生一组均值为1,方差为1 的正态分布的随机序列(序列长度:500)程序及图形如下:clear;y=1+sqrt(1)*randn(1,500);plot(y);title(‘正态分布,均值方差都为1’)3、画出功率谱密度为G(w)=1/(1.25+cosw) 的功率谱图(一个周期内),采用均匀采样方法,采样点数为500程序及图形如下:clear;w=rand(1,500);M=1.25+cos(w);N=1;G=N./M;plot(G);title('均匀采样功率频谱');5、模拟产生一个功率谱为G(w)=1/(1.25+cosw) 的正态随机序列程序及图形如下:clear;w=randn(1,500);M=1.25+cos(w);N=1;G=N./M;plot(G);title('均匀采样功率频谱');4、实验中所遇到问题及解决方法问题1、对Matlab软件很生疏、编程也不熟悉。
随机信号功率谱分析
%2、随机过程X(t)=cos(600pit)+cos(800pit)+N(t) figure;
a=500;b=2*a; t=[0:1/b:1-1/b]; N=randn(1,b);
X=cos(600*pi*t)+cos(800*pi*t)+N; subplot(3,1,1) plot(X);
5.实验数据处理方法
比较法画图法
6.参考文献
陈后金,等.《数字信号处理》.2版【M】.北京:高等教育出版社,2010
张德丰,等.《MATLAB数值计算与方法》.北京:机械工业出版社,2010
二.实验报告
1.实验内容
%a;
x=normrnd(2,sqrt(5),1,b);
2、掌握功率谱密度估计在随机信号处理中的作用。
2.实验原理、实验流程或装置示意图
功率谱估计是随机信号处理中的一个重要的研究和应用领域。
在工程实际中,经典功率谱估计法获得广泛应用的是修正周期图法。该方法采取数据分段加窗处理再求平均的方法。通过求各段功率谱平均,最后得到功率谱估计p(m),即
式中
为窗函数的方差,K表示有重叠的部分。
本科学生实验报告
学号姓名
学院物理与电子信息专业、班级
实验课程名称
教师及职称
开课学期2014至2015学年下学期
填报时间2015年4月25日
云南师范大学教务处编印
一、实验设计方案
实验序号
六
实验名称
随机信号功率谱分析实验
实验时间
2015年4月22日
实验室
同析三栋
1.实验目的
1、了解随机过程功率谱密度的意义并掌握如何利用MATLAB产生功率谱函数。
功率谱分析及其应用
S x Rx e j d
Rx S x e j d
随机信号的功率谱密度
自功率谱密度函数(Auto-power spectral density function)的性质
自功率谱密度函数是实偶函数。 自功率谱密度函数是双边谱。
Cxy 2 R cos d 单边互谱密度函数 (One-sided cross-power spectrum) xy Qxy 2 Rxy sin d 其中 j
实部 Gxy Gxy e 虚部
单边功率谱(one-sided power spectrum)(非负频率 上的谱) G 2S
x x
2 Rx e j d
0
随机信号的功率谱密度
1 T 2 Rxx 0 lim x t x t 0 dt x T T 0
输入x(t)与输出y(t)的互相关函数(crosscorrelation function )为:
Rxy Rx ' x Rx 'n1 Rx 'n2 Rx 'n3
Rxy Rx ' x
S xy f
由于噪音与输入无关,所以后3项为零,于是有
可利用互谱求系统的
X(t)
系统1 系统2 可在强噪声背景下分析系统的传输特性
n1 t
n2 t
y(t)
n3 t
随机信号的功率谱密度 正弦加随机
随机信号
yt x ' t n1 ' t n2 ' t n3 ' t
随机信号实验报告(模板)(1)
随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。
二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。
基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。
② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。
③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。
在已知均值和均方值的前提下,方差就很容易求得了。
④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。
⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。
随机信号分析报告实验
实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法;2、实现随机序列的数字特征估计。
二、实验原理1. 随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky Mod y y n n n n /))((110===-, (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: (1) 7101057k 10⨯≈==,周期,N ;(2) (IBM 随机数发生器)8163110532k 2⨯≈+==,周期,N ; (3) (ran0)95311027k 12⨯≈=-=,周期,N ;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -= (1.2)由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2. MATLAB 中产生随机序列的函数(1) (0,1)均匀分布的随机序列 函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2) 正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
功率谱估计实验报告
一、实验目的1. 了解功率谱估计的基本原理和方法。
2. 掌握使用MATLAB进行功率谱估计的步骤。
3. 通过实验验证不同功率谱估计方法的性能。
二、实验原理功率谱估计是信号处理中的一个重要分支,它能够揭示信号在频域中的特性。
功率谱估计的基本原理是将信号通过傅里叶变换转换为频域信号,然后对频域信号进行功率计算,得到功率谱。
功率谱反映了信号在不同频率上的能量分布,对于信号分析、系统设计等具有重要意义。
常用的功率谱估计方法有周期图法、Welch方法、Bartlett方法等。
本实验主要研究周期图法、Welch方法和Bartlett方法的性能。
三、实验内容1. 数据采集:使用MATLAB自带的信号生成函数生成一段模拟信号,作为实验数据。
2. 周期图法:计算信号的功率谱,并与理论功率谱进行比较。
3. Welch方法:计算信号的功率谱,并与周期图法的结果进行比较。
4. Bartlett方法:计算信号的功率谱,并与Welch方法和周期图法的结果进行比较。
四、实验步骤1. 生成模拟信号:使用MATLAB自带的信号生成函数生成一段模拟信号,如正弦波、方波等。
2. 周期图法:a. 计算信号的自相关函数;b. 对自相关函数进行傅里叶变换,得到功率谱;c. 将计算得到的功率谱与理论功率谱进行比较。
3. Welch方法:a. 将信号分割成多个短时段;b. 对每个短时段进行自相关函数计算;c. 对所有短时段的自相关函数进行加权平均;d. 对加权平均后的自相关函数进行傅里叶变换,得到功率谱;e. 将计算得到的功率谱与周期图法的结果进行比较。
4. Bartlett方法:a. 将信号分割成多个短时段;b. 对每个短时段进行自相关函数计算;c. 对每个短时段的自相关函数进行 Bartlett 平滑;d. 对平滑后的自相关函数进行傅里叶变换,得到功率谱;e. 将计算得到的功率谱与Welch方法和周期图法的结果进行比较。
五、实验结果与分析1. 周期图法:通过实验发现,周期图法计算得到的功率谱在低频段存在较大的噪声,而在高频段噪声较小。
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机试验报告
实验八微弱信号的检测提取及分析一、实验目的⑴了解随机信号分析理论如何在实践中应用。
⑵了解随机信号自身的特性,包括均值(数学期望)、方差、概率密度、相关函数、频谱及功率谱密度等。
⑶掌握随机信号的检测及分析方法。
二、实验原理⑴随机信号的分析方法在信号系统中,我们可以把信号分成两大类——确知信号和随机信号。
确知信号具有一定的变化规律,因而容易分析,而随机信号无确知的变化规律,需要用统计特性进行分析。
我们在这里引入了随机过程的概念。
所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程可分为平稳的和非平稳的、遍历的和非遍历的。
如果随机信号的统计特性不随时间的推移而变化,则随机信号是平稳的。
如果一个平稳的随机过程它的任意一个样本都具有相同的统计特性,则随机过程是遍历的。
我们下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,我们可以取随机过程的一个样本来描述随机过程的统计特性。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,它们能够对随机过程作完整的描述。
但是由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
以下算法都是一种估计算法,条件是N要足够大。
⑵微弱随机信号的检测及提取方法因为噪声总是会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下微弱信号的提取又是信号检测的难点,其目的就是消除噪声,将有用的信号从强噪声背景中提取出来,或者用一些新技术和新方法来提高检测系统输出信号的信噪比。
噪声主要来自于检测系统本身的电子电路和系统外的空间高频电磁场干扰等,通常从两种不同的途径来解决:①降低系统的噪声,使被测信号功率大于噪声功率,达到信噪比S /N > 1 。
②采用相关接收技术,可以保证在被测信号功率< 噪声功率的情况下,仍能检测出信号。
经典功率谱估计实验报告(3篇)
第1篇一、实验目的1. 理解经典功率谱估计的原理和方法;2. 掌握BT法、周期图法、Bartlett法和Welch法等经典功率谱估计方法;3. 通过MATLAB仿真,验证各种方法的性能和特点;4. 分析实验结果,总结经典功率谱估计方法的优缺点。
二、实验原理功率谱估计是信号处理中的一个重要方法,用于分析信号的频率成分。
经典功率谱估计方法主要包括BT法、周期图法、Bartlett法和Welch法等。
1. BT法:先估计自相关函数,然后进行傅里叶变换得到功率谱;2. 周期图法:直接对样本进行傅里叶变换,得到功率谱;3. Bartlett法:将信号分成L段,计算每段的自相关函数,然后进行傅里叶变换得到功率谱;4. Welch法:对信号进行分段,计算每段的自相关函数,然后进行傅里叶变换得到功率谱,并对结果进行加权平均。
三、实验环境1. 操作系统:Windows 10;2. 编程语言:MATLAB;3. 实验数据:随机信号样本。
四、实验步骤1. 生成随机信号样本;2. 使用BT法进行功率谱估计;3. 使用周期图法进行功率谱估计;4. 使用Bartlett法进行功率谱估计;5. 使用Welch法进行功率谱估计;6. 对比分析各种方法的估计结果。
五、实验结果与分析1. BT法:BT法是一种较为精确的功率谱估计方法,其估计结果与真实功率谱较为接近。
但是,BT法需要计算样本的自相关函数,计算量较大。
2. 周期图法:周期图法是一种简单易行的功率谱估计方法,但其估计结果存在较大误差。
当样本长度N较大时,周期图法的估计结果逐渐接近真实功率谱。
3. Bartlett法:Bartlett法在Bartlett窗口的宽度较大时,估计结果较为准确。
但是,当Bartlett窗口的宽度较小时,估计结果误差较大。
4. Welch法:Welch法是一种改进的周期图法,通过分段和加权平均,提高了估计精度。
Welch法在估计精度和计算量之间取得了较好的平衡。
(实验六 随机信号功率谱分析)
实验报告实验课程:数字信号处理实验开课时间:2020—2021 学年秋季学期实验名称:随机信号功率谱分析实验时间: 2020年9月30日星期三学院:物理与电子信息学院年级:大三班级:182 学号:1843202000234 姓名:武建璋一、实验预习实验目的要求深刻理解随机信号的特性,掌握随机信号功率谱估计的基本原理,灵活运用各种随机信号功率谱估计的基本方法。
实验仪器用具装有Matlab的计算机一台实验原理功率谱估计是随机信号处理中的一个重要的研究和应用领域.功率谱估计基本上可以非参数估计的经典方法和参数估计的近代方法.典型功率谱估计是基于FFT 算法的非参数估计,对足够长的记录数据效果较好。
在工程实际中,经典功率谱估计法获得广泛应用的是修正期图发。
该方法采取数据加窗处理再求平均的办法。
通过求各段功率谱平均,最后得到功率谱计P(m),即:式中:为窗口函数ω[k]的方差。
K表示有重叠的分数段。
由于采用分段加窗求功率谱平均,有效地减少了方差和偏差,提高了估计质量,使修正周期图法在经典法中得到普遍应用。
但在估计过程存在两个与实际不符的假设,即(1)利用有限的N个观察数据进行自相关估计,隐含着在已知N个数据之外的全部数据均为零的假设。
(2)假定数据是由N个观察数据以N为周期的周期性延拓。
同时在计算过程中采用加窗处理,使得估计的方差和功率泄露较大,频率分辨率较低,不适用于短系列的谱分析和对微弱信号的检测。
近代谱估计是建立在随机信号参数模型的基础上,通过信号参数模型或预测误差滤波器(一步预测器)参数的估计,实现功率谱估计。
由于既不需要加窗,又不需要对相关函数的估计进行如经典法那样的假设,从而减少公里泄露,提高了频谱分辨率。
常用的参数模型有自回归(AR)模型、滑动平均(MA)模型、自回归滑动平均(ARMA)模型。
其中AR模型是基本模型,求解AR模型的参数主要有L—D算法和Burg算法。
1.某随机信号由两余弦信号与噪声构成x(t)=cos(20*pi*t)+cos(40*pi*t)+s(t)式中:s(t)是均值为0、方差为1的高斯白噪声。
随机信号处理与功率谱分析
随机信号处理与功率谱分析随机信号处理是一门研究随机信号的产生、传输和处理的学科。
随机信号是指在时间上或空间上的某一特定区域内,其幅度和相位是随机变化的信号。
在现实生活中,我们经常遇到各种各样的随机信号,比如噪声、气象数据、金融市场的波动等等。
如何对这些随机信号进行分析和处理,就成为了随机信号处理的核心问题。
功率谱分析是随机信号处理的一个重要方法。
它通过将随机信号从时域转换到频域,来研究信号在不同频率上的能量分布情况。
功率谱分析可以帮助我们了解信号的频率特性,从而对信号进行更精确的分析和处理。
在进行功率谱分析之前,我们首先需要对信号进行采样。
采样是指将连续时间的信号转换为离散时间的信号。
通过采样,我们可以获得一系列离散时间点上的信号值,从而进行后续的分析。
采样定理告诉我们,为了保证采样信号的完整性,采样频率必须大于信号中最高频率的两倍。
否则,就会出现混叠现象,导致信号失真。
采样完成后,我们可以将信号转换到频域进行功率谱分析。
频域是指信号在不同频率上的能量分布情况。
通过对信号进行傅里叶变换,我们可以将信号从时域转换到频域。
傅里叶变换是一种将信号分解成不同频率分量的数学工具。
通过傅里叶变换,我们可以得到信号的频谱图,从而了解信号在不同频率上的能量分布情况。
功率谱是指信号在不同频率上的功率分布情况。
功率谱分析可以帮助我们了解信号的频率特性,从而对信号进行更精确的分析和处理。
在功率谱图中,横轴表示频率,纵轴表示功率。
通过观察功率谱图,我们可以得知信号的主要频率成分以及它们的功率大小。
这对于信号的特征提取和噪声去除等应用非常有帮助。
在实际应用中,功率谱分析被广泛应用于各个领域。
比如在通信领域,功率谱分析可以帮助我们了解信道的频率响应,从而优化通信系统的性能。
在音频处理中,功率谱分析可以帮助我们了解音频信号的频率分布情况,从而实现音频的均衡和滤波。
在金融领域,功率谱分析可以帮助我们了解股票价格的波动情况,从而进行风险评估和投资决策。
数字信号处理实验报告二 系统及系统响应
实验报告2012年04月26 日课程名称:数字信号处理实验名称:系统及系统响应班级:学号:姓名:实验二系统及系统响应一、实验目的(1)观察离散系统的频率响应;(2)熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;(3)利用序列的FT对连续信号、离散信号及系统响应进行频域分析;(4)利用卷积方法观察分析系统的时域特性。
二、实验内容(1)给定一因果系统H(z)= ,求出并绘制H(z)的幅频响应与相频响应;(2)对信号x a(t)=Au(n) 0n50 其中A=444.128,a=50,=50,实现下列实验内容:a、取采样频率fs=10KHZ,观察所得采样x a(n)的幅频特性|X()|和图中的|Xa(j)|在折叠频率附近有无明显差别。
b、改变采样频率fs=1KHZ,观察|X()|的变化,并作记录:进一步降低采样频率,fs=300HZ,观察频谱混叠是否明显存在,说明原因,并记录这时的|X()|曲线。
(3)给定系统的单位抽样响应为h1(n)=R10(n)a、利用线性卷积求信号x1(n)=(n),通过该系统的响应y1(n)。
比较所求响应y1(n)和h1(n)之间有无差别,绘图说明,并用所学理论解释所得结果。
b、利用线性卷积求信号x2(n)=R10(n),通过该系统的响应y2(n),并判断y2(n)图形及其非0值序列长度是否与理论结果一致,改变x2(n)的长度,取N=5,重复该试验。
注意参数变化的影响,说明变化前后的差异,并解释所得结果。
(4)求x(n)=11(n+2)+7(n+1)-(n-1)+4(n-2)+2(n-3)通过系统h(n)=2(n+1)+3(n)-5(n-2)+2(n-3)+(n-4)的响应y(n)。
三、实验程序及解析(1)1、程序clear; close all;b=[1,sqrt(2),1];a=[1,-0.67,0.9];[h,w]=freqz(b,a);am=20*log10(abs(h));% am=20*log10(abs(h))为幅频响应取dBsubplot(2,1,1);%将窗口划分为2*1的小窗口并选择第一个显示plot(w,abs(h));xlabel('w');ylabel('幅频响应');title('系统响应')ph=angle(h);subplot(2,1,2); %选择第二个窗口显示plot(w,ph);xlabel('w');ylabel('相频响应');2、系统响应结果图1 因果系统的H(z)的系统响应3、结果分析分析z域系统的特性主要是由系统的零点和极点的分布得出结论的。
随机信号分析报告实验:随机过程通过线性系统地分析报告
实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。
2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。
实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。
2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。
等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。
实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。
(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。
任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。
实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。
图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学实验预习报告学院(系):信息与通信工程学院 专业: 电子信息工程 班级: 电子1401 姓 名: ****** 学号: ****** 实验时间: 2016.11.4 实验室: c221 指导教师: 郭 成 安实验II :系统对随机信号响应的统计特性分析、功率谱分析及应用实验一、 实验目的和要求掌握直接法估计随机信号功率谱的原理和实现方法;掌握间接法估计随机信号功率谱的原理和实现方法;掌握系统对随机信号响应的统计特性分析及仿真实现方法。
熟悉MATLAB 信号处理软件包的使用。
二、 实验原理和内容(一)实验原理:1. 直接法估计随机信号功率谱原理直接法又称为周期图法,它是把随机信号 x(n)的N 点观察数据xN(n)视为一能量有限信号, 直接取 xN(n)的傅里叶变换,得到 XN(ej ω),然后取其模值的平方,并除以 N ,作为对 x(n)真实 的功率谱 P(ej ω)的估计。
工程上,常使用离散 Fourier变换(DFT ,编程上使用其快速算法 FFT ),即 PX(k)=2|)k (|1N X N进行计算。
2. 间接法估计随机信号功率谱间接法的理论基础是 Wiener-Khintchine 定理,具体的实现方法是先由 xN(n)估计出自相关函数(m)rˆ,然后对(m)r ˆ求傅里叶变换得到 xN(n)的功率谱,记之为 XN(ej ω),并以此作为对真实功率谱 P(ej ω)的估计。
工程上,常使用离散 Fourier 变换(DFT ,编程上使用其快速算法FFT ),即122)(ˆ)(+--=∑=M km j M M m X e m r k P π,1||-≤N M ,进行计算。
因为由这种方法求出的功率谱是通过自相关函数间接得到的,所以又称为间接法或 Blackman-Tuckey(BT)法,该方法是 FFT 出现之前 常用的谱估计方法。
3. 时域中系统对随机信号响应的统计特性分析及仿真根据系统卷积性质,计算系统输出信号的统计特性。
有如下性质:∑=n X Y n h m )(m )()()()(k h j h k j m R m R j kx Y ++=∑∑4. 频域中系统对随机信号响应的统计特性分析及仿真根据卷积定理,输入、输出信号功率谱的关系为 RY(ej ω) = RX(ej ω)|H(ej ω)|2。
在计算系统输 出信号功率谱时,如果在时域时计算困难,可以按照上式在频域计算。
(二)实验内容:1. 直接法估计随机信号功率谱(1) 生成1024点数据的随机信号)()2cos(5)2cos(2)n (2211n N f f X ++++=ϕπϕπ其中f1=30Hz ,f2=100Hz ,21ϕϕ,为在[0,2п]内的均匀分布的随机变量,N(n)是数学期望为0,方差为1 的高斯白噪声。
(2) 用周期图法计算的功率谱,并绘图。
(3) 用MATLAB 函数periodogram 重新计算的功率谱,并与(2)做比较。
2.间接法估计随机信号功率谱(1) 计算以上的自相关函数。
(2) 通过计算自相关函数的Fourier 变换,求的功率谱并绘图。
(3) 利用MATLAB 函数psd 、pwelch 重新计算的功率谱,并与(2)做比较。
3.系统对随机信号响应的统计特性分析及仿真(1) 生成含500点数据的高斯分布白噪声随机信号。
(2) 设计一个带通系统,其上、下截止频率分别为4KHz 和3KHz 。
(3) 计算通过以上带通滤波器的自相关函数和功率谱密度。
三、 实验步骤(1) 生成1024点随机信号X (n ),高斯白噪声N (n )。
(2) 周期法绘制其功率谱。
(3) 利用MATLAB 函数periodogram 计算功率谱,与(2)比较。
(4) 计算其自相关函数。
(5) 计算自相关函数的傅里叶变换。
(6) 求其功率谱。
(7) 利用MATLAB 函数psd 、pwelch 重新计算的功率谱,并与(2)做比较。
(8) 生成含500点数据的高斯分布白噪声随机信号。
(9) 设计一个带通系统,其上、下截止频率分别为4KHz 和3KHz 。
(10) 计算通过以上带通滤波器的自相关函数和功率谱密度。
大连理工大学实验报告学院(系): 信息与通信工程学院 专业: 电 子 信 息 工 程 班级: 1401 姓 名: ****** 学号: ****** 实验时间: 2016/11/04 实验室: C221 指导教师: 郭 成 安实验II :系统对随机信号响应的统计特性分析、功率谱分析及应用实验一、 实验目的和要求掌握直接法估计随机信号功率谱的原理和实现方法;掌握间接法估计随机信号功率谱的原理和实现方法;掌握系统对随机信号响应的统计特性分析及仿真实现方法。
熟悉MATLAB 信号处理软件包的使用。
二、 实验原理和内容(一)实验原理:1. 直接法估计随机信号功率谱原理直接法又称为周期图法,它是把随机信号 x(n)的N 点观察数据xN(n)视为一能量有限信号, 直接取 xN(n)的傅里叶变换,得到 XN(ej ω),然后取其模值的平方,并除以 N ,作为对 x(n)真实 的功率谱 P(ej ω)的估计。
工程上,常使用离散 Fourier变换(DFT ,编程上使用其快速算法 FFT ),即 PX(k)=2|)k (|1N X N进行计算。
2. 间接法估计随机信号功率谱间接法的理论基础是 Wiener-Khintchine 定理,具体的实现方法是先由 xN(n)估计出自相关函数(m)rˆ,然后对(m)r ˆ求傅里叶变换得到 xN(n)的功率谱,记之为 XN(ej ω),并以此作为对真实功率谱 P(ej ω)的估计。
工程上,常使用离散 Fourier 变换(DFT ,编程上使用其快速算法FFT ),即122)(ˆ)(+--=∑=M km j M M m X e m r k P π,1||-≤N M ,进行计算。
因为由这种方法求出的功率谱是通过自相关函数间接得到的,所以又称为间接法或 Blackman-Tuckey(BT)法,该方法是 FFT 出现之前 常用的谱估计方法。
3. 时域中系统对随机信号响应的统计特性分析及仿真根据系统卷积性质,计算系统输出信号的统计特性。
有如下性质:∑=n X Y n h m )(m )()()()(k h j h k j m R m R j kx Y ++=∑∑5. 频域中系统对随机信号响应的统计特性分析及仿真根据卷积定理,输入、输出信号功率谱的关系为 RY(ej ω) = RX(ej ω)|H(ej ω)|2。
在计算系统输 出信号功率谱时,如果在时域时计算困难,可以按照上式在频域计算。
(二)实验内容:2. 直接法估计随机信号功率谱(1) 生成1024点数据的随机信号)()2cos(5)2cos(2)n (2211n N f f X ++++=ϕπϕπ其中f1=30Hz ,f2=100Hz ,21ϕϕ,为在[0,2п]内的均匀分布的随机变量,N(n)是数学期望为0,方差为1 的高斯白噪声。
(2) 用周期图法计算的功率谱,并绘图。
(3) 用MATLAB 函数periodogram 重新计算的功率谱,并与(2)做比较。
2.间接法估计随机信号功率谱(1) 计算以上的自相关函数。
(2) 通过计算自相关函数的Fourier 变换,求的功率谱并绘图。
(3) 利用MATLAB 函数psd 、pwelch 重新计算的功率谱,并与(2)做比较。
3.系统对随机信号响应的统计特性分析及仿真(1) 生成含500点数据的高斯分布白噪声随机信号。
(2) 设计一个带通系统,其上、下截止频率分别为4KHz 和3KHz 。
(3) 计算通过以上带通滤波器的自相关函数和功率谱密度。
三、 实验步骤(1) 生成1024点随机信号X (n ),高斯白噪声N (n )。
(2) 周期法绘制其功率谱。
(3) 利用MATLAB 函数periodogram 计算功率谱,与(2)比较。
(4) 计算其自相关函数。
(5) 计算自相关函数的傅里叶变换。
(6) 求其功率谱。
(7) 利用MATLAB 函数psd 、pwelch 重新计算的功率谱,并与(2)做比较。
(8) 生成含500点数据的高斯分布白噪声随机信号。
(9) 设计一个带通系统,其上、下截止频率分别为4KHz 和3KHz 。
(10) 计算通过以上带通滤波器的自相关函数和功率谱密度。
四、 主要仪器设备微型计算机、Matlab 开发环境(本报告采用MATLAB2016a )五、编程代码与操作方法1. 实验内容(1):直接法估计随机信号功率谱(1) 生成1024点数据的随机信号)()2cos(5)2cos(2)n (2211n N f f X ++++=ϕπϕπ其中f1=30Hz ,f2=100Hz ,21ϕϕ,为在[0,2п]内的均匀分布的随机变量,N(n)是数学期望为0,方差为1 的高斯白噪声。
(2) 用周期图法计算的功率谱,并绘图。
(3) 用MATLAB 函数periodogram 重新计算的功率谱,并与(2)做比较。
代码如下:clc;clear; %清屏及清除缓存N=1024;f1=30;f2=100;fs=1000;t=(0:N-1)/fs;%第一问Nn=randn(1,N); %高斯白噪声fai=random('unif',0,1,1,2)*2*pi; %均匀随机变量xn=2*cos(2*pi*f1*t+fai(1))+5*cos(2*pi*f2*t+fai(2))+Nn;Xk=fft(xn);Sk=(abs(Xk).^2)/N; %随机信号分析书第二版上式2.6-28 %第二问f=(0:N/2-1)*fs/N;w=10*log10(Sk(1:N/2));figure,plot(f,w);title('周期法估算随机信号功率谱');xlabel('f/Hz'),ylabel('Sx(f)(dB/Hz)');%第三问Sk=periodogram(xn);figure,plot(f,w);title('periodogram 函数算随机信号功率谱');xlabel('f/Hz'),ylabel('Sx(f)(dB/Hz)');figure,subplot(2,1,1),plot(f,w);title('直接法估算随机信号功率谱');xlabel('f/Hz'),ylabel('Sx(f)(dB/Hz)');subplot(2,1,2),plot(f,w,'r'); %延迟与原随机信号同一张图中比较title('periodogram函数算随机信号功率谱')xlabel('f/Hz'),ylabel('Sx(f)(dB/Hz)');实验内容(2):间接法估计随机信号功率谱(1) 计算以上的自相关函数。