人教版九年级下册数学《配套练习册》答案

合集下载

(完整版)人教九年级数学下册同步练习题及答案

(完整版)人教九年级数学下册同步练习题及答案

2. 已知函数 y=(m+2) xm2 m 4 是关于 x 的二次函数 . 求 : (1) 满足条件的 m的值 ; (2)m 为何值时 ,
抛物线有最低点 ?求出这个最低点 , 这时当 x 为何值时 ,y 随 x 的增大而增大 ?(3)m 为何值时 , 函 数有最大值 ?最大值是多少 ?这时当 x 为何值时 ,y 随 x 的增大而减小 ?

4.抛物线 y=3x 2+ 5x 与两坐标轴交点的个数为(

11
A. 3 个 B . 2 个
C. 1 个
D. 0 个
5.二次函数 y=x2- 4x+3 的图象交 x 轴于 A、 B 两点,交 y 轴于点 C,△ ABC的面积为
A.1
B.3
C.4 D.6
三、综合训练
1.抛物线与 x 轴的公共点是 (-1,0),(3,0), 这条抛物线的对称轴是
2.二次函数 y=(x-1)(x+2) 的图象顶点为 ____, 对称轴为 _____。 3.若二次函数 y=2x2+4x+c 图象的顶点在 x 轴上,则 c 等于 ( )A. - 1 B.1
1
C.
D.2
2
4.如果关于 x 的一元二次方程 x2 kx 4 0 有两个相等根,则 k
5.一元二次方程 x2 2 x 3 0 的根的情况是(
求此二次函数的解析式。
6
一、课前小测
26.1 二次函数(第四课时)
1.已知抛物线 y x2 ( m 2) x 2m ,当 m=______时,抛物线经过原点。
2.抛物线 y=2x 2-3 的开口向 _____ ___ ,对称轴是 _______,顶点坐标是 ________,顶点是最 _____点,所以函数有最 ________值是 ____ 。

人教版数学九年级下册全册 同步练习 及答案

人教版数学九年级下册全册 同步练习 及答案

第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【基础练习】一、填空题:1.A、B两地相距120千米,一辆汽车从A地去B地,则其速度v(千米/时)与行驶时间t(小时)之间的函数关系可表示为;2.有一面积为60的梯形,其上底长是下底长的13,设下底长为x,高为y,则y与x的函数关系式是;3.已知y与x成反比例,并且当x = 2时,y = -1,则当x = -4时,y = .二、选择题:1.下列各问题中的两个变量成反比例的是();A.某人的体重与年龄B.时间不变时,工作量与工作效率C.矩形的长一定时,它的周长与宽D.被除数不变时,除数与商2.已知y与x成反比例,当x = 3时,y = 4,那么当y = 3时,x的值为();A. 4B. -4C. 3D. -33.下列函数中,不是反比例函数的是()A. xy = 2B. y = - k3x(k≠0) C. y =3x-1 D. x = 5y-1三、解答题:1.一水池内有污水60m3,设放净全池污水所需的时间为t (小时),每小时的放水量为w m3,(1)试写出t与w之间的函数关系式,t是w反比例函数吗?(2)求当w = 15时,t的值.2.已知y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数表达式; (2)将表中空缺的x 、y 值补全.【综合练习】举出几个日常生活中反比例函数的实例.【探究练习】已知函数y = y 1 +y 2,y 1与x 成正比例,y 2与x 成反比例,且当x = 1时,y = 4,当x = 2时,y = 5. 求y 关于x 的函数解析式.x -5-3-2 1 4 5 y-34-1-3321]答案:【基础练习】一、1. v = 120t ; 2. y = 90x ; 3. 12. 二、1. D ; 2. A ; 3. C. 三、1. (1)t =60w ,(2)t = 4. 2. (1)y = 3x ;(2)从左至右:x = -4,-1,2,3;y = - 35 ,- 32 ,3,34,35. 【综合练习】略.【探究练习】y = 2x + 2x .第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数一.判断题1.如果y 是x 的反比例函数,那么当x 增大时,y 就减小 ( ) 2.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数 ( ) 3.如果一个函数不是正比例函数,就是反比例函数 ( ) 4.y 与x 2成反比例时y 与x 并不成反比例 ( ) 5.y 与2x 成反比例时,y 与x 也成反比例 ( ) 6.已知y 与x 成反比例,又知当2=x 时,,则y 与x 的函数关系式是( )二.填空题 7.叫__________函数,x 的取值范围是__________;8.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是_________=h ,这时h 是a 的__________;9.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成__________; 10.如果函数y =222-+k k kx是反比例函数,那么k =________,此函数的解析式是 ;11.下列函数表达式中,均表示自变量,那么哪些是反比例函数,如果是请在括号内填上的值,如果不是请填上“不是” ①;( ) ②;( ) ③; ( ) ④;( )⑤πxy =;( )⑥xy 5-=( )⑦( )12.判断下面哪些式子表示y 是x 的反比例函数? ①31-=xy ; ②x y -=5; ③x y 52-=; ④)0(2≠=a a xay 为常数且; 解:其中 是反比例函数,而 不是; 13.计划修建铁路1200,那么铺轨天数(天)是每日铺轨量x 的反比例函数吗?解:因为 ,所以y 是x 的反比例函数;14.一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么a 与b 成 函数关系,列出a 关于b 的函数关系式为 ;三.选择题:15.若n x m y ++=2)5(是反比例函数,则m 、n 的取值是 ( ) (A )3,5-=-=n m (B )3,5-=-≠n m (C ) 3,5=-≠n m (D )4,5-=-≠n m 16.附城二中到联安镇为5公里,某同学骑车到达,那么时间t 与速度(平均速度)v 之间的函数关系式是( )(A ) st v = (B ) s t v += (C ) t s v = (D ) stv = 17.已知A (2-,a )在满足函数xy 2=,则___=a ( ) (A ) 1- (B ) 1 (C ) 2- (D ) 218.下列函数中,是反比例函数的是 ( ) (A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 19.下列关系式中,哪个等式表示y 是x 的反比例函数 ( ) (A ) x k y =(B ) 2xB y = (C ) 121+=x y (D ) 12=-xy20.函数y m x m m =+--()2229是反比例函数,则m 的值是 ( )(A )m =4或m =-2(B ) m =4 (C ) m =-2 (D ) m =-1四.解答题:21.在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。

人教版九年级下册数学配套练习册配套参考答案(解析版)

人教版九年级下册数学配套练习册配套参考答案(解析版)

数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)(),6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =- §26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<- 3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,.§26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.x m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-+⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.(()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。

九年级第二学期数学练习册答案

九年级第二学期数学练习册答案

九年级第二学期数学练习册答案第二十六章圆与正多边形 14课时(13+1)第二十七章统计初步 10课时( 9+1)第二十六章圆与正多边形26.1 圆的确定(1课时)1.教学目标(1)知道点与圆的三种位置关系,了解三角形外心、外接圆、圆的内接三角形以及多边形的外接圆和圆的内接多边形等概念.(2)理解点与圆的位置关系的判定方法,并能初步运用点与圆位置关系的判定方法解决有关数学问题.(3)会画三角形的外接圆.在教学中,要注意以下几点:(1)关于圆的半径,本节明确指出它是“联结圆心和圆上一点的线段”。

要将半径与半径长区分开来,而以前的课本中有混用的情况,需要修改.(2)对于点与圆的位置关系的研究,可先进行定性讨论,再进行定量分析.在进行定量分析时,由点与圆的位置关系推出相应的“点与圆心的距离”和“圆的半径”之间的大小关系,可以理解为这是点与圆的位置关系的性质.反过来,由“点与圆心的距离”和“圆的半径”的大小关系推出相应的点与圆的位置关系,可以理解为这是点与圆的位置关系的判定.这也是“边款”中关于符号“ ”的说明的真正含义.(3)例题1是对点与圆位置关系判定方法的初步运用。

教学时,要让学生理解每个小问中哪条线段的长可以看作是⊙C的半径.这是解决问题的关键.(4)“思考”是为接下来的“问题”研究作好准备。

通过思考,既让学生知道“在平面上,经过给定两点的圆有无数个”这样一个结论,又知道经过平面内给定两个点作圆的方法.(5)在“问题”研究时,学生可能不会想到三个点在同一直线上的情况,直接得出“在平面上,经过三点的圆只有一个”错误的结论。

在教学时,应指导学生仔细分析问题,对问题进行分类讨论.让学生真正理解为什么在定理中强调三个点“不在同一直线上”的条件,同时注意到经过同一直线上的三点的圆不存在.(6)例题2是让学生学会画给定三角形的外接圆.例题有意识地安排学生画一个钝角三角形的外接圆.“边款”中也指出这个钝角三角形外接圆的圆心在这个三角形的外部.而课本中图26-5(1)的A、B、C三点其实是一个锐角三角形的顶点,所确定的圆心O是这个锐角三角形外接圆的圆心,这个圆心在三角形的内部.在练习26.1中,又安排学生画出给定的一个直角三角形的外接圆,并要指出这个外接圆圆心的位置.这种安排,是要让学生在会画出各种给定三角形的外接圆的同时,总结出不同类型的三角形的外接圆圆心的位置特点,知道“锐角三角形外接圆的圆心在这个三角形的内部”、“直角三角形外接圆的圆心是这个直角三角形斜边中点”、“钝角三角形外接圆的圆心在这个三角形的外部”这三个几何事实.明方法进行比较,帮助学生理解新的定理在几何证明中所起的作用,看到不同证明方法之间的联系和课本中证明过程的简约.(4) 例题2 是运用垂径定理解决简单的实际数学问题.本题的背景赵州石拱桥,教学时要指导学生如何将现实生活中的数学问题抽象为数学模型,要关注这个转化的过程,渗透数学建模思想.同时,可结合本例渗透“两纲”教育,激发学生的爱国热情。

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)031034

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)031034

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 把抛物线平移得到抛物线,是怎样平移得到的( )A.向右平移个单位长度,再向下平移个单位长度B.向左平移个单位长度,再向上平移个单位长度C.向右平移个单位长度,再向上平移个单位长度D.向左平移个单位长度,再向下平移个单位长度2. 如图,正三角形的顶点在坐标原点,点,点从点出发,沿边运动到点停止,点是轴上的点,且始终保持,当点与轴距离最近时,点的坐标为( )A.B.C.D.3. 平面直角坐标系内,函数与函数的图象可能是( )A.y =−2x 2y =−2+7(x−3)273373737OAB O A(4,0)P A AB B Q x ∠OPQ =60∘Q y Q (2,0)(,0)114(,0)134(3,0)y=a +bx+b(a ≠0)x 2y=ax+bB. C. D.4. 已知二次函数的图象如图所示,那么下列判断正确的是( )A.,,B.,,C.,,D.,,5. 已知函数,下列结论正确的是( )A.当时,随的增大而减小;B.当时,随的增大而增大;C.当时,随的增大而减小;D.当时,随的增大而增大.y=a +bx+c(a ≠0)x 2a >0b >0c >0a <0b <0c <0a <0b >0c >0a <0b <0c >0y =(x−1)2x >0y x x <0y x x <1y x x <−1y x6. 把二次函数配方成顶点式为( )A.B.C.D.7. 将抛物线 向下平移个单位长度得到的抛物线的解析式为()A.B.C.D.8. 如图是二次函数的图象,下列结论:①二次三项式的最大值为;②;③一元二次方程的两根之和为;④使成立的的取值范围是.其中正确的个数有( )A.个B.个C.个D.个y =−2x−1x 2y =(x−1)2y =(x+1−2)2y =(x+1+1)2y =(x−1−2)2y =13x 21y =+113x 2y =13(x+1)2y =13(x−1)2y =−113x 2y =a +bx+c x 2a +bx+c x 244a +2b +c <0a +bx+c =1x 2−1y ≤3x x ≥01234二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 将配方成的形式,则________.10. 抛物线向左平移个单位,再向上平移个单位所得函数解析式为________.11. 二次函数的最小值是________.12. 如图,直线与轴,轴分别交于点,,抛物线过,两点,交轴于另一点,抛物线的对称轴与轴交于点.点在轴上,连接分别交对称轴和抛物线于点、,若,则点的坐标为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分) 13. 已知关于的一元二次方程.当取何值时,此方程有两个不相等的实数根;当抛物线与轴两个交点的横坐标均为整数,且为负整数时,求此抛物线的解析式;在的条件下,若,是此抛物线上的两点,且,请结合函数图像直接写出实数的取值范围.14. 如图,折线表示芳芳骑自行车离家的距离与时间的关系,她点离开家,点回家,请根据图象回答下列问题:芳芳到达距家最远的地方时,离家__________千米.第一次休息时离家__________千米.她在的平均速度是__________.+6x+3x 2+n (x+m)2m+n =y =x 215y =3(x+4−5)2y =x−3x y A C y =−+4x−3x 2A C x B x D P y AP M N PM =22–√N x m −(2m+1)x+2=0x 2(1)m (2)y =m −(2m+1)x+2x 2x m (3)(2)P(n ,)y 1Q(n+1,)y 2>y 1y 2n 915(1)(2)(3)10:00—10:30芳芳一共休息了__________小时.芳芳返回用了__________小时.返回时的平均速度是__________.15. 已知二次函数的图象经过点,且顶点坐标为.求这个二次函数解析式.16. 将二次函数=的解析式化为=的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.(4)(5)(6)(0,−3)(1,−4)y 2+4x−1x 2y a(x+m +k )2参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】二次函数图象的平移规律【解析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况.【解答】解:抛物线的顶点坐标为,抛物线的顶点坐标为,因为点先向右平移个单位,再向上平移个单位可得到点,所以抛物线先向右平移个单位,再向上平移个单位可得到抛物线.故选.2.【答案】D【考点】二次函数的最值相似三角形的性质与判定【解析】先求得,根据相似三角形对应边成比例得,,求得,再由二次函数的相关性质即可得解.【解答】y =2x 2(0,0)y =2+7(x−3)2(3,7)(0,0)37(3,7)y =2x 237y =2+7(x−3)2C △POB ∼△QPA QA =PB ⋅PA OB PA =x OQ =OA−QA =4−QA =−x+4=+314x 214(x−2)2解:∵是正三角形,∴,,∴,∴,∴,∵,,∴,∵,∴,∴,∴,设,则,∴,∵,∴时,有最小值,此时.故选.3.【答案】C【考点】一次函数的图象二次函数的图象【解析】根据二次函数图象的开口以及对称轴与轴的关系即可得出、的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:,二次函数图象开口向上,对称轴在轴右侧,∴,,∴一次函数图象应该过第一、三、四象限,且与二次函数交于轴负半轴的同一点,故错误;,∵二次函数图象开口向下,对称轴在轴左侧,∴,,∴一次函数图象应该过第二、三、四象限,且与二次函数交于轴负半轴的同一点,故错误;,二次函数图象开口向上,对称轴在轴右侧,∴,,∴一次函数图象应该过第一、三、四象限,且与二次函数交于轴负半轴的同一点,故正确;△OAB OA =OB =AB ∠B =∠OAB =60∘A(4,0)OA =4OB =AB =4∠OPA =∠BOP +∠B ∠OPA =∠OPQ +∠QPA ∠BOP =∠QPA ∠B =∠QAP △POB ∼△QPA =PB QA OB PA QA =PB ⋅PA OB PA =x PB =AB−PA =4−x OQ =OA−QA =4−QA=−x+414x 2=+314(x−2)2>014x =2OQ 3Q(3,0)D y a b A y a >0b <0y A B y a <0b <0y B C y a >0b <0y C,∵二次函数图象开口向上,对称轴在轴右侧,∴,,∴一次函数图象应该过第一、三、四象限,且与二次函数交于轴负半轴的同一点,故错误.故选.4.【答案】C【考点】二次函数图象与系数的关系【解析】利用抛物线开口方向确定的符号,利用对称轴方程可确定的符号,利用抛物线与轴的交点位置可确定的符号.【解答】解:∵抛物线开口向下,∴.∵抛物线的对称轴在轴的右侧,∴,∴.∵抛物线与轴的交点在轴上方,∴.故选.5.【答案】C【考点】二次函数的性质【解析】利用形如的形式的二次函数的性质进行判断即可.【解答】解:∵二次函数的对称轴为,,∴开口向上,当时,随的增大而减小;当时,随的增大而增大.故,,错误,正确.故选.D y a >0b <0y D C a b y c a <0y x =−>0b 2a b >0y x c >0C y =a(x−h)2y =(x−1)2x =1a =1>0x <1y x x >1y x A B D C C6.【答案】D【考点】二次函数的三种形式【解析】利用配方法把一般式配成顶点式即可.【解答】解:.故选.7.【答案】D【考点】二次函数图象的平移规律【解析】此题暂无解析【解答】此题暂无解答8.【答案】B【考点】二次函数的图象二次函数的最值二次函数图象与系数的关系【解析】y =−2x+1−2x 2=(x−1−2)2D a +bx+c2①根据抛物线的顶点坐标确定二次三项式的最大值;②根据时,确定的符号;③根据抛物线的对称性确定一元二次方程的两根之和;④根据函数图象确定使成立的的取值范围.【解答】解:∵抛物线的顶点坐标为,∴二次三项式的最大值为,①正确;∵时,,∴,②正确;根据抛物线的对称性可知,一元二次方程的两根之和为,③错误;由图象知,使成立的的取值范围是或,④错误.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】二次函数的三种形式【解析】原式配方得到结果,即可求出的值.【解答】解:,则,,.故答案为:10.【答案】【考点】二次函数图象的平移规律【解析】根据函数图象向左平移加,向上平移加,可得答案.a +bx+c x 2x =2y <04a +2b +c a +bx+c =1x 2y ≤3x (−1,4)a +bx+c x 24x =2y <04a +2b +c <0a +bx+c =1x 2−3+1=−2y ≤3x x ≥0x ≤−2B −3m +6x+3x 2=+6x+9−6x 2=(x+3−6)2=(x+m +n )2m=3n =−6∴m+n =3−6=−3−3y =+5(x+1)2【解答】解:原抛物线的顶点为,向左平移个单位长度,再向上平移个单位长度,那么新抛物线的顶点为.所以新抛物线的解析式为.故答案为:.11.【答案】【考点】二次函数的最值【解析】由抛物线解析式可求得其最值.【解答】解:∵抛物线的开口方向向上,顶点坐标坐标是,∴当时,.故答案为:.12.【答案】或【考点】二次函数的图象【解析】此题暂无解析【解答】解:由题意易得,∵,∴∵∴.∵∴∴或.当时,直线为,(0,0)15(−1,5)y =+5(x+1)2y =+5(x+1)2−5y =3(x+4−5)2(−4,−5)x =−4=−5y 最小值5(2,1)(0,−3)A(3,0),B(1,0),C(0,−3),D(2,0),DM//OP ==,PA PM OA OD 32PM =2,2–√PA =32–√OA =3OP ==3,P −O A 2A 2−−−−−−−−−−√P(0,3)(0,−3)P(0,3)PA y =−x+3解方程组得或此时, ;当时,直线为,解方程组得或此时,.综上所述,N 点的坐标为或.故答案为:或.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:由题意,得,且,,解得,.设与轴的交点的横坐标为,则,,∵均为整数,为负整数,∴或,当时,抛物线为,令,此时,符合题意;当时,,不符合题意;所以,抛物线的解析式为.∵,即随的增大而减小.,抛物线的开口向下,∴点和在对称轴的右边,抛物线的对称轴为,∴.【考点】二次函数的性质抛物线与x 轴的交点根与系数的关系根的判别式{y =−x+3,y =−+4x−3x 2{x =2,y =1{x =3,y =0,N(2,1)P(0,−3)PA y =x−3{y =x−3,y =−+4x−3x 2{x =0,y =−3{x =3,y =0,N(0,−3)(2,1)(0,−3)(2,1)(0,−3)(1)m≠0Δ=−4×m×2>0(2m+1)2(2m−1>0)2m>12(2)x ,x 1x 2.=x 1x 22m +=x 1x 22m+1m 、x 1x 2m m=−1m=−2m=−1y =+x+2−x 2+x+2=0−x 2=2,=−1x 1x 2m=−2+==x 1x 2−4+1−232y =+x+2−x 2(3)n+1>n ,>y 1y 2y x a =−1<0P Q x =−=12×(−1)12n >12一元二次方程的定义【解析】该小题考查了一元二次方程的概念和根的判别式.一元二次方程必须满足,有两个实数根必须满足判别式大于.第小题考查一元二次方程根与系数的关系和二次函数与轴交点.一元二次方程两根的和第于一次项系数除以二次项系数,两根的积等于常数项除以二次项系数,结合根为整数求解即可.该小部主要考查二次函数的增减性.当开口向下时,在对称轴的右边随的增大而减小,利用这一性质求解即可.【解答】解:由题意,得,且,,解得,.设与轴的交点的横坐标为,则,,∵均为整数,为负整数,∴或,当时,抛物线为,令,此时,符合题意;当时,,不符合题意;所以,抛物线的解析式为.∵,即随的增大而减小.,抛物线的开口向下,∴点和在对称轴的右边,抛物线的对称轴为,∴.14.【答案】,,千米/小时,,,千米/小时【考点】函数的图象【解析】此题暂无解析【解答】a ≠00(2)x y x (1)m≠0Δ=−4×m×2>0(2m+1)2(2m−1>0)2m>12(2)x ,x 1x 2.=x 1x 22m +=x 1x 22m+1m 、x 1x 2m m=−1m=−2m=−1y =+x+2−x 2+x+2=0−x 2=2,=−1x 1x 2m=−2+==x 1x 2−4+1−232y =+x+2−x 2(3)n+1>n ,>y 1y 2y x a =−1<0P Q x =−=12×(−1)12n >12301714 1.5215解:由图可知,图中距离最大的点为,最大距离为千米.当芳芳休息时,速度为,即图中斜率为的线段,则第一次休息的点为点,离家千米.在中,她由点到点,故平均速度.同理题,图中斜率为的线段共两段,分别为,故时间为返回时距离应从最大处至,由图可知返回用了.返回时速度.故答案为:;;千米/小时;;;千米/小时.15.【答案】解:根据题意,设函数解析式为.∵图象经过点,∴,.∴解析式为.【考点】二次函数的性质【解析】可设解析式为顶点式,根据图象经过点求待定系数,即可得解.【解答】解:根据题意,设函数解析式为.∵图象经过点,∴,.∴解析式为.16.【答案】=,=,=,开口方向:向上,(1)E 、F 30(2)00C 17(3)10:00−10:30B C =7÷0.5=14km/h (4)(2)0CD 、EF 0.5+1=1.5h (5)02h (6)=30÷2=15km/h 301714 1.5215y =a(x−1−4)2(0,−3)−3=a −4a =1y =(x−1−4=−2x−3)2x 2(0,−3)y =a(x−1−4)2(0,−3)−3=a −4a =1y =(x−1−4=−2x−3)2x 2y 2(+2x)−1x 2y 2(+2x+1)−2−1x 2y 2(x+1−3)2顶点坐标:,对称轴:直线=.【考点】二次函数的三种形式二次函数的性质【解析】利用配方法把将二次函数=的解析式化为=的形式,利用二次函数的性质指出函数图象的开口方向、顶点坐标和对称轴,即可得到答案.【解答】=,=,=,开口方向:向上,顶点坐标:,对称轴:直线=.(−1,−3)x −1y 2+4x−1x 2y a(x+m +k )2y 2(+2x)−1x 2y 2(+2x+1)−2−1x 2y 2(x+1−3)2(−1,−3)x −1。

人教版九年级数学下册配套中学教材全解工具版第二十六章反比例函数检测题参考答案.docx

人教版九年级数学下册配套中学教材全解工具版第二十六章反比例函数检测题参考答案.docx

初中数学试卷 桑水出品第二十六章 反比例函数检测题参考答案1. A 解析:因为函数y =-中k =-5<0,所以其图象位于第二、四象限,当x >0时,其图象位于第四象限.2. A 解析:对于反比例函数,∵ x 1<x 2<0时,y 1<y 2,说明在同一个象限内,y 随x 的增大而增大,∴k <0,∴ 一次函数y =-2x +k 的图象与y 轴交于负半轴,其图象经过第二、三、四象限,不经过第一象限.3.A 解析:由于不知道k 的符号,此题可以分类讨论,当时,反比例函数x k y =的图象在第一、三象限,一次函数3+=kx y 的图象经过第一、二、三象限,可知A 项符合;同理可讨论当时的情况.4.B 解析:当点P 在AB 上移动时,点D 到直线P A 的距离为DA 的长度,且保持不变,其图像为经过点(0,4)且与x 轴平行的一条线段,当点P 在BC 上移动时,△P AD 的面积为6S =,不会发生变化,又因为162S xy ==,所以12xy =,所以12y x =,所以其图像为双曲线的一支,故选B. 5. C 解析: 把点(-2,3)代入反比例函数y =12k x -中,得3=122k --,解得k =72. 6.A 解析:∵ 反比例函数的图象位于第二、四象限,∴ k -1<0, ∴ k <1.只有A 项符合题意.7. A 解析:由图象可知,函数图象经过点(6,1.5),则1.5=6k ,解得k =9. 8.D 解析:因为反比例函数4y x=的图象在第一、三象限,且在每个象限内y 随x 的增大而减小,所以.又因为当时,,当时,,所以,,故选D.9.C 解析:∵ 点A 、B 都在反比例函数的图象上,∴ A (-1,6),B (-3,2).设直线AB 的解析式为0y kx b k =+≠(),则6,23,k b k b =-+⎧⎨=-+⎩解得2,8,k b =⎧⎨=⎩ ∴ 直线AB 的表达式为28y x =+,∴ C (-4,0).在△AOC 中,OC =4,OC 边上的高(即点A 到x 轴的距离)为6,∴ △AOC 的面积14612.2=⨯⨯= 10.A 解析:当反比例函数图象经过点C (1,2)时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故24b ac -=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A .11.2 解析:把点A (–2,3)代入k y x =中,得k = – 6,即6y x =-.把x = – 3代入6y x=-中,得y =2.12.4 解析:因为一次函数=-4y kx 的图象与y 轴交于点B ,所以B 点坐标为(0,-4).,84=2,4=2=4==过点作轴于点,因为为的中点,可得△≌△所以.设点坐标为(,4),代入可得点坐标为().把,代入-4可得 4.C CD x D A BC OAB DAC CD OB C x y C xx y y kx k ⊥==第12题答图 13.>1 <1 14. x y 4= 解析:设反比例函数的表达式为k y x =,因为1212,k k y y x x ==,211112+=y y ,所以2112x x k =+.因为212+=x x ,所以122k =,解得k =4,所以反比例函数的表达式为x y 4=. 15. 反比例16.4 解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x .由S △AOC =·AM =·3x ·=6,解得k =4.17.41 解析:若一次函数的图象与反比例函数x 1的图象没有公共点,则方程x 1没有实数根,将方程整理得Δ<0,即1+4k <0,解得41. 18.一、三、四 解析:把M (2,2)代入y =x k 得2=2k ,解得k =4. 把N (b ,-1-n 2)代入y =x 4得-1-n 2=b 4,即﹣(1+n 2)=b4,∴ b <0, ∴ y =kx +b 中,k =4>0,b <0,∴ 图象经过第一、三、四象限.19.解:(1)将6y kx =-与2k y x=-联立,得 62y kx k y x =-⎧⎪⎨=-⎪⎩,,2 6.k kx x ∴-=-(1) ∵ 点A 是两个函数图象的交点,将2x =代入(1)式,得2262k k -=-,解得2k =. 故一次函数解析式为26y x =-,反比例函数解析式为4y x=-. 将2x =代入26y x =-,得2262y =⨯-=-.∴ 点A 的坐标为()2,2-.(2)点B 在第四象限,理由如下:方法一:∵ 一次函数26y x =-的图象经过第一、三、四象限, 反比例函数4y x =-的图象经过第二、四象限, ∴ 它们的交点都在第四象限, ∴ 点B 在第四象限.方法二:由264y x y x =-⎧⎪⎨=-⎪⎩,得426x x -=-, 2 320x x ∴-+=,解得121,2x x ==.代入方程组得124,2,y y =-=-即点B 的坐标为(1,-4),∴ 点B 在第四象限.20.解:(1)把A (1,2)代入k y x=中,得2k =. ∴ 反比例函数的表达式为2y x =. (2)10x -<<或1x >.(3)如图所示,过点A 作AC ⊥x 轴,垂足为C .第20题答图∵ A (1,2),∴ AC =2,OC =1.∴ OA =22215+=.∴ AB =2OA =25.21.分析: (1)观察图象易知蓄水池的蓄水量.(2)与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数关系式.(3)求当 h 时的值.(4)求当时t 的值.解:(1)蓄水池的蓄水量为12×4=48().(2)函数的关系式为. (3).(4)依题意有,解得(h ).所以如果每小时排水量是5 ,那么水池中的水要用9.6小时排完.22.解:(1)因为y =2x -4的图象过点所以.因为x k y =的图象过点A (3,2),所以,所以x y 6=. (2)求反比例函数x y 6=与一次函数42-=x y 的图象的交点坐标,得到方程: x x 642=-,解得x 1=3,x 2=-1.∴ 另外一个交点是(-1,-6).画出图象,可知当或时,426->x x. 23.解:(1)反比例函数y =k x(x >0)的图象经过点A (1,2),∴ k =2. ∵ AC ∥y 轴,AC =1,∴ 点C 的坐标为(1,1).∵ CD ∥x 轴,点D 在函数图象上,∴ 点D 的坐标为(2,1).∴ CD 的长为1.∴ 1111.22OCD S =⨯⨯=△ (2)∵ BE =12AC ,AC =1,∴12BE =.∵ BE ⊥CD ,∴ 点B 的纵坐标是32. 设3,2B a (),把点3,2B a ()代入y =2x中,得324==.23a a ,∴ 即点B 的横坐标是43,∴ 点E 的横坐标是43, CE 的长等于点E 的横坐标减去点C 的横坐标.∴ CE =41133-=. 24.解:(1)将C 点坐标(1-,2)代入1y x m =+中,得,所以13y x =+.将C 点坐标(1-,2)代入2k y x =,得.所以22y x =-. (2)由方程组解得所以D 点坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方,此时x 的取值范围是21x -<<-.25.分析:(1)因为点A (m ,2)在一次函数y 1=x +1的图象上,所以当x =m 时,y 1=2.把x =m ,y 1=2代入y 1=x +1中求出m 的值,从而确定点A 的坐标.把所求点A 的坐标代入y 2=中,求出k 值,即可确定反比例函数的表达式.(2)观察图象发现,当x >0时,在点A 的左边y 1<y 2,在点A 处y 1=y 2,在点A 的右边y 1>y2.由此可比较y1和y2的大小.解:(1)∵一次函数y1=x+1的图象经过点A(m,2),∴2=m+1.解得m=1. ∴点A的坐标为A(1,2).∵反比例函数y2=的图象经过点A(1,2),∴2=.解得k=2,∴反比例函数的表达式为y2=.(2)由图象,得当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.。

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)054450

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)054450

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 方程的根可看作是函数的图象与函数的图象交点的横坐标,那么用此方法可推断出方程的实数根所在的范围是( )A.B.C.D.2. 如图,已知二次函数,当时,随的增大而增大,则实数的取值范围是 A.B.C.D.3. 二次函数(是非常数)的图象与轴的交点个数为( )A.个B.个C.个D.个或个4. 代数式(,,,是常数)中,与的对应值如下表:+3x−1=0x 2y =x+3y =1x−x−1=0x 3x 0−1<<0x 00<<1x 01<<2x 02<<3x 0y =−+2x x 2−1<x <a y x a ()a >1−1<a ≤1a >0−1<a <2y =m +x−2m x 2m 0x 01212a +bx+c x 2a ≠0abc x a +bx+c x 21135请判断一元二次方程(,,,是常数)的两个根,的取值范围是下列选项中的( )A.,B.,C.,D.,5. 已知二次函数的图象如图所示,对称轴为直线.且经过点,有位学生写出了以下五个结论:;方程的两根是,;;当时,随的增大而减小;.则以上结论中不正确的有( )A.个B.个C.个D.个6. 关于抛物线,下列说法正确的是( )A.有最大值是B.对称轴是C.开口向上D.与轴有交点x −1−120121322523ax 2+bx +c−2−141742741−14−2a +bx+c =0x 2a ≠0a b c x 1x 2−<<012x 1<<232x 2−1<<−x 1122<<x 252−<<012x 12<<x 252−1<<−x 112<<232x 2y =a +bx+c x 2x =1(3,0)(1)ac >0(2)a +bx+c =0x 2=−1x 1=3x 2(3)2a −b =0(4)x >1y x (5)3a +2b +c >01234y =−−2x 2−2x =−1x7. 对于抛物线,下列说法的是 A.若,则抛物线的顶点在轴上B.若抛物线经过原点,则一元二次方程必有一根为C.若,则抛物线的对称轴必在轴的左侧D.若顶点在轴下方,则一元二次方程有两个不相等的实数根8. 函数的图象如图所示,当时,,则的值可能是( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 我们约定:为函数的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为的函数图象与轴有两个整交点(为正整数),则这个函数图象上整交点的坐标为________. 10.根据下列表格的对应值,判断(,,,为常数)的一个解的取值范围是________.11. 不等式组的解集为________.12. 若关于的函数与轴仅有一个交点,则实数的值为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )错⋅误⋅()y 0y x y =+2x−3x 2x =m y <0m −41223(a,b,c)y =a +bx+c x 2(m,−m−2,2)x m a +bx+c =0x 2a ≠0a b c x x3.23 3.24 3.25 3.26a +bx+c x 2−0.06−0.020.030.09{2−x ≥0,3x+2>−1x y =k +2x−x 23–√x k13. 如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于、点和点,一次函数的图象与抛物线交于、两点.(1)求一次函数与二次函数的解析式.根据图象直接回答列下列问题:(2)当自变量________时,两函数的函数值都随增大而增大.(3)当自变量________时,一次函数值大于二次函数值.(4)当自变量________时,两函数的函数值的积小于.14. 如图,已知二次函数的图象与轴交于点,与轴交于点,,点坐标为,连接,.请直接写出二次函数的表达式;判断的形状,并说明理由;若点在轴上运动,当以点,,为顶点的三角形是等腰三角形时,请写出此时点的坐标. 15. 如图,已知抛物线经过两点.若方程有两个不相等的实数根,则的取值范围是________.当时,求的取值范围;点为抛物线上一点,若,求出此时点的坐标.16. 对于函数,小亮猜测函数的图像是由两条射线组成的“”字形.探究;A(−1,0)B(3,0)C(0,−3)B C x x x x 0y =a +x+c(a ≠0)x 232y A(0,4)x B C C (8,0)AB AC (1)y =a +x+cx 232(2)△ABC (3)N x A N C N y =+bx+c x 2A(−1,0),B(3,0)(1)+bx+c =k x 2k (2)0<x <3y (3)P =10S △PAB P y =|x|y =|x|v y =|x|当时,________;当时,________.列表:在给定的直角坐标系中画出函数的图像.应用:参照上述方法在同一直角坐标系中画出函数的图像,当时,________;当时,________;列表:在同一直角坐标系中画出函数的图像.延伸:当________时,函数随的增大而增大,当________时,函数随的增大而减小;方程的解在两个相邻整数________与________之间.(1)x ≥0y =x <0y =(2)x −2−101y =|x|2101y =|x|y =|x+2|−1(3)x ≥−2y =x <−2y =(4)x−4−3−2−1y =|x+2|−110−10y =|x+2|−1(5)x y =|x+2|−1x x y =|x+2|−1x (6)|x|=|x+2|−1参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】图象法求一元二次方程的近似根【解析】所给方程不是常见的方程,两边都除以以后再转化为二次函数和反比例函数,画出相应函数的图象即可得到实数根所在的范围.【解答】解:方程,∴,∴它的根可视为和的交点的横坐标,当时,,,交点在的右边,当时,,,交点在的左边,又∵交点在第一象限.∴,故选.2.【答案】B【考点】二次函数与不等式(组)【解析】先求出二次函数的对称轴,再根据二次函数的增减性列式即可.x x 0−x−1=0x 3−1=x 21xy =−1x 2y =1xx =1−1=0x 2=11x x =1x =2−1=3x 2=1x12x =21<<2x 0C【解答】解:二次函数的对称轴为直线,∵时,随的增大而增大,∴,∴.故选.3.【答案】C【考点】抛物线与x 轴的交点根的判别式【解析】只要记住“方程解有两个,则抛物线的图象与轴交点也有两个”即可.【解答】解:二次函数的图象与轴的交点个数即为时方程的解的个数,,故图象与轴的交点个数为个.故选.4.【答案】C【考点】图象法求一元二次方程的近似根【解析】观察表格可知,在时,随值的增大,代数式的值逐渐增大,的值在之间,代数式的值由负到正,故可判断时,对应的的值在之间,在时,随的值增大,代数式逐渐减小,的值在之间,代数式的值由正到负,故可判断时,对应的的值在之间,【解答】y =−+2x x 2x =1−1<x <a y x a ≤1−1<a ≤1B m +x−2m=0x 2y =m +x−2mx 2x y =m +x−2m x 2x y =0m +x−2m=0x 2Δ=1+8>0m 2x 2C x <1x a +bx+c x 2x −∼012a +bx+c x 2a +bx+c =0x 2x −∼012x >1x a +bx+c x 2x 2∼52a +bx+c x 2a +bx+c =0x 2x 2∼52解:根据表格可知,代数式时,对应的的值在和之间,即:一元二次方程(,,,是常数)的两个根,的取值范围是,故选.5.【答案】B【考点】抛物线与x 轴的交点二次函数图象上点的坐标特征二次函数图象与系数的关系【解析】由函数图象可得抛物线开口向下,得到小于,又抛物线与轴的交点在轴正半轴,得到大于,进而得到与异号,根据两数相乘积为负得到小于,错误;由抛物线的对称轴为直线,得到对称轴右边随的增大而减小,对称轴左边随的增大而增大,故时,随的增大而减小,正确;由抛物线的对称轴为,利用对称轴公式得到,错误;由抛物线与轴的交点为及对称轴为,利用对称性得到抛物线与轴另一个交点为,进而得到方程的两根分别为和,正确;由于时对应的函数图象在轴上,得到,然后把代入即可得到,由,则,得出,正确.【解答】解:由二次函数的图象可得:抛物线开口向下,即,抛物线与轴的交点在轴正半轴,即,∴,错误;由函数图象可得:当时,随的增大而减小,故正确;∵对称轴为直线,∴,即,错误;由图象可得抛物线与轴的一个交点为,又对称轴为直线,抛物线与轴的另一个交点为,则方程的两根是,,正确.由于时,,∴,把代入即可得到,由,则,得出,正确.综上所知错误的有两个.故选.6.a +bx+c =0x 2x −∼0122∼52a +bx+c =0x 2a ≠0abc x 1x 2−<<012x 12<<x 252C a 0y y c 0a c ac 0(1)x =1y x y x x >1y x (4)x =12a +b =0(3)x (3,0)x =1x (−1,0)a +bx+c =0x 2−13(2)x =3x 9a +3b +c =0b =−2a 3a +c =0a <0b >03a +2b +c >0(5)y =a +bx+c x 2a <0y y c >0ac <0(1)x >1y x (4)x =1−=1b2a2a +b =0(3)x (3,0)x =1x (−1,0)a +bx+c =0x 2=−1x 1=3x 2(2)x =3y =09a +3b +c =0b =−2a 3a +c =0a <0b >03a +2b +c >0(5)(1)(3)B【答案】A【考点】抛物线与x 轴的交点二次函数的性质二次函数图象与系数的关系【解析】根据题目中的函数解析式和二次函数的性质可以判断各个选项是否正确,从而可以解答本题.【解答】解:,对称轴为直线,因为,所以该抛物线开口向下,当时,函数有最大值,故正确,,错误;,则抛物线与轴没有交点,故错误.故选.7.【答案】D【考点】图象法求一元二次方程的近似根【解析】根据各选项的给出的具体条件,逐个判断即可得出结论【解答】解::若则….抛物线的顶点在轴上.正确:若抛物线经过原点,则∴可化为当时,成立:正确:若则、同号y =−−2x 2x =−=002×(−1)a =−1<0x =0−2A B C Δ=−4×(−1)×(−2)=−8<002x D A Ab =0y =a +c(a ≠0)x 2−=0=c b 2a 4ac −b 24ay A B c =0a +bx+c =0x 2a +bx =0x 2x =0a +bx =0x 2B C a ⋅b >0a b <0b.抛物线的对称轴必在轴的左侧…正确:若顶点在轴下方,则抛物线的顶点纵坐标若,则…一元二次方程有两个不相等的实数根若,则…一元二次方程无实数根.若顶点在轴下方,一元二次方程有两个不相等的实数根或无实数根…错误故选:8.【答案】B【考点】二次函数与不等式(组)【解析】先求出抛物线与轴的交点坐标,利用函数图象即可得出结论.【解答】解:∵函数,∴函数图象与轴的交点为,.∵当时,,∴.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】或或【考点】抛物线与x 轴的交点二次函数图象上点的坐标特征−<0b 2ax =−b2ay C D x <04ac −b 24aa >04ac −<0b 2−4ac >0b 2a +bx+c =0x 2a <04ac −>0b 2−4ac <0b 2a +bx+c =0x 2x a +bx+c =0x 2D D x y =+2x−3=(x−1)(x+3)x 2x (1,0)(−3,0)x =m y <00<m<−3B (1,0)(2,0)(0,2)根据题意令=,将关联数代入函数=,则有=,利用求根公式可得,将代入可得函数图象与轴的交点坐标;令=,可得==,即得这个函数图象上整交点的坐标.【解答】解:将代入,得.令,则,即.∵关联数为的函数图象与轴有两个整交点,∴,解得:,∴.与轴的交点,令,即,解得:,,即整交点坐标为,,与轴的交点,令,解得:,即整交点坐标为,综上所述,这个函数图象上整交点的坐标为或或.故答案为:或或.10.【答案】【考点】图象法求一元二次方程的近似根【解析】根据上面的表格,可得二次函数的图象与轴的交点坐标即为方程的解,当时,;当时,;则二次函数的图象与轴的交点的横坐标应在和之间.【解答】解:∵当时,;当时,;∴方程的一个解的范围是:.故答案为:.11.【答案】y 0(m,−m−2,2)y a +bx+c x 2m +(−m−2)x+2x 20m m x x 0y c 2(0,2)(m,−m−2,2)y =a +bx+c x 2y =m +(−m−2)x+2x 2y =0m +(−m−2)x+2=0x 2(mx−2)(x−1)=0(m,−m−2,2)x Δ=(−m−2−4×2m=)2(m−2>0)2m=1y =−3x+2x 2x y =0−3x+2=0x 2=1x 1=2x 2(1,0)(2,0)y x =0y =2(0,2)(2,0)(1,0)(0,2)(2,0)(1,0)(0,2)3.24<x <3.25y =a +bx+c x 2x a +bx+c =0x 2x =3.24y =−0.02x =3.25y =0.03y =a +bx+c x 2x 3.24 3.25x =3.24y =−0.02x =3.25y =0.03a +bx+c =0x 2x 3.24<x <3.253.24<x <3.25−1<x ≤2二次函数与不等式(组)【解析】此题暂无解析【解答】解:由①得:,由②得:,所以不等式组的解集为:.故答案为::.12.【答案】或【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】讨论:当时,函数为一次函数,满足条件;当时,根据判别式的意义得到,解方程得的值.【解答】解:当时,函数为一次函数,此函数与轴只有一个交点;当时,二次函数与轴仅有一个交点,方程有两个相等的实数根,∴,解得,综上所述,实数的值为或.故答案为:或.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.{2−x ≥0①,3x+2>−1②x ≤2x >−1−1<x ≤2−1<x ≤20−3–√3k =0y =2x−3–√k ≠0Δ=−4k ×(−)=0223–√k k =0y =2x−3–√x k ≠0∵y =k +2x−x 23–√x ∴k +2x−=0x 23–√Δ=−4k ×(−)=0223–√k =−3–√3k 0−3–√30−3–√3;(3)由函数图象可知,当时一次函数的图象在二次函数图象的上方.故答案为:;(4)∵由函数图象可知,当时,的值符号相反,∴两函数的函数值的积小于.故答案为:.【考点】二次函数与不等式(组)待定系数法求二次函数解析式【解析】(1)利用待定系数法求出一次函数与二次函数的解析式即可;(2)根据两函数图象的交点坐标即可得出结论;(3)根据当时一次函数的图象在二次函数图象的上方即可得出结论;(4)两函数的图象的纵坐标符号相反时两函数的函数值的积小于.【解答】解:(1)设一次函数的解析式为,∵和,∴,解得,∴一次函数的解析式为;设二次函数的解析式为,∵、、,∴,解得,∴抛物线线的解析式为;(2)由函数图象可知,时,两函数的函数值都随增大而增大.(3)由函数图象可知,当时一次函数的图象在二次函数图象的上方.(4)∵由函数图象可知,当时,的值符号相反,∴两函数的函数值的积小于.14.【答案】解:∵二次函数的图象与轴交于点,与轴交于点,,点坐标为,∴解得>30<x <30<x <3x <−1y 0<−10<x <30y =kx+b(k ≠0)B(3,0)C(0,−3){3k +b =0b =−3{k =1b =−3y =x−3y =a +bx+c(a ≠)x 2A(−1,0)B(3,0)C(0,−3) a −b +c =09a +3b +c =0c =−3 a =1b =−2c =−3y =−2x−3x 2x >3x 0<x <3x <−1y 0(1)y =a +x+cx 232y A(0,4)x B C C (8,0){ c =4,64a +12+c =0,{a =−,14c =4,=−+x+413∴抛物线解析式为.是直角三角形,理由:令,则,解得,,∴点的坐标为.由已知可得,在中,,在中,,又∵,∴在中,∴是直角三角形.设点坐标为,根据题意分情况讨论:①若,则有,解得,∴;②若,则有,解得,(舍去),∴;③若,则,解得,,∴或.综上,满足条件的点的坐标为或或或.【考点】待定系数法求二次函数解析式勾股定理勾股定理的逆定理抛物线与x 轴的交点等腰三角形的性质【解析】y =−+x+414x 232(2)△ABC y =0−+x+4=014x 232=8x 1=−2x 2B (−2,0)Rt △ABO A =B +A =+=20B 2O 2O 22242Rt △AOC A =A +C =+=80C 2O 2O 24282BC =OB+OC =2+8=10△ABC A +A =20+80==B B 2C 2102C 2△ABC (3)N (t,0)AN =CN +=(8−t t 242)2t =3t(3,0)AN =AC +=+t 2428242=−8t 1=8t 2t(−8,0)AC =CN (8−t =+)28242=8−4t 35–√=8+4t 45–√t(8−4,0)5–√t(8+4,0)5–√N (3,0)(−8,0)(8−4,0)5–√(8+4,0)5–√(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得的坐标,然后根据勾股定理分别求得,,,然后根据勾股定理的逆定理即可证得是直角三角形.(3)分别以、两点为圆心,长为半径画弧,与轴交于三个点,由的垂直平分线与轴交于一个点,即可求得点的坐标;(4)设点的坐标为,则,过点作轴于点,根据三角形相似对应边成比例求得,然后根据得出关于的二次函数,根据函数解析式求得即可.【解答】解:∵二次函数的图象与轴交于点,与轴交于点,,点坐标为,∴解得∴抛物线解析式为.是直角三角形,理由:令,则,解得,,∴点的坐标为.由已知可得,在中,,在中,,又∵,∴在中,∴是直角三角形.设点坐标为,根据题意分情况讨论:①若,则有,解得,∴;②若,则有,解得,(舍去),∴;③若,则,B A =20B 2A =80C 2BC10△ABC A C AC x AC x N N (n,0)BN =n+2M MD ⊥x D MD =(n+2)25=−S △AMN S △ABN S △BMNn (1)y =a +x+c x 232y A(0,4)x B C C (8,0){ c =4,64a +12+c =0,{a =−,14c =4,y =−+x+414x 232(2)△ABC y =0−+x+4=014x 232=8x 1=−2x 2B (−2,0)Rt △ABO A =B +A =+=20B 2O 2O 22242Rt △AOC A =A +C =+=80C 2O 2O 24282BC =OB+OC =2+8=10△ABC A +A =20+80==B B 2C 2102C 2△ABC (3)N (t,0)AN =CN +=(8−t t 242)2t =3t(3,0)AN =AC +=+t 2428242=−8t 1=8t 2t(−8,0)AC =CN (8−t =+)28242=8−4–√=8+4–√解得,,∴或.综上,满足条件的点的坐标为或或或.15.【答案】当时,函数值为,结合可知当时, .∵ ,,∴ .设,则,∴ ,∴ .①当时,,解得:,,此时点坐标为或.②当时,,方程无解,综上所述,点坐标为或.【考点】二次函数的性质三角形的面积待定系数法求二次函数解析式二次函数图象上点的坐标特征【解析】此题暂无解析【解答】解:把,分别代入中,得:解得:∴抛物线的解析式为.∵,∴顶点坐标为,∴若方程有两个不相等的实数根,则.故答案为:.当时,函数值为,结合可知当时, .∵ ,,∴ .=8−4t 35–√=8+4t 45–√t(8−4,0)5–√t(8+4,0)5–√N (3,0)(−8,0)(8−4,0)5–√(8+4,0)5–√k >−4(2)x =30(1)0<x <3−4≤y <0(3)A(−1,0)B(3,0)AB =4P (x,y)=AB ⋅|y|=2|y|=10S △PAB 12|y|=5y =±5y =5−2x−3=5x 2=−2x 1=4x 2P (−2,5)(4,5)y =−5−2x−3=−5x 2P (−2,5)(4,5)(1)A(−1,0)B(3,0)y =+bx+cx 2{1−b +c =0,9+3b +c =0,{b =−2,c =−3,y =−2x−3x 2y =−2x−3=(x−1−4x 2)2(1,−4)+bx+c =k x 2k >−4k >−4(2)x =30(1)0<x <3−4≤y <0(3)A(−1,0)B(3,0)AB =4AB ⋅|y|=2|y|=10PAB 1设,则,∴ ,∴ .①当时,,解得:,,此时点坐标为或.②当时,,方程无解,综上所述,点坐标为或.16.【答案】,函数的图像如图所示,,函数的图像如图所示,,,【考点】绝对值函数的图象一次函数的应用函数与方程不等式关系【解析】P (x,y)=AB ⋅|y|=2|y|=10S △PAB 12|y|=5y =±5y =5−2x−3=5x 2=−2x 1=4x 2P (−2,5)(4,5)y =−5−2x−3=−5x 2P (−2,5)(4,5)x −x (2)y =|x|x+1−x−3(4)y =|x+2|−1≥−2≤−2−10根据绝对值的性质得出;根据表中点的坐标描点连线得出图像;根据绝对值的性质得出;根据表中点的坐标描点连线得出图像;由函数图象得出;图象交点即为方程的解,根据图象得出范围.【解答】解:,当时,;当时,.故答案为:;.函数的图像如图所示,,当时,;当时,.故答案为:;.函数的图像如图所示,由图象可知当时,函数随的增大而增大,当时,函数随的增大而减小.故答案为:;.图象交点即为方程的解,(1)(2)(3)(4)(5)y =|x+2|−1(6)|x|=|x+2|=1(1)y =|x|x ≥0y =x x <0y =−x x −x (2)y =|x|(3)y =|x+2|+1x ≥−2y =x+2−1=x+1x <−2y =−x−2−1=−x−3x+1−x−3(4)y =|x+2|−1(5)x ≥−2y =|x+2|−1x x ≤−2y =|x+2|−1x ≥−2≤−2(6)|x|=|x+2|=1交点在整数与之间,即方程的解在两个相邻整数与之间.故答案为:;.−10|x|=|x+2|=1−10−10。

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)080342

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)080342

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 某校九年级随机抽查一部分学生进行了分钟仰卧起坐次数的测试,并将其绘制成如图所示的频数直方图.那么仰卧起坐次数在次的人数占抽查总人数的百分比是( )A.B.C.D.2. 调查名学生的年龄,列频数分布表时,这些学生的年龄落在个小组中,第一、二、三、五组数据个数分别是,,,,则第四组的频数是( )A.B.C.D.3. 年月教育局对某校七年级学生进行体质监测共收集了名学生的体重,并绘制成了频数分布直方图,从左往右数每个小长方形的长度之比为,其中第三组的频数为( )A.人B.人C.人D.人125∼3040%30%20%10%5052815520300.40.6201932002:3:4:1806020104. 李老师对本班名学生的,,,四种血型作了统计,列出如下的统计表,则本班型血的人数是( )个.组别型 型 型 型 频数频率A.人B.人C.人D.人5. 某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确的是 A.共抽取了人B.分以上的有人C.分以上的所占的百分比是D.分这一分数段的频数是6. 某校在市政府举行的“争创文明城市”活动中组织学生进行社会调查,并对学生的调查报告进行了评比.如图所示的是将篇学生调查报告的成绩进行整理后分成组画出的频数分布直方图.已知从左到右个组的百分比分别是,,,那么在这次评比中被评为优秀的调查报告有(分数大于或等于分为优秀,且分数为整数)A.篇B.篇C.篇D.篇40A B O AB A A B AB O b c d 6a 0.350.1e161446()5090128060%60.5∼70.51280535%15%35%80()182736457. 某校七年级学生做校服,校服分小号、中号、大号、特大号四种,随机抽取若干名学生调查身高得如下分布表:型号身高人数频率小号中号大号特大号则表中,的值分别为( )A.,B.,C.,D., 8. 如图是某班级的一次数学考试成绩(得分均为整数)的频数分布直方图(每组包含最小值,不包含最大值),则下列说法错误的是( )A.得分及格(分)的有人B.人数最少的得分段的频数为C.得分在分的人数最多D.该班的总人数为人二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 对某中学同年级名男生的身高进行了测量,得到一组数据,其中最大值是,最小值是,对这组数据进行整理时,确定它的组距为,则至少应分________组.10. 班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图如图所示,那么成绩高于分的学生占班参赛人数的百分率为________.x/cm145≤x <155200.2155≤x <165a 0.35165≤x <17540b 175≤x ≤18550.05a b 450.3350.3350.4450.4≥6012270∼804070183cm 146cm 5cm A 60A11. 已知一组数据有个,其中最大值是,最小值是.若取组距为,则可分为________组.12. 已知一个样本的数据个数是,在样本的频率直方图中各个小长方形的高的比依次为,则第二小组的频数为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数天数说明:环境空气质量指数技术规定:时,空气质量为优;时,空气质量为良;时,空气质量为轻度污染;时,空气质量为中度污染,,根据上述信息,解答下列问题:空气污染指数这组数据的众数________,中位数________;请补全空气质量天数条形统计图;根据已完成的条形统计图,制作相应的扇形统计图;健康专家温馨提示:空气污染指数在以下适合做户外运动.请根据以上信息,估计该市居民一年(以天计)中有多少天适合做户外运动? 14. 某地某月日中午时的气温(单位:)如下:将下列频数分布表补充完整:气温分组划记频数50142985302:4:3:130(ω)3040708090110120140(t)12357642(AQI)ω≤5051≤ω≤100101≤ω≤150151≤ω≤200⋯⋯(1)(2)(3)(4)1003651∼2012C ∘2231251518232120271720121821211620242619(1)12≤x <173________________________________补全频数分布直方图;根据频数分布表或频数分布直方图,分析数据的分布情况.15. 甲、乙两支篮球队在一次联赛中各进行了次比赛,得分如下(单位:分):甲队:,,,,,,,,,;乙队:,,,,,,,,,.已知甲队的平均分为分,乙队的方差为.求乙队的平均分;判断哪个队在比赛中的成绩较为稳定.16.为迎接国庆周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:分数段频数频率请根据以上图表提供的信息,解答下列问题:表中________和所表示的数分别为:________=________,=________;请在图中,补全频数分布直方图;比赛成绩的中位数落在哪个分数段;如果比赛成绩分以上(含可以获得奖励,那么获奖率是多少?17≤x <2222≤x <2727≤x <322(2)(3)1010097999610210310410110110097979995102100104104103102100.39.21(1)(2)6060≤x <70300.1570≤x <80m 0.4580≤x <9060n 90≤x <100200.1(1)n n (2)(3)(4)808参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、选择题(本题共计 8 小题,每题 5 分,共计40分)1.【答案】A【考点】频数(率)分布直方图【解析】此题暂无解析【解答】此题暂无解答2.【答案】A【考点】频数(率)分布表【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】频数(率)分布直方图【解析】根据题意和从左至右的个小长方形的高度比为,可以求得第五个小组的频数.【解答】解:由题意可得,第三组的频数为:,故选.4.【答案】A【考点】频数(率)分布表【解析】先求出,再求出,然后乘以的值即可.【解答】解:;;.故选.5.【答案】D【考点】频数(率)分布直方图【解析】根据频数分布直方图提供的信息解答.【解答】解:,抽样的学生共人,故本选项正确;,分以上的有人 ,故本选项正确;,分以上的同学所占百分比为,故本选项正确;,由图,这一分数段的频数为,故本选项错误.51:3:5:4:2200×=8042+3+4+1A e a 40a e ==0.15640a =1−0.15−0.1−0.35=0.4b =40×0.4=16A A 4+10+18+12+6=50B 9012C 80=60%18+1250D 60.5∼70.510故选.6.【答案】C【考点】频数(率)分布直方图【解析】由题意分析直方图可知:分数在段的频率,又由频率、频数的关系可得:分数在段的频率,进而可得评比中被评为优秀的调查报告的篇数,从而得出答案.【解答】解:由题意可知:分数在段的频率为,则这次评比中被评为优秀的调查报告有篇.故选.7.【答案】C【考点】频数(率)分布表【解析】(2)用学生总数乘以即可求得,用除以学生总数即可求得值;【解答】解:由,则,.故选.8.【答案】A【考点】频数(率)分布直方图D 89.5−99.579.5−99.579.5−99.51−0.05−0.15−0.35=0.4580×0.45=36C 0.45a 30b 20÷0.2=100a =100×0.35=35b =40÷100=0.4C【解析】观察频率分布直方图即可——判断.【解答】解:,得分及格(分)的有: (人),错误,本选项符合题意.,人数最少的得分段的频数为,正确,本选项不符合题意.,得分在分的人数最多,正确,本选项不符合题意.,该班的总人数为:(人),正确,本选项不符合题意.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】频数(率)分布表【解析】此题暂无解析【解答】解:由题意得,最大值为,最小值为,故最大值与最小值的差为,组距为,,故至少应分组.故答案为:.10.【答案】【考点】频数(率)分布直方图【解析】根据频数直方图中的数据可以求得成绩高于分的学生占班参赛人数的百分率,本题得以解决.【解答】A ≥6012+14+8+2=36B 2C 70∼80D 4+12+14+8+2=40A 8183cm 146cm 183−146=37(cm)5cm 37÷5=7.48877.5%60A 100%=77.5%8+8+9+6解:由题意,得.故答案为:.11.【答案】【考点】频数(率)分布表【解析】根据组数=(最大值-最小值)组距计算.【解答】∵极差为=,∴可分组数为,12.【答案】【考点】频数(率)分布直方图【解析】根据比例关系分别求出各组的频率,再由频数总数频率即可得出第二组的频数.【解答】解:∵各个小长方形的高依次为,∴第二组的频率,∴第二小组的频数是:.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】,由题意得,×100%=77.5%8+8+9+63+6+8+8+9+677.5%9÷142−984444÷5≈912=×2:4:3:1===0.442+4+3+12530×0.4=12129090(2)轻度污染的天数为:(天).补全空气质量天数条形统计图如图:由题意得,优所占的圆心角的度数为:,良所占的圆心角的度数为:,轻度污染所占的圆心角的度数为:,制作扇形统计图如图:该市居民一年(以天计)中有适合做户外运动的天数为:(天).【考点】中位数众数条形统计图扇形统计图用样本估计总体【解析】(1)根据众数的定义就可以得出这组数据的众数为,由各数据中排在第和第两个数的平均数就可以得出中位数为;(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)先求出天中空气污染指数在以下的比值,再由这个比值乘以天就可以求出结论.30−3−15=12(3)3÷30×=360∘36∘15÷30×=360∘180∘12÷30×=360∘144∘(4)36518÷30×365=219903015169030100365【解答】解:在这组数据中出现的次数最多次,故这组数据的众数为;在这组数据中排在最中间的两个数是,,这两个数的平均数是,所以这组数据的中位数是.故答案为:;.由题意得,轻度污染的天数为:(天).补全空气质量天数条形统计图如图:由题意得,优所占的圆心角的度数为:,良所占的圆心角的度数为:,轻度污染所占的圆心角的度数为:,制作扇形统计图如图:该市居民一年(以天计)中有适合做户外运动的天数为:(天).14.【答案】解:补充表格如下:气温分组划记频数补全频数分布直方图如下:(1)90790909090909090(2)30−3−15=12(3)3÷30×=360∘36∘15÷30×=360∘180∘12÷30×=360∘144∘(4)36518÷30×365=219(1)12≤x <17317≤x <221022≤x <27527≤x <322(2)由频数分布直方图知,气温在时天数最多,有天.【考点】频数(率)分布表频数(率)分布直方图【解析】(1)根据数据采用唱票法记录即可得;(2)由以上所得表格补全图形即可;(3)根据频数分布表或频数分布直方图给出合理结论即可得.【解答】解:补充表格如下:气温分组划记频数补全频数分布直方图如下:由频数分布直方图知,气温在时天数最多,有天.15.【答案】解:乙队平均分(3)≤x <17∘22∘10(1)12≤x <17317≤x <221022≤x <27527≤x <322(2)(3)≤x <17∘22∘10(1)=(97+97+99+95+102+x 乙¯¯¯¯¯¯.答:乙队的平均分为分;甲队方差,∵甲队方差小于乙队方差,∴甲队在比赛中的成绩较为稳定.【考点】方差算术平均数【解析】用各队次数据相加求出和,再除以即可求出平均数;根据方差公式进行计算出结果即可.【解答】解:乙队平均分.答:乙队的平均分为分;甲队方差,∵甲队方差小于乙队方差,∴甲队在比赛中的成绩较为稳定.16.【答案】,,,解:根据中位数的求法,先将数据按从小到大的顺序排列,读图可得:共人,第、名都在分分,故比赛成绩的中位数落在分分.解:读图可得比赛成绩分以上的人数为=,故获奖率为=.100+104+104+103+102)÷10=100.3100.3(2)=[(100−100.3+(97−100.3+S 2甲110)2)2(99−100.3+(96−100.3+(102−100.3+)2)2)2(103−100.3+)2(104−100.3+(101−100.3+)2)2(101−100.3)2+(100−100.3])2=5.611010(1)=(97+97+99+95+102+x 乙¯¯¯¯¯¯100+104+104+103+102)÷10=100.3100.3(2)=[(100−100.3+(97−100.3+S 2甲110)2)2(99−100.3+(96−100.3+(102−100.3+)2)2)2(103−100.3+)2(104−100.3+(101−100.3+)2)2(101−100.3)2+(100−100.3])2=5.61m m 900.320010010170∼8070∼808060+2080×100%60+2020040%【考点】中位数频数(率)分布直方图【解析】根据统计表中,频数与频率的比值相等,可得关于、的关系式;进而计算可得、的值;解:根据第问求出的数据便可以补全图形.根据中位数的定义判断;读图可得比赛成绩分以上的人数,除以总人数即可得答案.【解答】解:根据统计表中,频数与频率的比值相等,即有解可得:=,=;解:图为:解:根据中位数的求法,先将数据按从小到大的顺序排列,读图可得:共人,第、名都在分分,故比赛成绩的中位数落在分分.解:读图可得比赛成绩分以上的人数为=,故获奖率为=.m n m n 180==m 0.45300.1560n m 90n 0.320010010170∼8070∼808060+2080×100%60+2020040%。

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)091501

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)091501

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 点是线段的黄金分割点,若,则等于( )A.B.C.D.2. 某块面积为的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为,这块草坪某条边的长度是,则它在设计图纸上的长度是 A.B.C.D.3. 已知,那么下列等式中,不一定正确的是( )A.B.C.D.4. 下列四条线段成比例的是( )A.、、、B.、、、C.、、、D.、、、C AB (AC >BC)AB =10cm AC 6cm(5+1)cm5–√5(−1)cm5–√(5−1)cm5–√4000m 2250cm 240m ()4cm5cm10cm40cm=x y 355x =3yx+y =8=x+y y 85=x y x+3y+5465101281620123412245. 下列各组图形不一定相似的是( )A.两个等腰直角三角形B.各有一个角是的两个等腰三角形C.各有一个角是的两个直角三角形D.两个矩形6. 如图,已知线段,点是线段的黄金分割点,那么线段的长约为( )A.B.C.D.7. 如果整张报纸与半张报纸相似,则此报纸的长与宽的比是( )A.B.C.D.8. 若,则的值是( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 在比例尺为的地图上,如果点与点两点间的距离为厘米,那么点、分别表示的两地间相距________米.100∘50∘AB =10P AB PB 6.180.3820.6183.822:1:12–√4:1:13–√=a b 75a +b b12525355121:1000000A B 2A B10. 已知线段=,是线段的黄金分割点,则=________.11. 如图,在矩形中,点在上,将矩形沿折叠,使点落在边上的点处.若,,则的值为________.12. 如果,那么________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,两点把线段分成三部分,是的中点,,求的长. 14. 如图,点把线段分成两条线段和,如果 ,则称线段被点黄金分割,点叫作线段的黄金“右割“点,根据图形不难发现,线段上另有一点把线段分成两条线段和,若 ,则称点是线段的黄金“左割”点.请根据以上材科,回答下列问题:如图,若点和点分别是线段的黄金“右割”点、黄金“左割”点,则________,________;若数轴上有,,,四个点,它们分别对应的实数为,且 ,,点和点分别是线段的黄金“右割”点、黄金“左割”点,求的值15. 已知,且,求的值.16. 已知线段是,的比例中项,=,=,求的长.AB 10P AB (AP >PB)AP ABCD E DC AE D BC F AB =3BC =5tan ∠DAE =a b 32=a +b bB C AD 2:3:4M AD CD =8MC 1C AB AC BC AC =AB −15–√2AB C C AB AB D AB AD BD BD =AB −15–√2D AB (1)2AB =8,C D AB BC =DC (2)M P Q N m,p,q,n 0<m<p <q <n n =3m Q P MN p q .==a 5b 7c 83a −2b +c =92a +4b −3c MN AB CD AB 4cm CD 9cm MN参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】黄金分割【解析】由于点是线段的黄金分割点,根据黄金分割的定义得到,然后把代入计算即可.【解答】解:∵点是线段的黄金分割点,∴,而,∴.故选.2.【答案】C【考点】相似多边形的性质【解析】首先设这块草坪在设计图纸上的长度是,根据题意可得这两个图形相似,根据相似图形的面积比等于相似比的平方,可列方程,解此方程即可求得答案,注意统一单位.【解答】C AB (AC >BC)AC =AB −15–√2AB =10cm C AB (AC >BC)AC =AB −15–√2AB =10cm AC =×10=5(−1)cm −15–√25–√C xcm =(400000002504000x)2解:设这块草坪在设计图纸上的长度是,,,根据题意得:,解得:,即这块草坪在设计图纸上的长度是.故选.3.【答案】B【考点】比例的性质【解析】根据比例的性质作答.【解答】解:设,().,,故本选项不符合题意;,,不一定等于,故本选项符合题意;,,故本选项不符合题意;,易知,故本选项不符合题意.故选.4.【答案】D【考点】比例线段【解析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:,故本选项错误;,故本选项错误;,故本选项错误;,故本选项正确;xcm 4000=40000000c m 2m 240m=4000cm =(400000002504000x)2x =1010cm C x =3k y =5k k ≠0A 3y =15k =5x B x+y =8k 8C ==x +y y 3k +5k 5k 85D =x y x+3y+5B A.6×5≠10×4B.12×16≠8×20C.1×4≠2×3D.1×4=2×2故选.5.【答案】D【考点】相似图形【解析】根据相似图形的定义,对应边成比例,对应角相等对各选项分析判断后利用排除法.【解答】、两个等腰直角三角形,对应边成比例,对应角相等,符合定义,一定相似,故本选项正确;、各有一个角是的两个等腰三角形,的角一定是顶角,一定相似,故本选项正确;、各有一个角是的两个直角三角形,都有一个直角,根据两角对应相等,两三角形相似,故本选项正确;、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故本选项错误.6.【答案】D【考点】黄金分割【解析】根据黄金分割点的定义,由图形知是较长线段;则,代入数据即可得出的长.【解答】解:由于为线段的黄金分割点,且是较长线段;则.故选.7.【答案】B【考点】D A B 100∘100∘C 50∘D AP PB =AB ≈0.382AB 3−5–√2PB P AB =10AP PB =AB =×10≈3.823−5–√23−5–√2D相似多边形的性质【解析】根据相似形对应边的比相等,列式即可得出长与宽的比.【解答】解:设报纸的长为,报纸的宽为,∵整张报纸与半张报纸相似,则;即;.故选.8.【答案】A【考点】比例的性质【解析】根据和比性质,可得答案.【解答】解:由和比性质,得,故选:.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】比例线段【解析】设两地间的实际距离是厘米,根据比例尺的性质列出方程,求出的值,再进行换算即可得出答案.2x y =2x y y x =2(2x)2y 22x :y =:12–√B ==a +b b 5+75125A 20000x x解:设两地间的实际距离是厘米,∵比例尺为,量得两地间的距离为厘米,∴,解得:,∵厘米千米,∴两地间的实际距离是米.故答案为:10.【答案】【考点】黄金分割【解析】直接根据黄金分割的定义计算.【解答】∵是线段的黄金分割点,∴=.11.【答案】【考点】矩形的性质勾股定理翻折变换(折叠问题)锐角三角函数的定义【解析】先根据矩形的性质得., ,再根据折叠的性质得,,在中,利用勾股定理计算出 ,则,设,则,然后在中根据勾股定理得到 ,解方程即可得到,进一步得到的长,再根据正弦函数的定义即可求解.x 1:10000002=110000002x x =20000002000000=2020000200005−55–√P AB (AP >PB)AP =AB =×10−15–√2−15–√25−55–√13AD =BC =5AB =CD =3AF =AD =5EF =DE Rt △ABF BF =4CF =BC −BF =1CE =x DE =EF =3−x Rt △ECF +=x 212(3−x)2x EF解:∵四边形为矩形,∴,,∵矩形沿直线折叠,顶点恰好落在边上的处,∴,,在中,,∴,设,则,在中,,即 ,解得,∴,.故答案为:.12.【答案】【考点】比例的性质【解析】用表示出,然后代入比例式进行计算即可得解.【解答】∵,∴,∴.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:设,,,∴,,则,,ABCD AD =BC =5AB =CD =3ABCD AE D BC F AF =AD =5EF =DE Rt △ABF BF ===4A −A F 2B 2−−−−−−−−−−√25−9−−−−−√CF =BC −BF =5−4=1CE =x DE =EF =3−x Rt △ECF C +F =E E 2C 2F 2+=x 212(3−x)2x=43DE =EF =3−x =53∴tan ∠DAE ===DE AD 535131352b a =a b 32a =b 32==a +b b b +b32b 52AB =2x BC=3x CD =4x AD =9x MD =x 92CD =4x =8x =2C =MD−CD =x−4x =x =×2=1911∴.【考点】线段的中点线段的和差比例线段【解析】设为,则,得出,再利用求解.【解答】解:设,,,∴,,则,,∴.14.【答案】,由和题意知: ,.在数轴上,,又,∴,,同理可求 ..【考点】黄金分割数轴【解析】此题暂无解析【解答】解:∵点和点分别是线段的黄金“右割”点、黄金“左割”点,MC =MD−CD =x−4x =x =×2=1921212AB 2x CD =4x =8x =2MC =MD−CDAB =2x BC =3x CD =4x AD =9x MD =x 92CD =4x =8x =2MC =MD−CD =x−4x =x =×2=192121212−45–√8−165–√(2)(1)PN =MN −15–√2MQ =MN −15–√2∵0<m<p <q <n,n =3m ∴PN =n−p,MQ =q −m,MN =n−m.n =3m 3m−p =(3m−m)=(−1)m −15–√25–√∴p =3m−(−1)m=4m−m 5–√5–√q =m 5–√∴==p q 4m−m 5–√m 5–√4−5–√5–√=4−55–√5(1)C D AB AC =BD =AB −15–√,,.故答案为:;.由和题意知: ,.在数轴上,,又,∴,,同理可求 ..15.【答案】解:设,则,,,代入得,,解得,所以,,,,所以,.【考点】比例的性质【解析】设比值为,然后用表示出、、,再代入等式求出的值,从而得到、、的值,然后代入代数式进行计算即可得解.【解答】解:设,则,,,代入得,,解得,所以,,,,所以,.16.【答案】∴AC =BD =AB −15–√2=×−15–√28=4−45–√∴BC =8−(4−4)=12−45–√5–√∴DC =BD−BC =(4−4)−(12−4)5–√5–√=8−165–√12−45–√8−165–√(2)(1)PN =MN −15–√2MQ =MN −15–√2∵0<m<p <q <n,n =3m ∴PN =n−p,MQ =q −m,MN =n−m.n =3m 3m−p =(3m−m)=(−1)m −15–√25–√∴p =3m−(−1)m=4m−m 5–√5–√q =m 5–√∴==p q 4m−m 5–√m 5–√4−5–√5–√=4−55–√5===k(k ≠0)a 5b 7c 8a =5k b =7k c =8k 3a −2b +c =915k −14k +8k =9k =1a =5b =7c =82a +4b −3c =2×5+4×7−3×8=10+28−24=14k k a b c k a b c ===k(k ≠0)a 5b 7c 8a =5k b =7k c =8k 3a −2b +c =915k −14k +8k =9k =1a =5b =7c =82a +4b −3c =2×5+4×7−3×8=10+28−24=14∵线段是,的比例中项,∴=,∴=,∴=,∵=,=,∴==.【考点】比例线段【解析】根据比例中项的概念得到=,即可求得线段的值.【解答】∵线段是,的比例中项,∴=,∴=,∴=,∵=,=,∴==.MN AB CDAB:MN MN:CDMN2AB⋅CDMNAB4cm CD9cmMN6(cm)MN2AB⋅CD MNMN AB CDAB:MN MN:CDMN2AB⋅CDMNAB4cm CD9cmMN6(cm)。

人教版九年级数学下册《反比例函数》同步练习附答案【新审】

人教版九年级数学下册《反比例函数》同步练习附答案【新审】

三、解答题( 18- 22 题每题 6 分,计 30 分, 23— 26 题每题 9 分计 36 分,共 66 分)
y 18.已知一次函数 y=kx+b 的图象与双曲线
求此一次函数的解析式。
2 x 交于点(1,m),且过点( 0,1),
y 19.关于 x 的一次函数 y=-2x+m 和反比例函数
1)
k y 16.二、四 因点( a,—2a)在 x 上,
k 2a
a
2
k 2a 0
双曲线在二、四象限
17. 1 一 因当 x>0 时,反比例函数的图象随 x 的减小而增大.
函数图象在一、三象限
m0 2m2 3m 6 1
由②得
m1 1
5
m2
2
因 m>0, m 1.
y 18.解:因点( 1,m)在
即点( 1,—2)
8
y 与 y 2x
24.在同一坐标系内,画出函数
x
的图象,并求出交点坐标.
25.已知矩形的面积是 4,矩形的长为 x,宽为 y. (1)写出 y 与 x 的函数关系式. (2)求出变量 x 的取值范围 ?
答案
1.B 2.B 3.C 4. A 5. D 6.C 7.B 8.C 9.C 10.C 11. k=2.或 k=3… 符合条件的 k 值较多,只要 k>0 即可
y 1Байду номын сангаас.
4 或y
x
8 ...
x k<0 即可
y 6 或y 13. x
24 ...
x 只要满足 m+n=5,如 m=2,n=3,
6
24
y ,m 3,n 8, y
则x

《数学》九年级下册 第二十八章教辅练习及参考答案

《数学》九年级下册 第二十八章教辅练习及参考答案
, , 2. %n 1$ ABCD &da3 20 ¥Z BD = ,8 R sin ∠ABD &:.
( ) z 2 ¹n
-./0
, , , , 1. %n e△ABC 6 AB = 13 AC = 15 BC = , 14 R sin B y sin C &:.
( ) z 1 ¹n


( ) z 4 ¹n
, , , e Rt△ACD 6 AC = 13 AD = 12
槡 槡 , CD =
AC2 - AD2 =
132 - 122 = 5

sin


CD AC

5 13

, , , 槡 槡 槡, e Rt△BCD 6 CD = 5 DB = 3 BC = CD2 + DB2 = 52 + 32 = 34

4 5
= A1D5 .
∴ AD = 12.
槡 槡 ∴ BD = AB2 - AD2 = 152 - 122 = 9.
(n 2)
, , e Rt△ACD 6
sin


12 13


sin


AD AC

12 13

A12C.
∴ AC = 13.
槡 槡 ∴ CD = AC2 - AD2 = 132 - 122 = 5. ∴ BC = BD + CD = 9 + 5 = 14.
!"#. F% ()*)$% 28 1 » $%
28 1 G?>?)* (1) ( ! 1 ./)
, !" LM©Þ&'(1m +d>©Þ&'ßDB"s;àSá©Þ&'â

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)033648

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)033648

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 某养鸡场养雏鸡若干只,一天,随意抽出只雏鸡做上标记,又过了几天,随意抽出只,发现只有标记,则该养鸡场的雏鸡场大约有 ( )A.只B.只C.只D.只2. 某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是( )A.②③①④B.③④①②C.①②④③D.②④③①3. 在元旦晚会上,班长准备了若干张相同的卡片,上面写的是晚会上同学们要回答的问题.晚会开始后,班长问小明:你能设计一个方案,估计晚会共准备了多少张卡片?小明用张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取张,发现有张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是( )A.张B.张C.张D.张4. 某学习小组将要进行一次统计活动,下列是四位同学分别设计的活动过程,其中正确的是 A.实际问题收集数据表示数据整理数据统计分析合理决策10502200250252500→→→→→→→→→→→→201028090100110()→→→→B.实际问题表示数据收集数据整理数据统计分析合理决策C.实际问题收集数据整理数据表示数据统计分析合理决策D.实际问题整理数据收集数据表示数据统计分析合理决策5. 年月,第届世界大学生夏季运动会将在成都揭幕,成都将迎来属于全世界年轻人的青春盛会,这将是成都举办的首个国际大型综合赛事.借此,成都走向世界,世界认识成都.记者在一个万人的小区里,随机调查了人,其中人了解成都市大运会的知识.那么估计该小区了解成都市大运会知识的约有( )人.A.B.C.D.6. 某班进行民主选举班干部,要求每位同学将自己心中认为最合适的一位侯选上,投入推荐箱.这个过程是收集数据中的( )A.确定调查对象B.展开调查C.选择调查方法D.得出结论7. 初中生骑电动车上学存在安全隐患,为了解某初中个学生家长对“中学生骑电动车上学”的态度,从中随机调查个家长,结果有个家长持反对态度,则下列说法正确的是( )A.调查方式是普查B.该校只有 个家长持反对态度C.样本是个家长D.该校约有的家长持反对态度8. 年春节前夕,学校向名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“类:不放烟花爆竹;类:少放烟花爆竹;类:使用电子鞭炮;类:不会减少烟花爆竹数量”四个选项进行问卷调查(单选),并对名学生的调查结果绘制成统计图(如图所示).根据抽样结果,估计全校“使用电子鞭炮”的学生有( )→→→→→→→→→→→→202183112001256000620062506500220020016016020080%20212000A B C D 100A.名B.名C.名D.名二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 一个口袋中有若干个白球和个黑球(除颜色外其余都相同),从口袋中随机摸出球,记下其颜色,再把它放回,不断重复上述过程,共摸了次,其中有次摸到黑球,则据此估计口袋中大约有________个白球.10. 一组数据:,,,,,它有唯一的众数是,则这组数据的中位数是________.11. 在一个不透明的口袋中,装有若干个红球和个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是,则估计盒子中大约有红球________.12. 为了解某区名初中教师中接种新冠疫苗的教师人数,随机调查了其中名教师,结果有人接种了疫苗,那么估计该区接种新冠疫苗的初中教师人数约有________人.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图. 请根据有关信息解答:接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;若该校共有学生人,请估计该校对安全知识达到“良”及“良”以上程度的人数;2004006007508120057−1325360.32400200150(1)(2)2000测评成绩前五名的学生恰好个女生和个男生,现从中随机抽取人参加市安全知识竞赛,请用树状图或列表法求出抽到个女生的概率. 14. 为确保疫情防控期间“停课不停学”,某中学除了正常线上教学外,还利用网络云平台为学生提供优质课外兴趣学习资源,供学生自主选择使用,每周自主学习的时间不超过小时,复学后随机抽查七年级名学生每周自主学习的时间,以下是根据抽查结果绘制的统计图表的一部分:根据以上信息,完成下列问题:填空: ________;将直方图补充完整;该校七年级共有名学生,如果将每周自主学习的时间不少于个小时的学生评为“学习积极分子”,请你估计这所学校七年级被评为“学习积极分子”的学生人数. 15. 某学校准备给教职工发放端午节福利,每人一包粽子.现随机对学校的一些教职工进行了粽子口味喜好的统计,并将统计结果绘制成如下图所示不完整的统计图,已知鲜肉粽元包,蛋黄粽元包,小枣粽和豆沙粽均为元包,调查中发现,每人中,有人喜欢蛋黄粽.求出喜欢小枣粽的人数,并补全条形统计图;假设此学校有教职工人,估计全校喜欢蛋黄粽的人数;在的基础上,学校预算元钱是否够买此次的福利粽;若不够,还差多少钱?16. 年是中国人民抗日战争暨世界反法西斯战争胜利周年,月日全国各地将举行有关纪念活动,为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为,,,四类,其中类表示“非常了解”,类表示“比较了解”,类表示“基本了解”;类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(3)3222580(1)a =(2)(3)400413/11/8/10040(1)(2)1500(3)(2)1500020207593A B C D A B C D在这次抽样调查中,一共抽查了________名学生;请把图①中的条形统计图补充完整;图②的扇形统计图中类部分所对应扇形的圆心角的度数为________;如果这所学校共有初中学生名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?(1)(2)(3)D (4)1500参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】用样本估计总体【解析】【解答】解:设该养鸡场有只雏鸡,依题意得,∴.即该养鸡场有雏鸡只数大约是只.故选.2.【答案】D【考点】频数(率)分布表扇形统计图调查收集数据的过程与方法【解析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【解答】解:由题意可得,x x :10=50:2x =250250B正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录④整理借阅图书记录并绘制频数分布表③绘制扇形图来表示各个种类所占的百分比①从扇形图中分析出最受学生欢迎的种类.故选.3.【答案】A【考点】用样本估计总体【解析】随机抽取张,发现有张空白卡片,说明空白卡片占到,而空白卡片共有张,根据所占比例即可求得所有卡片数目.【解答】解:由题意,得(张),故小明估计的数目是(张).故选.4.【答案】C【考点】调查收集数据的过程与方法【解析】根据统计调查的步骤即可设计成的方案.数据处理应该是属于整理数据,数据表示应该属于描述数据.【解答】解:统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据.故选.5.【答案】C【考点】→→→D 1022102020÷=100210100−20=80A C C用样本估计总体全面调查与抽样调查【解析】先求随机调查人中了解成都市大运会的知识的百分比了解成都市大运会的知识除以随机抽查的人数,利用部分估计总体,该小区了解成都市大运会知识人数该小区总人数随机抽查的了解成都市大运会知识人数的【解答】解:随机调查了人,其中人了解成都市大运会的知识,了解成都市大运会的知识的人占随机调查的百分比,该小区了解成都市大运会知识人数人.故选.6.【答案】B【考点】调查收集数据的过程与方法【解析】数据收集的步骤的了解是关键.【解答】解:根据数据的收集方法可知投票选举的这个过程是收集数据中的展开调查,故选.7.【答案】D【考点】总体、个体、样本、样本容量全面调查与抽样调查用样本估计总体【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念==×62.59200125=×100%=62.5%125200=10000×62.5%=6250C B时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:,调查方式是抽样调查,故错误;,该校有个家长持反对态度,故错误;,样本是个家长的态度,故错误;,该校约有的家长持反对态度,故正确;故选.8.【答案】B【考点】用样本估计总体【解析】用全校的学生数乘以“使用电子鞭炮”所占的百分比即可得出答案.【解答】解:被调查的学生中“使用电子鞭炮”的学生有(名),全校“使用电子鞭炮”的学生有:(名).故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】用样本估计总体【解析】此题暂无解析【解答】此题暂无解答10.A AB 2200×=1760160200BC 200CD ×100%=80%160200D D 100−(30+35+15)=2020÷100×2000=400B 20【答案】【考点】众数中位数算术平均数【解析】此题暂无解析【解答】此题暂无解答11.【答案】个【考点】用样本估计总体【解析】此题暂无解析【解答】此题暂无解答12.【答案】【考点】用样本估计总体【解析】用总人数乘以样本中接种疫苗的人数所占比例即可.【解答】3141800100%=75%150解:,估计该区接种新冠疫苗的初中教师人数约为:(人).故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:接受测评的总人数为:(人).扇形统计图中“优”部分所对应的扇形的圆心角为:.故答案为:;.“良”部分的学生人数为:(人).补全条形图如下:该校对安全知识达到“良”及“良”以上程度的人数约为:(人).(记为事件)包含种结果,所以.【考点】扇形统计图条形统计图用样本估计总体列表法与树状图法【解析】(1)根据“中”部分的人数和其所占的百分比即可求出接受调查的总人数,求出“优”部分所占的百分比再×100%=75%150200∴2400×75%=18001800(1)40÷25%=160×=360∘60160135∘160135160−60−40−10=50(2)2000×=137560+50160A 6P (A)==620310乘以即可求出“优”部分所对应扇形的圆心角,再求出“良”部分的学生数即可补全条形图.(2)用该校学生的总数乘以样本中对安全知识达到“良”及“良”以上程度的人数所占的百分比即可.(3)首先列表法求出抽取两人共有多少种可能的结果,再求出恰好抽到两个女生包含的结果数,最后根据概率公式计算即可.【解答】解:接受测评的总人数为:(人).扇形统计图中“优”部分所对应的扇形的圆心角为:.故答案为:;.“良”部分的学生人数为:(人).补全条形图如下:该校对安全知识达到“良”及“良”以上程度的人数约为:(人).(记为事件)包含种结果,所以.14.【答案】由知,学习时间至小时的学生人数为,故补全图形如下,(名).360∘(1)40÷25%=160×=360∘60160135∘160135160−60−40−10=50(2)2000×=137560+50160A 6P (A)==62031024(2)(1)3424(3)400×=801680答:估计这所学校七年级被评为“学习积极分子”的学生人数为名.【考点】频数(率)分布直方图统计表用样本估计总体【解析】用总数减去其它时间段自主学习的人数即可.由知:学习时间三至四小时的学生人数为,补全图形即可.用乘以“学习积极分子”占总人数的比重即可.【解答】解:.故答案为:.由知,学习时间至小时的学生人数为,故补全图形如下,(名).答:估计这所学校七年级被评为“学习积极分子”的学生人数为名.15.【答案】解:由题知,抽查的总人数为: (人),∴喜欢小枣粽的人数为(人).补全条形统计图如图所示,根据题意,喜欢蛋黄粽的人数占总比为,估计喜欢蛋黄粽的人数为(人).由知,全校有名教职工,则喜欢鲜肉粽的人数有: (人),80(1)24400(1)a =80−8−12−20−16=2424(2)(1)3424(3)400×=80168080(1)240÷40%=600600−180−60−240=120(2)40%1500×40%=600(3)(2)15001500×=450180600喜欢蛋黄粽的有:(人),喜欢小枣粽的有: (人),喜欢豆沙粽的有:(人),∴学校购买各类粽子所需要的费用为:(元),∴学校预算的元不够,还需要(元).【考点】条形统计图用样本估计总体【解析】无无无【解答】解:由题知,抽查的总人数为: (人),∴喜欢小枣粽的人数为(人).补全条形统计图如图所示,根据题意,喜欢蛋黄粽的人数占总比为,估计喜欢蛋黄粽的人数为(人).由知,全校有名教职工,则喜欢鲜肉粽的人数有: (人),喜欢蛋黄粽的有:(人),喜欢小枣粽的有: (人),喜欢豆沙粽的有:(人),∴学校购买各类粽子所需要的费用为:(元),∴学校预算的元不够,还需要(元).16.【答案】1500×40%=6001500×=3001206001500×=1506060013×450+11×600+8×300+8×150=160501500016050−15000=1050(1)240÷40%=600600−180−60−240=120(2)40%1500×40%=600(3)(2)15001500×=4501806001500×40%=6001500×=3001206001500×=1506060013×450+11×600+8×300+8×150=160501500016050−15000=1050200调查中类学生人数为:;条形统计图补充如下:类所占的百分数为:,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共占,故如果这所学校共有初中学生名,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有:(名).【考点】条形统计图扇形统计图用样本估计总体【解析】(1)由图①知类人数,由图②知类人数占,即可求出样本容量;(2)由(1)可知抽查的人数,根据图②知类人数占,求出类人数,即可将条形统计图补充完整;(3)求出类的百分数,即可求出圆心角的度数;(4)求出类所占的百分数,可知、类共占的百分数,用样本估计总体的思想计算即可.【解答】解:本次调查共抽查学生人数:.故答案为:.调查中类学生人数为:;条形统计图补充如下:类所占比例为:,类所对圆心角度数为:.故答案为:.类所占的百分数为:,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共占,故如果这所学校共有初中学生名,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共(2)C 200×30%=6036∘(4)B 90÷200=45%15%+45%=60%15001500×60%=900A 30A 15%C 30%C D B A B (1)30÷15%=200200(2)C 200×30%=60(3)D 20÷200=0.1=10%D ×10%=360∘36∘36∘(4)B 90÷200=45%15%+45%=60%15001500×60%=900有:(名).。

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)012737

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)012737

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你一共有( )种画法A.B.C.D.2. 用一个平面去截棱柱、圆锥、棱锥,都有可能得到的截面图形是( )A.长方形B.圆C.三角形D.不能确定3. 如图,扇形是圆锥的侧面展开图,若小正方形方格的边长为,则这个圆锥的底面半径为( )A.B.C.2345OAB 1cm cm 2–√4cm2–√cm 2–√2m1D.4. 如图,这是由个完全相同的正方体组成的几何体,此几何体的三视图中既是轴对称图形又是中心对称图形的个数为( )A.B.C.D.5. 若圆锥的底面半径为,母线长为,则它的侧面展开图的面积等于( )A.B.C.D.6. 如图所示,是一个几何体的三视图,已知正视图和左视图都是边长为的等边三角形,则这个几何体的全面积为 A.B.C.D.7. 有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动算一次,则滚动第次后,骰子朝下一面的数字是( )cm 12601233515π9π6π12π2()2π3π2π3–√(1+2)π3–√90∘2021A.B.C.D.8. 下列图形经过折叠不能围成一个棱柱的是( ) A. B. C. D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知圆锥的底面半径为,母线长为,则这个圆锥的侧面积是________.10. 圆锥的底面半径为,高为,则它的表面积为________.(结果保留)11. 如图,若要使图中平面展开图折叠成正方体后,相对面上两个数之和为,则________,________.12. 用一个宽,长的矩形卷成一个圆柱,则此圆柱的侧面积为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )54324cm 5cm 4cm 5cm π6x =y =2cm 3cm14.如图,在中,.以为直径的交于点,于点.求证:是的切线;若,,求图中阴影部分的面积.15. 如图是一个正方体盒子的展开图,要把,,,,,些数字分别填入六个小正方形,使得按虚线折成的正方体相对面上的两个数相加得.16. 下图是长方体的表面展开图,将它折叠成一个长方体.哪几个点与点重合?若,,,求这个长方体的表面积和体积.△ABC AB =AC AB ⊙O BC M MN ⊥AC N (1)MN ⊙O (2)∠BAC =120∘AB =2−810−128−10120(1)N (2)AE =CM =12cm LE =2cm KL =4cm参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】几何体的展开图【解析】根据正方形的展开图的种形式解答即可.【解答】解:如图所示,共有种画法.故选.2.【答案】C【考点】截一个几何体【解析】根据棱柱、圆锥、棱锥的形状特点判断即可.【解答】114C解:∵用一个平面去截棱柱、圆锥、棱锥,∴可能得到的截面图形是三角形.故选;.3.【答案】C【考点】弧长的计算勾股定理【解析】用“此扇形的弧长等于圆锥底面周长”作为相等关系,求圆锥的底面半径.【解答】解:由图可知,,,,所以是直角三角形,,设圆锥的底面半径为,则,所以.故选.4.【答案】B【考点】中心对称图形轴对称图形由三视图判断几何体【解析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得三视图,根据轴对称图形的定义、中心对称图形的定义,可得答案.【解答】解:从正面看第一层三个小正方形,第二层中间一个小正方形,是轴对称图形,不是中心对称图C OA =OB ==2+2222−−−−−−√2–√AB =4O +O =8+8=16=A A 2B 2B 2△AOB ∠AOB =90∘r 2πr =90π×22–√180r =cm 2–√2C形;从左边看第一层三个小正方形,第二层中间一个小正方形是轴对称图形,不是中心对称图形;从上面看四个小正方形呈"+",是轴对称图形也是中心对称图形.故选.5.【答案】A【考点】扇形面积的计算圆锥的计算【解析】此题暂无解析【解答】解:底面半径为,则底面周长,侧面面积.故选.6.【答案】B【考点】圆锥的全面积由三视图判断几何体【解析】易得此几何体为圆锥,那么全面积为:底面积+侧面积=底面半径底面半径母线长.【解答】解:此几何体为圆锥,底面直径为,母线长为,那么底面半径为,∴圆锥的全面积==.故选.7.【答案】DB 3=6π=×6π×512=15πA π×+π×2×221π×+π×1×2123πB正方体相对两个面上的文字【解析】观察图形知道点数三和点数四相对,点数二和点数五相对且四次—循环,从而确定答案.【解答】解:观察图形知道点数和点数相对,点数和点数相对且四次一循环.∵,∴滚动第次后与第次相同,∴朝下一面的数字是.故选.8.【答案】B【考点】展开图折叠成几何体【解析】由平面图形的折叠及正方体的展开图解题.【解答】、可以围成四棱柱,可以围成三棱柱,选项侧面上多出一个长方形,故不能围成一个五棱柱.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】圆锥的计算【解析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.34252021÷4=505⋯⋯1202112D A D C B 20πcm 2这个圆锥的侧面积=.10.【答案】【考点】圆锥的全面积【解析】利用勾股定理求得圆锥的母线长,则圆锥表面积底面积侧面积底面半径底面周长母线长.【解答】解:底面半径为,则底面周长,底面面积.由勾股定理得,母线长,圆锥的侧面面积,它的表面积 . 故答案为:.11.【答案】,【考点】正方体相对两个面上的文字【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“”与“”是相对面,“”与“”是相对面,“”与“”是相对面,∵相对面上两个数之和为,∴,.故答案为:;.12.=⋅2π⋅4⋅51220π(c )m 2(4+16)πc 41−−√m 2=+=π×+2×÷24cm =8πcm =16πcm 2=cm 41−−√=×8π=4πc 1241−−√41−−√m 2=16π+4π=(4+16)πc 41−−√41−−√m 2(4+16)πc 41−−√m 253241x 3y 6x =5y =353【考点】展开图折叠成几何体【解析】根据立体图形的展开图即可解.【解答】解:圆柱的侧面展开图是矩形,根据题意知,此圆柱的侧面积为故答案为三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】【考点】圆锥的计算【解析】根据圆的周长公式求出圆锥的底面周长,根据圆锥的侧面积的计算公式计算即可.【解答】设圆锥的母线长为,圆锥的底面周长==,则=,解得,=14.【答案】证明:如图,连接,6cm 22×3=6cm 26cm 25Rcm 2π×24π×4π×R 1210πR 5(cm)(1)OM∵,∴,∵,∴,∴,∴,∵,∴,∵点在上,∴是的切线.如图,连接,∵为直径,点在上,∴,∵,,∴,∴,又∵在中,于点,∴,∵,∴,∴,∴,∴,∴ ,∵,∴,∴.【考点】梯形的面积相似三角形的判定解直角三角形扇形面积的计算切线的判定等腰三角形的性质OM =OB ∠B =∠OMB AB =AC ∠B =∠C ∠OMB =∠C OM//AC MN ⊥AC OM ⊥MN M ⊙O MN ⊙O (2)AM AB M ⊙O ∠AMB =∠AMB =90∘AB =AC ∠BAC =120∘∠B =∠C =30∘∠AOM =60∘Rt △AMC MN ⊥AC N ∠ANM =90∘∠ANM =∠AMC =,∠NAM =∠MAC 90∘△AMN ∼△AMC ∠AMN =∠C =30∘AN =AM ⋅sin ∠AMN =AC ⋅sin ⋅sin =30∘30∘12MN =AM ⋅cos ∠AMN =AC ⋅sin ⋅cos =30∘30∘3–√2==S 梯形ANMO (AN +OM)MN 233–√3OM =OB =OA =AB =112==S 扇形OAM 60π×1360π6=−=S 阴影S 梯形ANMO S 扇形OAM 9−4π3–√24平行线的判定【解析】(1)先判定,再说明点在圆上即可,(2)圆中阴影部分面积的计算,用割补法求解.【解答】证明:如图,连接.∵,∴,∵,∴,∴,∴,∵,∴,∵点在上,∴是的切线.如图,连接,∵为直径,点在上,∴,∵,,∴,∴,又∵在中,于点,∴,∵,∴,∴,∴,∴,∴ ,∵,∴,OM ⊥MN M (1)OM ,AM OM =OB ∠B =∠OMB AB =AC ∠B =∠C ∠OMB =∠C OM//AC MN ⊥AC OM ⊥MN M ⊙O MN ⊙O (2)AM AB M ⊙O ∠AMB =∠AMB =90∘AB =AC ∠BAC =120∘∠B =∠C =30∘∠AOM =60∘Rt △AMC MN ⊥AC N ∠ANM =90∘∠ANM =∠AMC =,∠NAM =∠MAC 90∘△AMN ∼△AMC ∠AMN =∠C =30∘AN =AM ⋅sin ∠AMN =AC ⋅sin ⋅sin =30∘30∘12MN =AM ⋅cos ∠AMN =AC ⋅sin ⋅cos =30∘30∘3–√2==S 梯形ANMO (AN +OM)MN 233–√3OM =OB =OA =AB =112==S 扇形OAM 60π×1360π6−=影形ANMO 形OAM 9−4π3–√∴.15.【答案】解:和,和,和互为相反数,所作图形如下:.【考点】正方体相对两个面上的文字【解析】先根据正方体及其表面展开图的特点,找到相对的面,再相加得的两个数填入即可.【解答】解:和,和,和互为相反数,所作图形如下:.16.【答案】解:,与点重合;由,,,可求出这个长方体的长、宽、高分别为,,,故表面积为:,体积为:,答:这个长方体的表面积为,体积为,【考点】展开图折叠成几何体【解析】(1)根据长方体的展开与折叠,可得到折叠后,与、重合,=−=S 阴影S 梯形ANMO S 扇形OAM9−4π3–√24−88−1212−10100−88−1212−1010(1)F J N (2)AE =CM =12cm LE =2cm KL =4cm 8cm 4cm 2cm 4×2×2+4×8×2+2×8×2=112(c )m 24×2×8=64(c )m 3112cm 264cm 3N F J【解答】解:,与点重合;由,,,可求出这个长方体的长、宽、高分别为,,,故表面积为:,体积为:,答:这个长方体的表面积为,体积为,(1)F J N (2)AE =CM =12cm LE =2cm KL =4cm 8cm 4cm 2cm 4×2×2+4×8×2+2×8×2=112(c )m 24×2×8=64(c )m 3112cm 264cm 3。

人教版九年级下册数学《配套练习册》答案

人教版九年级下册数学《配套练习册》答案

14、题目略(1)一、三象限(2)解:设此函数为y=k/x(k≠0)把a代入4=k/3;解得k=12 所以函数为y=12/x;把点B(6;2)、C(-5/2;-24/5)、D(2;5)分别代入得①当x=6时;y=2 所以B点在图像上②当x=-5/2时;y=-24/5 所以B点在图像上③当x=2时;y=6 所以D点不在图像上15、解:把A(1;2)代入y=k/x得k=2∴y=2/x∵B点在A点右侧且在双曲线上;∴0<y<2 x>1把x=a;y=b代入得b=2/a;∴ab=2当a>1时;0<b<2.16、解:由题意得两函数都过B(-2;-3)、A两点;把(-2;-3)代入两函数得所以两函数分别为y=6/x;y=(3/2)x因为两函数相交于两点;所以6/x=(3/2)x 解得x=±2 y=±310、解:∵A(2;2)B(-1;m)在y=4/x图像上;∴m=-4;∵A、B也在y=ax+b上;∴a=2;b=-2∴一次函数为y=2x-2能力提升11、D 12、D 13、A14、解:设P点坐标为(a;b)S△PAB=[2-(-2)]•∣a∣•(1/2)=6∴∣a∣=3∴a=±3当a=3时;b=-1/3;当a=-3时;b=1/3∴P(3;-1/3)或P(-3;1/3)15、解:(1)一次函数y=kx+b和反比例函数y=m/x相交于A(-2;1);把A(-2;1)代入y=m/x得m=-2;∴反比例解析式为y=-2/x(x≠0)把A、B分别代入y=kx+b得∴一次函数的解析式为y=-x-1(2)一次函数的值大于反比例函数的值时;x取相同的值;一次函数的图像在反比例函数的上方;即一次函数大于反比函数;所以x<-2或0<x<116、解:(1)S△PQO=1/2xy(x>0;y>0);即(1/2)x•(k/x)=S;故S=k/2(k>0)(2)∵S=1/2xy且xy之积是一个定值;∴Q点沿x轴的正方向运动时;Rt△PQO的面积不变探索研究17、解:设A1的坐标为(a;0);A2(b;0);因为△P₁OA₁;△P₂A₁A₂是等腰直角三角形;所以b>a;P1的坐标为(a/2;8/a);P2(a+b/2;8/b-a);。

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)102535

2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)102535

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,如果∠BAC =20∘,那么∠ADC 的大小是( )A.130∘B.120∘C.110∘D.100∘2. 小明家的圆形玻璃打碎了,其中三块碎片如图所示,为了配到与原来大小一样的圆形玻璃,小明应带到商店去的一块碎片是( )A.①B.②C.③D.均不可能3. 如图,△ABC 中,AB =BC ,∠ABC =120∘,AC =2√3,⊙O 是△ABC 的外接圆,D 是优弧AmC 上任意一点(不包括A ,C ),记四边形ABCD 的周长为y ,BD 的长为x ,则y 关于x 的函数关系式是( )A.y =√34x +4AB ⊙O C D ⊙O ∠BAC =20∘∠ADC130∘120∘110∘100∘△ABC AB =BC ∠ABC =120∘AC =23–√⊙O △ABC D AmC A C ABCD y BD x y xy =x+43–√4B.y =√3x +4C.y =√3x 2+4D.y =√34x 2+4 4. 如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =2,CE =6,CH ⊥AF 于点H ,那么CH 的长是( )A.2√2B.√5C.35√5D.65√5 5. 如图所示,一圆弧过方格的格点A ,B ,C ,试在方格中建立平面直角坐标系,使点A 的坐标为(−2,4),则该圆弧所在圆的圆心坐标是( )A.(−1,2)B.(1,−1)C.(−1,1)D.(2,1)6. 如图1,▱ABCD 中, AB =3,BD ⊥AB ,动点F 从点A 出发,沿折线ADB 以每秒1个单位长度的速度运动到点B .图2是点F 运动时, △FBC 的面积y 随时间x 变化的图象,则m 的值为( )y =x+43–√y =+43–√x 2y =+43–√4x 2ABCD CEFG D CG BC =2CE =6CH ⊥AF H CH22–√5–√355–√655–√A B C A (−2,4)(−1,2)(1,−1)(−1,1)(2,1)1ABCD AB =3BD ⊥AB F A ADB 1B 2F △FBC y x mA.6B.10C.12D.20 7. 如图,AB 是⊙O 直径,若∠AOC =150∘,则∠D 的度数是( )A.15∘B.25∘C.30∘D.75∘8. 下列说法:(1)等弧所对的圆周角相等;(2)过三点可以作一个圆;(3)平分弦的直径垂直于弦;(4)半圆是一条弧,其中正确的是( )A.(1)(2)(3)(4)B.(1)(2)(3)C.(2)(3)(4)D.(1)(4)二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知,如图:AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45∘.给出以下五个结论:①∠EBC =22.5∘;②BD =DC ;③AE =2EC ;④劣弧 AE 是劣弧 DE 的2倍;⑤AE =BC .其中正确结论的序号是________.10. 如图,⊙O 是△ABC 的外接圆,M ,N 分别是AB ,AC 的中点,连接OM ,ON ,分别交BC 于点F 6101220AB ⊙O ∠AOC 150∘∠D15∘25∘30∘75∘(1)(2)(3)(4)()(1)(2)(3)(4)(1)(2)(3)(2)(3)(4)(1)(4)AB ⊙O AB =AC BC ⊙O D AC ⊙O E ∠BA ∠EBC =22.5∘BD =DC AE =2EC AE DE 2AE =BC⊙O △ABC M N AB AC OM ON BC,E ,若BF =5,FE =3,EC =4,则△ABC 的面积为________.11. 如图,四边形ABCD 内接于⊙O ,若∠AOC =23∠B ,则∠D 的度数为________∘.12. sin60∘=cos ________=________,cos60∘=sin________=________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图1,AB 是⊙O 的直径,点C 在⊙O 上,D 为^AC 的中点,连接BC ,OD .(1)求证:OD//BC .(2)如图2,过点D 作AB 的垂线与⊙O 交于点E ,作直径EF 交BC 于点G .若G 为BC 的中点,⊙O 的半径为1,求弦BC 的长. 14. 如图:C 是AB 上一点,点D ,E 分别位于AB 的异侧,AD//BE ,且AD =BC ,AC =BE.⊙O △ABC M N AB AC OM ON BCF E BF =5FE =3EC =4△ABC ABCD ⊙O ∠AOC =∠B 23∠D ∘sin =cos 60∘=cos =sin 60∘=1AB ⊙O C ⊙O D(1)求证:CD=CE;(2)当AC=2√3时,求BF的长;(3)若∠A=α,∠ACD=25∘,且△CDE的外心在该三角形的外部,请直接写出α的取值范围.15. 如图,在Rt△ABC中,∠C=90∘,BD=DC=2√3,若∠ADC=30∘,求sin∠ABD的值.16. 如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、选择题(本题共计 8 小题,每题 5 分,共计40分)1.【答案】C【考点】圆周角定理圆内接四边形的性质【解析】连接BC,利用AB是直径得出∠ABC=70∘,进而利用圆周角解答即可.【解答】解:连接BC,∵AB是⊙O的直径,∠BAC=20∘,∴∠ABC=90∘−20∘=70∘,∴∠ADC=180∘−70∘=110∘.故选C.2.【答案】A【考点】垂径定理的应用确定圆的条件【解析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.3.【答案】B【考点】三角形的外接圆与外心【解析】作辅助线,构建全等三角形和等边三角形,证明Rt△AGB≅Rt△CFB得:AG=CF,根据30∘角的笥质表示DF和DG的长,计算四边形ABCD的周长即可.【解答】解:连接OB交AC于E,连接OC、OB,过B作BG⊥AD,BF⊥CD,交DA的延长线于G,交CD于F,∵AB=BC,∴^AB=^BC,∴∠BDA=∠BDC,∴BG=BF,在Rt△AGB和Rt△CFB中,∵{BG=BFAB=BC,∴Rt△AGB≅Rt△CFB(HL),∴AG=FC,∵^AB=^BC,∴OB⊥AC,EC=12AC=12×2√3=√3,在△AOB和△COB中,{AO=OCOB=OBAB=BC,∵∴△AOB≅△COB(SSS),∴∠ABO=∠OBC=12∠ABC=12×120∘=60∘,∵OB=OC,∴△OBC是等边三角形,∴∠BOC=60∘,∴∠BDC=∠ADB=30∘,Rt△BDF中,BD=x,√32x,∴DF=√32x,同理得:DG=√32x+√32x=√3x,∴AD+DC=AD+DF+FC=DG+DF=Rt△BEC中,∠BCA=30∘,∴BE=1,BC=2,∴AB=BC=2,∴y=AB+BC+AD+DC=2+2+√3x=√3x+4,故选B.4.【答案】D【考点】相似三角形的性质正方形的性质【解析】AF交GC于点K.根据△ADK∽△FGK,求出KF的长,再根据△CHK∽△FGK,求出CH的长.【解答】解:如图所示,连接BH,设AF交CG于K,∵CD=BC=2,∴GD=6−2=4,∵△ADK∼△FGK,∴DKGK=ADGF,即DKGK=13,∴DK=14DG,∴DK=4×14=1,GK=4×34=3,√62+32=3√5,∴KF=∵△CHK∼△FGK,∴CHGF=CKFK,∴CH6=1+23√5,∴CH=6√55.故选D.5.【答案】C【考点】确定圆的条件坐标与图形性质【解析】连接AB、AC,作出AB、AC的垂直平分线,其交点即为圆心.【解答】解:如图所示,∵AW=1,WH=3,√12+32=√10;∴AH=∵BQ=3,QH=1,√12+32=√10;∴BH=∴AH=BH,同理,AD=BD,∴GH为线段AB的垂直平分线,易得WH为线段AC的垂直平分线,H为圆的两条弦的垂直平分线的交点,则BH=AH=HC,H为圆心.于是则该圆弧所在圆的圆心坐标是(−1,1).故选C.6.【答案】A【考点】勾股定理平行四边形的性质动点问题函数的图象【解析】由题意可知AD =a,AD +BD =9,则BD =9−a ,利用勾股定理求出a ,再根据三角形的面积公式计算即可.【解答】解:由图可知,AD =a ,AD +BD =9,则BD =9−a ,由BD ⊥AB ,可得△ABD 是直角三角形,由勾股定理可得:AD 2=BD 2+AB 2,即a 2=(9−a)2+32,解得a =5,即AD =5,所以BD =4,所以m =S △ABD =12×3×4=6.故选A .7.【答案】A【考点】圆心角、弧、弦的关系圆周角定理【解析】此题暂无解析【解答】此题暂无解答8.【答案】D【考点】确定圆的条件圆的有关概念【解析】此题暂无解析【解答】解:(1)等弧所对的圆周角相等,正确;(2)过不在同一直线上的三点可以作一个圆,故原说法错误;(3)平分弦(不是直径)的直径垂直于弦,故原说法错误;(4)半圆是一条弧,正确,其中正确的是(1)(4).故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】【考点】圆内接四边形的性质【解析】此题暂无解析【解答】此题暂无解答10.【答案】24【考点】线段垂直平分线的性质三角形的外接圆与外心勾股定理的逆定理【解析】连接AF ,AE ,AO ,BO ,CO ,根据点O 是△ABC 的外心,M ,N 是AB,AC 的中点,得到MO 垂直平分AB ,NO 垂直平分AC ,即AF =BF =5,AE =CE =4,再根据勾股定理得到△AEF 是直角三角形,AE ⊥BC ,求出BC ,根据三角形的面积公式可得出答案.【解答】解:如图,连接AF ,AE ,AO ,BO ,CO.∵点O 是△ABC 的外心,∴AO =BO =CO ,∴△ABO ,△ACO 是等腰三角形.又M ,N 分别是AB ,AC 的中点,∴MO ⊥AB ,NO ⊥AC,∴MO 垂直平分AB ,NO 垂直平分AC ,∴AF =BF =5,AE =CE =4.在△AEF 中,AE 2+FE 2=42+32=25,AF 2=52=25,∴AE 2+FE 2=AF 2,∴△AEF 是直角三角形,即∠AEF =90∘,∴AE ⊥BC ,∴BC =BF +FE +EC =5+3+4=12,∴S △ABC =12BC ⋅AE =12×12×4=24.故答案为:24.11.【答案】45【考点】圆内接四边形的性质圆周角定理【解析】根据圆周角定理得到∠AOC =2∠D ,根据题意得到∠B =2∠D ,根据圆内接四边形的对角互补列式解:由圆周角定理,得∠AOC=2∠D,∵∠AOC=23∠B,∴∠B=3∠D.∵四边形ABCD内接于⊙O,∴∠D+∠B=180∘,∴∠D+3∠D=180∘,解得∠D=45∘.故答案为:45.12.【答案】30∘,√32,30∘,12【考点】特殊角的三角函数值轴对称图形实数的运算【解析】此题暂无解析【解答】解:sin60∘=cos(90∘−60∘)=cos30∘=√32;cos60∘=sin(90∘−60∘)=sin30∘=12.√32,30∘,12.故答案为:30∘,三、解答题(本题共计 4 小题,每题 10 分,共计40分)13.【答案】(1)证明:如图,连接BD.∵ AD= CD,∴∠ABD =∠BDO ,∴∠CBD =∠BDO ,∴OD//BC .(2)解:∵DE ⊥AB ,AB 是⊙O 的直径,∴ AD = AE ,∴∠AOD =∠AOE .∵∠AOD =∠B ,∠AOE =∠BOF ,∴∠B =∠BOF ,∵G 为BC 的中点,∴OF ⊥BC ,∴∠OGB =90∘,∴∠B =∠BOF =45∘,∴OG =DG .∵OB =1,OG 2+BG 2=OB 2,∴BG =√22,∴BC =2BG =√2.【考点】圆周角定理等腰三角形的判定与性质圆的综合题勾股定理垂径定理圆心角、弧、弦的关系【解析】此题暂无解析【解答】(1)证明:如图,连接BD .∵ AD = CD ,∴∠ABD =∠CBD ,∵OD =OB ,∴∠ABD =∠BDO ,(2)解:∵DE ⊥AB ,AB 是⊙O 的直径,∴ AD = AE ,∴∠AOD =∠AOE .∵∠AOD =∠B ,∠AOE =∠BOF ,∴∠B =∠BOF ,∵G 为BC 的中点,∴OF ⊥BC ,∴∠OGB =90∘,∴∠B =∠BOF =45∘,∴OG =DG .∵OB =1,OG 2+BG 2=OB 2,∴BG =√22,∴BC =2BG =√2.14.【答案】(1)证明:∵AD//BE ,∴∠A =∠B ,在△ADC 和 △BCE 中,{AD =BC ,∠A =∠B ,AC =BE ,∴△ADC ≅△BCE(SAS),∴CD =CE.(2)解:由(1)得△ACD ≅△BEC ,∴CD =CE ,∠ACD =∠BEC ,∴∠CDE =∠CED ,∴∠ACD +∠CDE =∠BEC +∠CED.又∵∠ACD +∠CDE =∠BFE ,∠BEC +∠CED =∠BEF ,∴∠BFE =∠BEF ,∴BF =BE.∵AC =BE ,AC =2√3,∴BF =AC =2√3.(3)∵△CDE 的外心在该三角形外部,∴此时△CDE 一定是钝角三角形,由(1)可知CD =CE ,∴∠CDE =∠CED ,∴△CDE 是钝角等腰三角形,则顶角∠DCE 为钝角,∴90∘<∠DCE <180∘.∵∠ACD =25∘,∠ACD +∠ACE =∠DCE ,∴65∘<∠ACE <155∘.∵AD//BE ,∵∠B=∠A=∠ACE−∠BEC,∴40∘<∠A<130∘,即α的取值范围是40∘<α<130∘.【考点】全等三角形的性质与判定平行线的性质全等三角形的性质等腰三角形的判定与性质三角形的外接圆与外心【解析】(1)根据平行线的性质得到∠A=∠B,利用SAS定理证明△ADC≅△BCE,即可由全等三角形的对应边相等得出结论.(2)由(1)中已证的全等可得CD=CE,∠ACD=∠BEC,根据等腰三角形的性质结合三角形外角性质证明∠BFE=∠BEF,由此可得到△BEF是等腰三角形,利用等角对等边的性质结合等量代换可求出BF的长.(3)根据题意判定△CDE一定为钝角等腰三角形,由此得出顶角∠DCE的取值范围,再根据平行线的性质结合三角形外角性质求出α的取值范围即可.【解答】(1)证明:∵AD//BE,∴∠A=∠B,在△ADC和△BCE中,{AD=BC,∠A=∠B,AC=BE,∴△ADC≅△BCE(SAS),∴CD=CE.(2)解:由(1)得△ACD≅△BEC,∴CD=CE,∠ACD=∠BEC,∴∠CDE=∠CED,∴∠ACD+∠CDE=∠BEC+∠CED.又∵∠ACD+∠CDE=∠BFE,∠BEC+∠CED=∠BEF,∴∠BFE=∠BEF,∴BF=BE.∵AC=BE,AC=2√3,∴BF=AC=2√3.(3)∵△CDE的外心在该三角形外部,∴△CDE 是钝角等腰三角形,则顶角∠DCE 为钝角,∴90∘<∠DCE <180∘.∵∠ACD =25∘,∠ACD +∠ACE =∠DCE ,∴65∘<∠ACE <155∘.∵AD//BE ,∴∠A =∠B =α.由(2)得∠BEC =∠ACD =25∘,∵∠B =∠A =∠ACE −∠BEC ,∴40∘<∠A <130∘,即α的取值范围是40∘<α<130∘.15.【答案】解:因为∠C =90∘,BD =DC =2√3,∠ADC =30∘,所以AD =2AC ,BC =4√3,所以(AC)2+(2√3)2=(2AC)2,解得AC =2.在Rt △ABC 中,AB 2=AC 2+BC 2,即AB 2=22+(4√3)2,解得AB =2√13,所以sin ∠ABD =ACAB =22√13=√1313.【考点】勾股定理锐角三角函数的定义【解析】此题暂无解析【解答】解:因为∠C =90∘,BD =DC =2√3,∠ADC =30∘,所以AD =2AC ,BC =4√3,所以(AC)2+(2√3)2=(2AC)2,解得AC =2.在Rt △ABC 中,AB 2=AC 2+BC 2,即AB 2=22+(4√3)2,解得AB =2√13,【答案】(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:^BD=^CD∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:^BD=^CD,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.【考点】确定圆的条件圆心角、弧、弦的关系【解析】(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.【解答】(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:^BD=^CD∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:^BD=^CD,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.1.2反比例函数的图像和性质第1课时
7、三
8、y=3/x
9、k<0或k>0
能力提升
10、B
11、D
12、D
13、解:
(1)由题意得:m-4=-1解得m=3
(2)函数为y=1/x ∴图像位于一、三象限
(3)y=1/x 最小值:当x=-1/2时,y=-2 最大值:当x=-3时,y=-1/3
14、题目略
(1)一、三象限
(2)解:设此函数为y=k/x(k≠0)把a代入4=k/3,解得k=12 所以函数为y=12/x,把点B(6,2)、C(-5/2,-24/5)、D(2,5)分别代入得
①当x=6时,y=2 所以B点在图像上
②当x=-5/2时,y=-24/5 所以B点在图像上
③当x=2时,y=6 所以D点不在图像上
15、解:把A(1,2)代入y=k/x得k=2
∴y=2/x
∵B点在A点右侧且在双曲线上,
∴0<y<2 x>1
把x=a,y=b代入得b=2/a,
∴ab=2
当a>1时,0<b<2.
16、解:由题意得两函数都过B(-2,-3)、A两点,把(-2,-3)代入两函数得
所以两函数分别为y=6/x,y=(3/2)x
因为两函数相交于两点,所以6/x=(3/2)x 解得x=±2 y=±3
因为B(-2,-3),所以A(2,3)
探索研究
17、反比例函数y=k/x(k≠0)是轴对称图形,也是中心对称图形,对称轴有两条,分别是直线y=x、y=-x,对称中心只有一个,即原点
26.1.2反比例函数的图像和性质第2课时
5、(2,4)或(-2,-4)
6、4
7、y=6/x(x<0)
8、(-2,-4)原点
9、=
10、解:∵A(2,2)B(-1,m)在y=4/x图像上,∴m=-4,∵A、B也在y=ax+b上,
∴a=2,b=-2
∴一次函数为y=2x-2
能力提升
11、D 12、D 13、A
14、解:设P点坐标为(a,b)
S△PAB=[2-(-2)]•∣a∣•(1/2)=6
∴∣a∣=3
∴a=±3
当a=3时,b=-1/3,当a=-3时,b=1/3
∴P(3,-1/3)或P(-3,1/3)
15、解:(1)一次函数y=kx+b和反比例函数y=m/x相交于A(-2,1),把A(-2,1)代入y=m/x得m=-2,∴反比例解析式为y=-2/x(x≠0)
把A、B分别代入y=kx+b得
∴一次函数的解析式为y=-x-1
(2)一次函数的值大于反比例函数的值时,x取相同的值,一次函数的图像在反比例函数的上方,即一次函数大于反比函数,所以x<-2或0<x<1
16、解:
(1)S△PQO=1/2xy(x>0,y>0),即(1/2)x•(k/x)=S,故S=k/2(k>0)(2)∵S=1/2xy且xy之积是一个定值,∴Q点沿x轴的正方向运动时,Rt△PQO的面积不变
探索研究
17、解:设A1的坐标为(a,0),A2(b,0),因为△P₁OA₁,△P₂A₁A₂是等腰直角三角形,所以b>a,P1的坐标为(a/2,8/a),P2(a+b/2,8/b-a),。

相关文档
最新文档