膜材料与制备

合集下载

高分子膜材料及其制备

高分子膜材料及其制备

高分子膜材料及其制备一、高分子膜材料的种类:1.聚合物膜:聚合物膜是指以聚合物为基础的薄膜材料,如聚乙烯(PE)、聚丙烯(PP)、聚酰胺(PA)、聚氟乙烯(PTFE)等。

2.复合膜:复合膜是指由两种或多种材料通过复合工艺制备而成的薄膜材料,如聚乙烯醇(PVA)/聚乙烯(PE)复合膜、聚六氟乙烯(PVDF)/介孔石墨烯复合膜等。

3.功能膜:功能膜是指在高分子膜材料中添加特殊功能性材料,赋予其特殊的性能,如阻隔性膜、导电膜、光学膜等。

二、高分子膜材料的制备方法:1.拉伸法:将高分子材料加热至熔融状态后快速拉伸,形成薄膜状。

2.压制法:将高分子材料加热至熔融状态后压制,形成薄膜状。

3.溶液法:将高分子材料加入溶剂中,形成均匀的溶液后通过蒸发或者凝胶法制备薄膜。

4.浇铸法:在高分子材料融熔状态下,将其注入模具中,通过冷却固化成薄膜状。

5.混摩法:将高分子材料与其他相容的材料进行混摩,再经过热压或拉伸等工艺制备薄膜。

三、高分子膜材料的应用:1.包装领域:高分子膜材料具有良好的柔韧性和阻隔性能,被广泛应用于食品包装、医药包装等领域。

2.过滤领域:高分子膜材料具有良好的过滤性能,可用于水处理、液态分离等领域。

3.分离领域:高分子膜材料具有良好的选择性和分离性能,可用于气体分离、膜生物反应器等领域。

4.传感器领域:高分子膜材料具有灵敏度高、响应速度快等优点,可用于压力传感器、湿度传感器等领域。

5.电子器件领域:高分子膜材料具有柔性、可塑性等特点,可用于柔性显示器、柔性电池等领域。

总之,高分子膜材料由于其特殊的性能和制备方法,已经在各个领域得到广泛应用,并且随着科技不断发展,高分子膜材料将会在更多领域展现出巨大的潜力。

薄膜材料的制备及性能研究

薄膜材料的制备及性能研究

薄膜材料的制备及性能研究第一章:薄膜材料的基础知识薄膜材料是指厚度在一个纳米到几微米之间的材料,由于其具有较大的比表面积和界面能,从而表现出了明显的物理和化学性质,应用广泛。

薄膜材料可以制备出各种不同形态和结构的材料,包括单层,多层和复合薄膜。

薄膜可以用于制备各种功能性材料,例如光电材料,传感器,能源材料和生物医学材料等。

因此薄膜材料的制备和性能研究已经成为了材料科学中一个重要的研究方向。

第二章:薄膜制备技术薄膜制备技术可以分为物理气相沉积(PVD),化学气相沉积(CVD),溶液法和电化学法等。

其中PVD主要应用于粘附性要求高的金属材料,CVD是为了制作半导体器件而发展出来的技术。

溶液法和电化学法则可以用来制备具有大面积、低成本和环境友好等特点的薄膜材料,因此是应用最为广泛的制备技术之一。

采用这两种技术制备的薄膜具有谷电导,谷光导和电化学性质等。

第三章:薄膜材料的性能研究具体来说,薄膜材料的性能包括表面化学性质、表面结构、光电性质和力学性质。

如表面化学性质可以通过XPS、FTIR和Tof-SIMS等技术进行表征,表面结构可以利用STM和AFM等技术来研究;光电性质则可以通过光谱测量和电学测试等手段来探究,力学性质则可以通过纳米压痕实验等方法来研究。

另外,薄膜材料的吸湿性、稳定性和生物相容性也是需要考虑的因素。

第四章:薄膜材料的应用领域举例薄膜材料由于其独特的性质,在许多领域中都有着广泛的应用。

以太阳能电池为例,在这种光电器件中,薄膜材料被用来制作光电转换器件和透明电极等部件,这直接关系到其光电性能和机械稳定性。

另外,在生物医学领域中,薄膜材料可以用来制备药物输送系统和人工血管等医学器械,用于有效地传递和释放药物。

第五章:未来展望在未来,薄膜材料将面临更加广泛和深入的应用前景。

例如,在生物医学领域中,薄膜材料可以用于制备智能药物释放系统,这将为治疗慢性疾病提供更有效的途径。

此外,在电子器件中,薄膜材料可以用于制作超薄管道、柔性器件和透明电极等。

薄膜材料的特点及其制备技术

薄膜材料的特点及其制备技术

薄膜材料的特点及其制备技术薄膜材料的特点及其制备技术厚度小于1微米的膜材料,称为薄膜材料。

下面是店铺给大家整理的薄膜材料的特点及其制备技术,希望能帮到大家!薄膜材料的特点与制备技术工业上有两大类塑料薄膜(厚度在0.005mm~0.250mm)生产方法——压延法和挤出法,其中挤出法中又分为挤出吹塑、挤出拉伸和挤出流延。

目前最广泛使用的生产工艺有挤出吹塑、挤出拉伸和挤出流延,尤其是聚烯烃薄膜,而压延法主要用于一些聚氯乙烯薄膜的生产。

在挤出吹塑、挤出拉伸和挤出流延中,由于挤出吹塑设备的整体制造技术的不断提高以及相对于拉伸和流延设备而言低得多的,本应用在不断增多。

不过在生产高质量的各种双向拉伸薄膜中仍然广泛使用挤出拉伸设备。

随着食品、蔬菜、水果等对塑料薄膜包装的要求越来越高以及农地膜、棚膜的高性能要求和工业薄膜的应用不断增加、计算机和自动化技术的应用,塑料薄膜设备生产商一直在不断创新,提高薄膜的生产质量。

薄膜材料的简介当固体或液体的一维线性尺度远远小于其他二维时,我们将这样的固体或液体称为膜。

通常,膜可分为两类,一类是厚度大于1微米的膜,称为厚膜;另一类则是厚度小于1微米的膜,称为薄膜。

半导体功能器件和光学镀膜是薄膜技术的主要应用。

一个很为人们熟知的表面技术的应用是家用的镜子:为了形成反射表面在镜子的背面常常镀上一层金属,镀银操作广泛应用于镜子的制作,而低于一个纳米的极薄的镀层常常用来制作双面镜。

当光学用薄膜材料(例如减反射膜消反射膜等)由数个不同厚度不同反射率的薄层复合而成时,他们的光学性能可以得到加强。

相似结构的由不同金属薄层组成的周期性排列的薄膜会形成所谓的超晶格结构。

在超晶格结构中,电子的运动被限制在二维空间中而不能在三维空间中运动于是产生了量子阱效应。

薄膜技术有很广泛的应用。

长久以来的研究已经将铁磁薄膜用于计算机存储设备,医药品,制造薄膜电池,染料敏化太阳能电池等。

陶瓷薄膜也有很广泛的应用。

由于陶瓷材料相对的高硬度使这类薄膜可以用于保护衬底免受腐蚀氧化以及磨损的危害。

薄膜材料的制备及其应用

薄膜材料的制备及其应用

薄膜材料的制备及其应用一、薄膜材料的基本概念和制备方法薄膜是指宽度很小,但厚度相对较薄的材料。

薄膜材料由于具有在空间限制下的卓越性质,被广泛应用于化学、生物、光电等领域。

常见的薄膜材料有聚合物、金属、陶瓷、玻璃等。

1.基于聚合物的薄膜制备方法聚合物薄膜制备方法包括溶液浇铸、界面聚合、自组装、化学气相沉积等多种技术。

其中,溶液浇铸法是最为普遍的一种方法,即将聚合物分散于溶剂中,通过蒸发-干燥过程制备膜材料。

2.基于金属的薄膜制备方法金属薄膜制备方法主要包括物理气相沉积、化学气相沉积、物理溅射和热蒸发等技术。

其中,物理气相沉积法是最常用的一种方法,依靠金属的高温蒸发和沉积,形成薄膜材料。

3.基于陶瓷的薄膜制备方法陶瓷薄膜材料的制备采用包括溶胶-凝胶法、物理气相沉积、离子束沉积和磁控溅射等多种技术。

其中,溶胶-凝胶法是一种低温制备技术,制备出的膜材料具有良好的化学稳定性和高纯度。

二、薄膜材料的应用1.生物医学领域在生物医学领域,薄膜被广泛应用于药物递送、人工器官、组织工程等方面。

聚合物薄膜材料具有良好的生物相容性和生物可降解性,广泛用于药物递送系统和组织工程中。

金属薄膜由于其良好的导电性能,可用于人体电刺激和成像等领域。

2.能源领域薄膜在太阳能电池、燃料电池、半导体器件等领域也有着重要的应用。

例如,聚合物薄膜用于太阳能电池、金属薄膜用于燃料电池、氧化物薄膜用于半导体领域。

3.环境领域薄膜在环境领域的应用主要包括水处理、气体净化、油污处理等方面。

例如,纳米复合薄膜用于水处理,可有效过滤掉微小颗粒和化学污染物;纳米多孔结构薄膜用于气体净化,可去除有害氧化物和有机物质;陶瓷薄膜用于油污处理,可高效分离和去除油污。

三、薄膜材料的发展趋势1.可持续、环保的材料未来薄膜材料的制备趋势是转向可持续、环保的材料。

例如,生物可降解聚合物薄膜可以在使用后被自然分解,减少环境影响。

2.多功能化材料未来的薄膜材料也将具备多种功能,例如,与生物组织相容、导电、光学响应等。

薄膜材料的制备和应用领域

薄膜材料的制备和应用领域

薄膜材料的制备和应用领域近年来,薄膜材料在各个领域的应用越来越广泛,如电子、光学、能源等。

薄膜材料的制备技术也在不断发展,以满足不同领域对材料性能与应用需求的不断提高。

一、薄膜材料的制备技术当前,主要有以下几种薄膜制备技术被广泛应用于工业生产和科研实验中。

1. 物理气相沉积(PVD)物理气相沉积技术是将固体材料在真空环境下以蒸发、溅射等方式转化为气体,然后在衬底表面沉积成薄膜。

此技术具有较高的原子沉积速率、较小的晶粒尺寸和良好的附着力,可用于制备金属、合金和多层膜等。

2. 化学气相沉积(CVD)化学气相沉积技术是通过气相反应将气体分解并生成固态产物,从而在衬底表面沉积形成薄膜。

因其制备过程在常压下进行,能够实现批量制备大面积均匀薄膜,因此被广泛应用于硅、氮化硅、氮化铝等材料的制备。

3. 溶液法溶液法是将材料溶解于适当的溶剂中,然后利用溶液的性质,在衬底上形成膜状材料。

溶液法制备工艺简单、成本较低,适用于生物陶瓷、无机膜、有机膜等材料的制备。

4. 凝胶法凝胶法是在溶液中形成胶体颗粒,然后通过凝胶化的方式得到凝胶体系,再经由热处理、晾干等工艺制得薄膜。

凝胶法可制备出具有较高孔隙度和较大比表面积的纳米级多孔膜材料,适用于催化剂、分离膜等领域。

二、薄膜材料在电子领域的应用随着电子领域的快速发展,薄膜材料作为电子器件的关键组成部分,扮演着越来越重要的角色。

薄膜材料在半导体器件中的应用,如金属薄膜作为电极材料、氧化物薄膜作为绝缘层材料、硅薄膜作为基板等,不仅能够提高电子器件的性能,还能够实现器件的微型化和集成化。

此外,薄膜材料在光电显示技术中也有着广泛应用。

以液晶显示技术为例,通过在衬底上沉积液晶薄膜和驱动薄膜,实现了显示器的高清、高亮度、高对比度等特性。

三、薄膜材料在能源领域的应用薄膜材料在能源领域的应用主要体现在太阳能电池和燃料电池方面。

太阳能电池中的薄膜材料主要是用于吸收太阳能并进行光电转换的薄膜层。

薄膜材料的制备及其应用

薄膜材料的制备及其应用

薄膜材料的制备及其应用薄膜材料是一种非常重要的材料,在形态和用途上都非常广泛。

与传统的块材料不同,薄膜材料可以制备成各种形状和大小,非常适合各种特殊需求的场合。

薄膜材料的制备技术也变得越来越成熟和多样化,能够满足不同领域的需求。

本文将从薄膜材料的制备和应用两个方面阐述其重要性。

一、薄膜材料的制备方法薄膜制备的方法有很多,可以根据需要选择不同的方法。

其中一些主要的方法有:1. 溅射法。

该方法是一种常见的薄膜制备方法,依靠高温下的原子或离子的加速碰撞使得物质凝聚在样品表面上,形成一层薄膜。

2. 化学气相沉积法。

该方法利用气相反应,使物质沉积在样品表面上,也是一种经常使用的薄膜制备方法。

3. 溶液法。

该方法利用一定的溶剂将物质溶解,然后通过各种方式沉积在样品表面上,也是一种略微便宜的方法。

薄膜材料的制备方法可以根据具体情况进行选择。

例如,需要制备高质量的薄膜材料,则溅射法和化学气相沉积法更适用,对薄膜材料的结晶质量有更高的要求。

需要大规模制备时,则可以使用溶液法,因为溶液法的成本相对较低。

二、薄膜材料的应用薄膜材料在很多领域都有广泛的应用,其中一些主要的领域有:1. 太阳能电池。

薄膜太阳能电池相对于其他太阳能电池的优势在于其更低的制造成本和更低的重量。

这就是为什么薄膜太阳能电池在过去几年里变得越来越流行的原因。

2. 光电显示器。

我们的笔记本电脑和手机等电子产品中使用的另一个薄膜材料是透明电极。

这种材料可以被施加电压来产生电子,从而控制光的透过。

3. 薄膜防护层。

薄膜材料不仅可以用来制造电子产品,还可以用来保护它们。

例如,我们可以使用一层防护膜来保护手机或平板电脑的屏幕免受划伤或破碎。

4. 超级电容器。

超级电容器是利用电容器原理储存电能的装置,其制作的核心就是薄膜电极。

使用薄膜电极具有较大的表面积,从而增加了超级电容器储存电能的能力。

总的来说,薄膜材料在现代科技领域的应用非常广泛,其制备方法也越来越成熟。

薄膜材料的制备流程

薄膜材料的制备流程

薄膜材料的制备流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!薄膜材料的制备流程一般包括以下几个步骤:1. 基底准备。

选择合适的基底材料,如硅片、玻璃、金属等。

薄膜材料及其制备技术

薄膜材料及其制备技术

薄膜材料及其制备技术薄膜材料是指厚度在纳米级别到微米级别的材料,具有特殊的物理、化学和力学性质。

薄膜材料广泛应用于电子、光电、光学、化学、生物医学等领域。

下面将介绍薄膜材料的分类以及常用的制备技术。

薄膜材料的分类:1.无机薄膜材料:如氧化物薄膜、金属薄膜、半导体薄膜等。

2.有机薄膜材料:如聚合物薄膜、膜面活性剂薄膜等。

3.复合薄膜材料:由两种或以上的材料组成的。

如聚合物和无机材料复合薄膜、金属和无机材料复合薄膜等。

薄膜材料的制备技术:1.物理气相沉积技术:包括物理气相沉积(PVD)和物理气相淀积(PVD)两种方法。

PVD主要包括物理气相沉积和磁控溅射,通过将固态金属或合金加热,使其升华或蒸发,然后在基底表面形成薄膜。

PVD常用于制备金属薄膜、金属氧化物薄膜等。

2.化学气相沉积技术:包括化学气相沉积(CVD)和原子层沉积(ALD)两种方法。

CVD通过化学反应在基底表面形成薄膜。

ALD则是通过一系列的单原子层回旋沉积来生长薄膜。

这些方法可以制备无机薄膜、有机薄膜和复合薄膜。

3.溶液法制备技术:包括溶胶-凝胶法、旋涂法、浸渍法等。

溶胶-凝胶法通过溶胶和凝胶阶段的转化制备薄膜。

旋涂法将溶液倒在旋转基底上,通过离心力将溶液均匀分布并形成薄膜。

浸渍法将基底浸泡在溶液中,溶液中的材料通过表面张力进入基底并形成薄膜。

这些方法主要用于制备有机薄膜和复合薄膜。

4.物理沉积法和化学反应法相结合的制备技术:如离子束沉积法、激光沉积法等。

这些方法通过物理沉积或化学反应在基底表面形成薄膜,具有较高的沉积速率和较好的薄膜质量。

综上所述,薄膜材料及其制备技术涉及多个领域,各种薄膜材料的制备方法各有特点,可以选择合适的技术来制备特定性质的薄膜材料。

随着对薄膜材料的深入研究和制备技术的不断进步,薄膜材料在各个应用领域的潜力将会得到更大的发掘。

薄膜材料的性质和制备方法

薄膜材料的性质和制备方法

薄膜材料的性质和制备方法薄膜材料是目前研究热点之一,因其在许多领域中的广泛应用而备受瞩目。

从基础科学、医学、能源到电子商务,薄膜材料无处不在。

薄膜材料有很多特殊的性质,这使得它们在许多领域中发挥着关键作用。

本文将重点介绍薄膜材料的性质和制备方法。

薄膜材料的性质薄膜材料的定义是一种有机或无机材料,其厚度在纳米尺度或亚微米尺度之间。

与常规材料相比,薄膜材料具有许多独特的物理、化学和光学性质。

下面我们来看看这些性质。

1. 机械性能:薄膜材料具有极高的比表面积,因此其机械性能通常优于传统材料。

尽管薄膜的厚度很薄,但它们的强度和硬度通常比同材料的块状物体更高。

这种性质使得薄膜材料在构建微缩机械结构时非常有用。

2. 光学属性:薄膜材料在光波和电磁波的传播中表现出卓越的性质。

薄膜材料的厚度和折射率差异可以用来生成干涉色彩和其他光学效果。

薄膜膜层作为底材可大幅提升光伏电池的效率。

3. 化学惯性:薄膜材料相对于块状材料来说,化学惯性更高。

这表明薄膜材料更加稳定,更不容易受到氧、水等环境因素的影响。

这种特性使得薄膜材料在许多应用中非常有用,例如化学传感器和生物芯片。

4. 电学性能:薄膜材料的电学性能在非常大程度上受到其厚度和化学组成的影响。

例如,一些薄膜材料的阻抗极低,这使得它们在电容器和电感器中表现出优越的性能。

此外,某些薄膜材料具有高度可控的导电性能,这使得它们在微电子器件中非常有用。

薄膜材料的制备方法制备薄膜材料一般可以分为两种:物理气相沉积和化学气相沉积。

1. 物理气相沉积:这种制备方法从真空中引入想要沉积的原料气体,并使用加热元件使气体在反应室中分解。

分解后的原料沉积在薄膜的表面,逐渐形成所需的厚度。

这种方法适用于纯粹的无机和有机化学反应。

常用的有热蒸发、电弧放电、射束沉积等。

2. 化学气相沉积:这种制备方法通常涉及将反应气体,在表面上引发化学反应后形成薄膜。

沉积过程中,沉积的原料可能需要被激活。

激活方式包括暴露于高温或高压的条件。

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用薄膜材料是在基材上形成的一层薄膜状的材料,通常厚度在几纳米到几十微米之间。

它具有重量轻、柔韧性好、透明度高等特点,广泛应用于电子、光学、能源、医疗等领域。

薄膜材料制备的原理主要涉及物理蒸发、溅射、化学气相沉积等方法。

其中,物理蒸发是指将所需材料制成块状或颗粒状,利用高温或电子束加热,使材料从固态直接转变为蒸汽态,并在基材上沉积形成薄膜。

溅射是将材料制成靶材,用惰性气体或者稀释气体作为工作气体,在高电压的作用下进行放电,将靶材表面的原子或分子溅射到基材上形成薄膜。

化学气相沉积是指在一定条件下,将气态前体分子引入反应室,通过化学反应沉积到基材上,形成薄膜。

薄膜材料制备技术不仅包括上述原理所述的基本制备方法,还涉及到不同材料、薄膜厚度、表面质量等方面的特定要求。

例如,为了提高薄膜的品质和厚度均匀性,可采用多台蒸发源同时蒸发的方法,或者通过旋涂、喷涂等方法使得所需薄膜材料均匀地覆盖在基材上。

此外,为了实现特定功能,还可以通过控制制备条件、改变材料组成等手段来改变薄膜的特性。

薄膜材料具有多种应用领域。

在电子领域,薄膜材料可以用于制作集成电路的介质层、金属电极与基板之间的隔离层等。

在光学领域,薄膜材料可以用于制作光学滤波器、反射镜、透明导电膜等。

在能源领域,薄膜材料在太阳能电池、锂离子电池等器件中扮演重要角色。

在医疗领域,薄膜材料可以用于制作人工器官、医用伽马射线屏蔽材料等。

此外,薄膜材料还应用于防腐蚀涂料、食品包装、气体分离等领域。

虽然薄膜材料制备技术已经相对成熟,但是其制备过程中仍然存在一些挑战。

例如,薄膜厚度均匀性、结晶性能、粘附性能等方面的要求十分严格,制备过程中需要控制温度、压力、物质流动等多个参数的影响,以确保薄膜的质量。

此外,部分薄膜材料的制备成本相对较高,制约了其在大规模应用中的推广。

总的来说,薄膜材料制备原理、技术及其应用具有重要的实际意义。

通过不断改进制备技术,提高薄膜材料的制备效率和质量,将有助于推动薄膜材料在各个领域的更广泛应用。

ro膜生产工艺

ro膜生产工艺

ro膜生产工艺RO膜生产工艺一、引言RO膜是一种高效的水处理技术,广泛应用于海水淡化、饮用水净化等领域。

RO膜的生产工艺对于膜的性能和生产效率有着重要影响。

本文将介绍RO膜生产工艺的基本流程和关键技术,以及一些常见的改进方法。

二、RO膜生产工艺的基本流程RO膜的生产工艺一般包括以下几个基本步骤:1. 材料准备:RO膜的主要材料是聚酰胺薄膜,需要选择适当的原料并进行准备。

原料通常是聚酰胺单体和交联剂,通过混合、溶解等处理得到膜材料。

2. 膜材料制备:将膜材料溶液均匀地涂覆在膜基材上,形成膜层。

膜基材可以是无纺布、纤维素膜等,其选择与膜的应用有关。

3. 膜形成:将膜基材浸入溶剂中,使膜材料形成膜结构。

这个过程需要控制溶剂的浓度、温度、浸泡时间等参数,以确保膜的结构和性能。

4. 膜固化:膜形成后,需要进行固化处理,以提高膜的力学强度和稳定性。

固化方法可以是热固化、化学固化等,具体选择取决于膜的要求。

5. 膜后处理:膜固化后,需要进行一系列的后处理步骤,如清洗、干燥、切割等,以得到最终的RO膜产品。

三、RO膜生产工艺的关键技术RO膜生产工艺中有一些关键的技术,对于膜的性能和品质具有重要影响。

以下是其中几个关键技术的介绍:1. 材料选择:选择合适的聚酰胺单体和交联剂是膜性能的关键。

需要考虑单体的反应性、交联剂的稳定性、材料的成本等因素。

2. 涂覆技术:膜材料的涂覆均匀性对于膜的性能和生产效率有重要影响。

常见的涂覆技术有手工涂覆、刮涂法、喷涂法等。

3. 膜形成条件:膜形成过程需要控制溶剂的浓度、温度、浸泡时间等参数。

这些条件的选择要根据膜材料的特性和要求进行优化。

4. 膜固化方法:膜固化可以提高膜的力学性能和稳定性。

热固化可以通过烘干或热压等方法实现,化学固化则需要添加适当的固化剂。

四、RO膜生产工艺的改进方法为了提高RO膜的性能和生产效率,人们进行了许多工艺改进的研究。

以下是一些常见的改进方法:1. 膜材料改进:通过调整聚酰胺单体和交联剂的配比,改变膜材料的分子结构和性能,以提高膜的抗污染性能和通量。

薄膜材料的制备和应用研究进展

薄膜材料的制备和应用研究进展

薄膜材料的制备和应用研究进展薄膜材料是一种在日常生活中用途广泛的材料。

它的应用范围涉及光学、电子、生物医学,甚至涂层等很多领域。

制备和应用研究方面也有很多成果,本文将从几个方面介绍薄膜材料的制备方法以及应用研究进展。

一、制备方法1、物理气相沉积法物理气相沉积法是指利用热能或者电子束激励的方式使材料蒸发并沉积在基底上形成薄膜。

这种方法可以制备高质量、高结晶度的薄膜材料。

其中分子束蒸发技术和反蒸发方法属于物理气相沉积法的一种,依靠非常高的真空和完整的分子束,可以制备出高质量的薄膜材料,但是设备成本也非常高。

2、化学气相沉积法化学气相沉积法是指在较低的气压环境下,将材料前驱体分子通过热解、裂解或者还原等化学反应,制备出薄膜材料。

这种方法成本较低,操作简单,可以制备大面积、高质量的薄膜,因此尤其适合大规模生产。

3、物理涂敷法物理涂敷法是指利用物理过程,将材料沉积在基底上形成薄膜。

常见的物理涂敷法有磁控溅射、电子束蒸发、激光蒸发等。

这种方法可以制备出膜层均匀、结构紧密的薄膜,但是缺点是沉积速度较慢,不能用于大面积生产。

4、化学涂敷法化学涂敷法是指利用化学反应将材料前驱体分子沉积在基底上形成薄膜。

常见的化学涂敷法有溶胶凝胶法、自组装法等。

这种方法可以制备出薄膜材料的更多形式,如多孔薄膜、纳米结构薄膜等。

但是化学反应的复杂度和化学材料的不稳定性也增加了制备过程的难度。

二、应用研究进展1、光电材料在光电领域,薄膜材料的应用非常广泛。

其中,一些透明导电薄膜材料如氧化铟锡、氧化镓锌、氧化铟和氧化钙、锡等材料已成为制作 OLED 光电器件的重要材料。

此外,半导体材料如氧化物和硫化物薄膜也被广泛应用于光电器件中,如可见光光伏器件、光传感器等。

因此,随着该领域的发展,薄膜材料在光电设备中的应用前景不断向好。

2、生物医学薄膜材料在生物医学领域的应用也越来越广泛。

其中,一种叫做生物基薄膜的材料能够在各种生物医学应用中发挥重要作用。

薄膜材料的制备及其应用

薄膜材料的制备及其应用

薄膜材料的制备及其应用随着科学技术的发展,薄膜材料在工业、生活中应用越来越广泛。

那么,什么是薄膜材料呢?简单地说,薄膜材料就是厚度很薄的材料,通常在几纳米到几百微米之间。

它具有许多优良的性能,比如光透过性、电绝缘性、机械性强等,因此在电子、光学、医学、环保等领域有着广泛的应用。

薄膜材料的制备方法很多,下面就介绍几种常见的方法。

1. 真空蒸发法真空蒸发法是一种将材料在高真空下蒸发形成薄膜的方法。

这种方法能让材料形成单晶状态,并且薄膜的结构均匀。

但是,真空蒸发法收率低,难以控制厚度,且材料成本较高。

2. 磁控溅射法磁控溅射法是将材料置于空气不及其它气体的真空区域中,然后在材料表面上放置一排镀失控的靶材,高能电子或离子轰击靶材,使其蒸发,材料形成薄膜。

这种方法能有效控制薄膜厚度和成分,并且成本低,是大量生产薄膜材料的主要方法。

3. 溶液法溶液法又称溶液旋涂法,是在材料分子间溶解剂中制备薄膜的方法。

该方法速度快,降低了制造成本,但难以制造低缺陷率的薄膜。

薄膜材料拥有的优良性质是由于分子间相互作用力和表面效应的影响。

因此,薄膜材料在许多领域中都有着广泛的应用。

下面就以电子和生命科学为例分别介绍一下薄膜材料在这两个领域中的应用。

1. 电子方面的应用半导体电子学是薄膜材料的主要应用领域之一。

半导体薄膜可以制造出用于制作半导体器件的掩模、曝光和电子束光刻的压电材料和透镜材料。

此外,具有特殊电学性能的有机或无机高分子材料可以制造出各种电路板。

并且,一些薄膜材料可以转换为导电薄膜,例如透明导电薄膜用于制造液晶显示器和触摸屏,复合导电薄膜用于制造柔性电子纸、可擦写电子图书和柔性电子纸屏幕等。

2. 生命科学应用生命科学中的薄膜材料主要用于细胞培养、过滤纯化、药物控释等,例如,被广泛使用的细胞培养板使用薄膜材料制作。

另外,纳米孔薄膜为分离和处置废水、有色中和和固体废物处理提供了可行的环保方法。

其它的,薄膜材料还可以制造出用于医学治疗和组织工程的生物材料,如胶原薄膜、海藻酸薄膜等。

pvdf膜的制备方法

pvdf膜的制备方法

pvdf膜的制备方法PVDF膜是一种常见的功能性材料,具有优异的电学、热学和机械性能。

它广泛应用于分离膜、电池膜、传感器膜等领域。

本文将介绍一种常用的PVDF膜制备方法。

PVDF膜的制备方法主要包括溶液法和热压法两种。

下面将分别介绍这两种方法的制备步骤和关键技术。

一、溶液法制备PVDF膜1. 原料准备:将PVDF粉末溶解在合适的有机溶剂中,如DMF、NMP等,制备成PVDF溶液。

在溶解过程中,需要搅拌并加热,直至PVDF完全溶解。

2. 膜材料浇筑:将制备好的PVDF溶液均匀地浇筑在平整的玻璃板上,形成薄膜。

3. 溶剂挥发:将浇筑好的溶液放置于通风处,使其自然挥发。

在挥发过程中,溶剂逐渐蒸发,PVDF形成固态结构。

4. 膜材料固化:将挥发后的膜材料放入烘箱中,进行温度升高,使PVDF膜材料完全固化。

固化温度根据具体需求而定,通常在100-150摄氏度之间。

5. 膜材料剥离:将固化后的PVDF膜从玻璃板上剥离下来,得到PVDF膜。

二、热压法制备PVDF膜1. 原料准备:将PVDF粉末溶解在有机溶剂中,制备成PVDF溶液,与溶液法相同。

2. 膜材料浇筑:将制备好的PVDF溶液均匀地浇筑在平整的玻璃板上,形成薄膜,与溶液法相同。

3. 溶剂挥发:将浇筑好的溶液放置于通风处,使其自然挥发,与溶液法相同。

4. 热压处理:将挥发后的膜材料放入热压机中,施加一定的压力和温度,使PVDF膜材料在短时间内固化。

热压温度和压力的选择需要根据具体需求和材料特性来确定。

5. 膜材料剥离:将固化后的PVDF膜从玻璃板上剥离下来,得到PVDF膜。

总结:通过溶液法和热压法,可以制备高质量的PVDF膜材料。

溶液法制备简单,适用于大面积膜的制备;热压法制备时间短,适用于小面积膜的制备。

根据具体需求,可以选择适合的制备方法,并通过调整工艺参数来控制膜的性能。

希望本文对您了解PVDF膜的制备方法有所帮助。

聚丙烯薄膜材料的设计和制备

聚丙烯薄膜材料的设计和制备

聚丙烯薄膜材料的设计和制备一、聚丙烯薄膜材料的概述聚丙烯(PP)是一种热塑性聚合物,具有良好的耐热性、化学稳定性和电气绝缘性能。

它是一种常见的塑料材料,在包装、医疗、建筑等领域有广泛的应用。

聚丙烯薄膜被用作包装材料、电容器隔膜、印刷材料和光学材料等。

二、聚丙烯薄膜的制备方法1. 薄膜挤出法聚丙烯薄膜通常采用薄膜挤出法制备。

挤出法是将熔融聚丙烯塑料通过挤出机挤压出来,经过冷却后形成薄膜材料。

挤出法可以生产高纯度、高质量、高性能的聚丙烯薄膜。

2. 溶液浇铸法聚丙烯薄膜的制备还可以采用溶液浇铸法。

浇铸法是将聚丙烯溶解在溶剂中,然后在平面表面上形成薄膜,最后通过蒸发的方式得到聚丙烯薄膜。

此法需要使用高纯度的溶剂和聚丙烯。

三、聚丙烯薄膜的设计要点1. 成膜条件聚丙烯薄膜的制备需要保证成膜条件,在生产过程中需要控制压力、温度、速度等因素,以确保薄膜的成型和成膜质量。

2. 厚度控制聚丙烯薄膜的制备需要控制薄膜的厚度,通常采用挤出机的挤出头模具形状和挤出机的挤出量控制。

3. 表面性能聚丙烯薄膜的表面性能对薄膜的应用影响很大,因此需要注意控制薄膜的亲水性和透光性。

4. 气密性聚丙烯薄膜的气密性很高,因此在生产过程中需要控制薄膜的微孔度,以保证薄膜的气密性能。

四、聚丙烯薄膜的应用1. 包装材料聚丙烯薄膜作为一种优秀的包装材料,在食品、医药、电子、化妆品和日用品等行业中得到广泛应用。

2. 隔膜材料聚丙烯薄膜在电容器、锂离子电池和其他电子元件中用作隔膜材料,具有良好的绝缘性能和耐高温性能。

3. 其他应用聚丙烯薄膜还在印刷、光学和建筑等领域中得到了应用,例如在建筑中用作隔离材料,在印刷中用作标签材料,在光学中用作光学膜等。

总之,聚丙烯薄膜作为一种重要的材料,在工业应用中起到了不可替代的作用。

制备高质量的聚丙烯薄膜需要注意薄膜的成型条件和气密性,完善的制备工艺和控制措施能够提高聚丙烯薄膜的生产效率和产品性能。

聚合物膜材料的制备与应用

聚合物膜材料的制备与应用

聚合物膜材料的制备与应用正文:一、聚合物膜材料的概述聚合物膜材料是指由高分子聚合物形成的薄膜材料。

聚合物膜材料因其具有优异的水分离、气体分离、防护和隔热等特性,被广泛应用于海水淡化、有机溶剂回收、高温气体分离、电子器件、光学器件、传感器等领域。

目前,聚合物膜材料的研究和应用已成为化学工业领域的热点和重点。

二、聚合物膜材料的制备方法(一)膜铸造法膜铸造法是聚合物膜材料制备的一种传统方法,是通过将聚合物溶液或者熔融聚合物放置于固体基材或液体基材上,并将其干燥、致密化、加固的过程。

膜铸造法的优点在于操作简单、生产效率高、成本低,可满足规模化生产需求。

但其缺点也是显而易见的,如会产生不均匀的结构和性能、膜厚度有限等。

(二)浸涂法浸涂法又称涂胶法,其工艺就是将聚合物液浸渍到无纺布或其他多孔介质上。

浸涂后,将淋涂的物质干燥,使其形成薄膜或者其他结构。

浸涂法具有广泛的应用范围、材料的加工工艺灵活以及可以控制膜的厚度、成本低、生产效率高等优点。

(三)层压法层压法是一种将两个或多个聚合物薄膜通过热压在一起,使其形成层层叠合的薄膜材料。

层压法的优点在于可形成“复合膜”,在各个膜材料之间嵌入纳米微粒子,或者添加多种功能剂,并且可以任意排布不同的层次和厚度。

三、聚合物膜材料的应用(一)海水淡化海水淡化是当前最为实际和热门的应用之一。

因为应用海水淡化的需求量巨大,然而能实现可持续、高效、低成本的分离技术并不多。

聚合物膜材料的应用有助于降低成本,提高海水淡化技术的可靠性和经济性。

(二)气体分离气体分离是聚合物膜材料的另一重要应用领域。

聚合物材料还能够实现一系列气体分离过程,包括对有机充填气分离、甲烷、氧气、氮气、空气和二氧化碳的分离。

这为提高空气、食品质量检测等方面的工作提供了有力的技术支持。

(三)其他应用除了上述两个较为重要的应用领域外,聚合物膜材料在电子器件、光学器件、传感器等领域也有广泛应用。

四、聚合物膜材料的发展趋势目前,聚合物膜材料可承载的应用方向应该是多样和客观的。

薄膜材料的制备方法

薄膜材料的制备方法

薄膜材料的制备方法薄膜材料的制备方法有很多种,下面我将介绍几种常见的方法。

1. 溶液法:溶液法是最常见的薄膜制备方法之一。

该方法主要是将待制备的材料溶解在适当的溶剂中,形成溶液后,利用涂布、旋涂、印刷等技术将溶液均匀地涂覆到基底上,然后通过加热、蒸发或水解等方法使溶剂蒸发或分解,最终得到所需的薄膜。

溶液法具有设备简单、制备工艺容易控制等优点,可以制备出大面积、均匀的薄膜。

2. CVD法:CVD(化学气相沉积)法是一种在高温条件下通过化学反应直接在基底上沉积薄膜的方法。

该方法通常包括气相反应源、载气和基底三个组成部分。

首先,将反应源和载气输入反应室中,在高温下进行反应,产生的气体在基底表面发生化学反应,形成所需的薄膜。

该方法制备的薄膜具有高质量、高效率的特点,适用于制备高纯度、多晶或无晶结构的薄膜。

3. 真空蒸发法:真空蒸发法是一种在真空环境下利用材料的高温蒸发,使蒸发物质沉积在基底上形成薄膜的方法。

原料通过加热的方式进入气相状态,然后在真空室中通过各种控制手段将蒸发物质输送到基底上进行沉积。

该方法制备的薄膜具有优异的化学纯度和均匀性,可用于制备光学薄膜、金属薄膜等。

4. 溅射法:溅射法是一种利用离子轰击的方式将固体材料溅射到基底上形成薄膜的方法。

该方法通常在真空或惰性气体环境下进行。

材料通过电弧、射频等方式激发成粒子或离子状态,然后被加速并轰击到基底表面,形成均匀的薄膜。

溅射法具有制备多种材料的能力,可以得到具有各种结构和性质的薄膜。

5. 模板法:模板法是一种利用模板的孔隙结构来制备薄膜的方法。

首先,在模板表面形成薄膜前体,然后通过热处理或溶剂处理等方式,将前体转化为所需的薄膜。

模板法制备的薄膜具有具有有序的孔隙结构,可以用于制备滤膜、分离膜等。

总结起来,薄膜材料的制备方法包括溶液法、CVD法、真空蒸发法、溅射法和模板法等。

不同的制备方法适用于不同的材料和要求,选择合适的方法可以得到具有优异性能的薄膜材料。

薄膜材料的制备和应用

薄膜材料的制备和应用

薄膜材料的制备和应用薄膜材料是一种具有特殊结构和性质的材料。

与传统的块材料相比,薄膜材料的厚度通常在纳米至微米级别之间,具有高比表面积和高界面反应能力,因此其在传感器、催化剂、光电器件等领域具有广泛的应用前景。

本文将介绍薄膜材料的制备方法和应用情况。

一、薄膜材料的制备方法目前广泛采用的制备薄膜材料的方法主要有:物理气相沉积法、化学气相沉积法、溅射法、离子束沉积法和化学涂覆法等。

物理气相沉积法:该方法通过将固态材料加热至高温状态,使得材料蒸发并沉积在基底表面上。

典型的物理气相沉积法包括热蒸发法和电子束蒸发法等。

化学气相沉积法:该方法是将一个或多个气态前体物(通常是有机化合物)引入反应室,使其分解并在基底上生长出薄膜材料。

其中比较常见的化学气相沉积法包括化学气相淀积法、化学气相沉积法和原子层沉积法等。

溅射法:该方法是将固态靶材置于真空腔中,采用离子束或电子束轰击靶材表面,使其表面材料溅射并沉积在基底表面上。

其中比较常见的溅射方法包括熔化溅射、磁控溅射和电弧溅射等。

离子束沉积法:该方法是通过将离子束轰击材料表面,使其表面材料解离并在基底表面上沉积。

离子束沉积法具有很高的沉积速率和沉积质量,但需要用大功率的离子束源。

化学涂覆法:该方法是通过溶液或浆料将材料涂在基底表面上,然后通过烘干或烧结等工艺压缩并形成薄膜材料。

化学涂覆法具有简单、低成本的优点,但需要选择合适的涂覆方法和工艺。

二、薄膜材料的应用情况1、传感器领域薄膜材料在传感器领域具有广泛的应用,包括气体传感器、液体传感器、微生物传感器等。

例如,采用钨酸锡薄膜作为气体传感器的传感元件时,可以实现对NO2、C2H5OH等气体的高灵敏度、高选择性的检测。

2、催化剂领域薄膜材料在催化剂领域存在重要的应用价值。

通过合成不同结构的薄膜材料,可以改善催化剂的反应活性、选择性和稳定性等。

例如,银薄膜催化剂在化学还原和压电化学水分解等反应中具有很高的活性。

3、光电器件领域薄膜材料在光电器件领域也有广泛的应用,如太阳能电池、光电传感器、场发射器等。

膜与膜过程_第二章_膜材料与膜制备(3)

膜与膜过程_第二章_膜材料与膜制备(3)

① 平板膜
② 中空纤维膜

分湿纺丝法(干-湿纺丝法)、熔融纺丝法;干纺丝法。
③ 管式膜
聚合物管式膜不是自撑式,因此聚合物溶
液需刮涂在一种管状支撑材料上,如聚酯 无纺布或多孔碳管。
(2)蒸气相凝胶法
将聚合物和溶剂组成的刮涂薄层置于被溶
剂饱和的非溶剂蒸气气氛中。由于蒸气相 中溶剂浓度很高,故防止了溶剂从膜中挥 发出来。随着非溶剂渗入(扩散)到刮涂 的薄层中,膜便逐渐形成。利用这种方法 可以得到无皮层的多孔膜。用浸沉凝胶法 制备中空纤维膜(干-湿纺丝)时,常采用 蒸发步骤,此时溶剂与蒸气相非溶剂交换 而导致沉淀。
3、均质膜的制备
致密均质膜 一般是指结构最紧密的膜,孔径在1.5nm以 下,膜中的高分子以分子状态排列。有机 高分子的致密均质膜在实验室研究工作中 广泛用于表征膜材料的性质。 致密均质膜太厚,透量太小,一般较少实 际应用于工业生产。
(1)Biblioteka ① 溶液浇铸法将膜材料用适当的溶剂溶解,制成均匀的铸膜液, 将铸膜液倾倒在玻璃板上(一般经过严格选择的 平整玻璃板),用一特制的刮刀使之铺展成一具 有一定厚度的均匀薄层,然后移置到特定环境中 让溶剂完全挥发,最后形成一均匀薄膜。 铸膜液的浓度范围较宽,一般在15%~20% (w/w),铸膜液要有一定粘度;一般不用高沸 点溶剂。 脱溶剂过程中铸膜液上面的空气相对湿度、流动 状况等对膜的最终性质具有重大影响。

4、无机膜制备工艺
无机膜可分致密膜、多孔膜及复合非对称膜三种。 无机膜的制备方法与材料和种类、膜的结构及孔径 范围密切相关。有多种制膜工艺:悬浮粒子法、溶 胶-凝胶(Sol-gel)法、阳极氧化法、化学气相沉 积法(CVD)、分相法和水热合成法等。 致密膜为金属或固体电解质膜。钯等金属膜的主要 制备方法有电镀法、化学镀法、化学气相沉积法, 浇铸及辗压法以及物理气相沉积法。膜厚为几个微 米至几个毫米。氧化物致密膜常采用挤出和等静压 法成型,其制备过程包括粉料制备、成型和干燥烧 结三个基本步骤。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E sp V
(3)
0.5
E Ed E p Eh V V V V
2 2 2 2 sp d p h (4)
分别表示总溶解度参数的色散分量、偶极分量和氢键分量
45
溶解度参数计算
sp
E V
d ,i g ,i
2 p ,i
coh ,i i
高分子材料在溶剂中溶解
∆Gm = ∆Hm - T∆Sm (1)
最常用的材料物化特征参数,对溶剂相转化制备高分子膜具有重要的指导作用, 是选择溶剂、添加剂和凝胶剂的主要参考参数。
∆Gm 、∆Hm 、∆Sm ——分别为高分子与溶剂分子混合的Gibbs混 合自由能、混合热和混合熵;T——溶解温度
E 1 H m V 1
0. 5
E 2 V 2
0.5 2
12
( 2)
∆E-液体分子的内聚能,即将1mol液体所含分子全部分开时,为克服分子间作用力 所必须的能量;V1,V2-组分1和2的摩尔体积;φ 1 φ2-组分1和2的体积分率
44
膜材料的选择-溶解度参数

定义溶解度参数
35
膜的内部结构 主要决定于动力 学因素。当高聚 物溶液缓慢沉淀 时,得出的是海 绵状结构(RO膜). 当快速形成凝胶 时,得出的是手 指状结构(UF膜).

36
热凝胶法
37
浸沉凝胶法
38
39
40
41
浸没沉淀法(L-S法)



①配制具有适当粘度的均相聚合物溶液; ②将聚合物溶液流涎成薄膜; ③蒸发部分溶剂; ④聚合物凝胶(沉淀); ⑤热处理。 在沉淀过程中形成液膜的聚合物溶液分为两相, 富聚合物的固相形成膜的皮层,富溶液的液相 形成膜孔。
g ,i
sp
33.39J 0.5 / cm1.5
E V
coh ,i i

31946 / 52.2 2 19 9.5 .81 2 46894 .4 33496
48
溶解度参数与材料性能的关联

材料的溶解性:相似者相溶 材料的亲水性:高分子材料的含水率随着溶解 度参数增加而上升。
21
膜制备方法
高分子膜的制备方法很多,如热压成型法,相
转化法、浸涂法、辐照法、表面化学改性法、拉 伸成孔法、核径迹法、动力形成法等。
无机膜的制备方法,主要有溶胶—凝胶法、
烧结法、化学沉淀法等。
22
高分子膜的制备
对称膜的制备
23
微孔膜的制备⑴ 拉伸法
当聚舍物处于半结晶状态,内部存在晶区和非晶区时, 两个区的力学性质是不同的,当聚合物受到拉伸力量, 非晶区受到过度拉伸致使局部断裂形成微孔,晶区则作 为微孔区的骨架得以保存形成拉伸半晶体膜
低温固化硅橡胶主要用于气体分离膜的皮层,具有较好的透气性和选择性
聚三甲基硅烷基丙炔(PTMSP)
化学稳定性好,耐强酸强碱及溶剂侵蚀;耐热性能好。亲水性差。
14

无机膜多以金属及其氧化物、多孔玻璃、陶瓷为材料。 从结构上可分为致密膜、多孔膜和复合非对称修正膜 三种。以陶瓷材料的微滤膜最常用。多孔陶瓷膜主要 利用氧化铝、硅胶、氧化锆和钛等陶瓷微粒烧结而成, 膜厚方向上不对称。
膜材料及膜的制备
1
膜材料的特性

对于不同种类的膜都有一个基本要求:

耐压:膜孔径小,要保持高通量就必须施加较高的压力, 一般模操作的压力范围在0.1~0.5MPa,反渗透膜的压力更 高,约为1~10MPa
耐高温:高通量带来的温度升高和清洗的需要 耐酸碱:防止分离过程中,以及清洗过程中的水解; 化学相容性:保持膜的稳定性; 生物相容性:防止生物大分子的变性; 成本低;

机械强度高、耐高温、耐化学试剂和有机溶剂。缺点:
不易加工,造价高。
15
膜的制备



要求: (1)透过速度 (2)选择性 (3) 机械强度 (4) 稳定性
16
膜的结构分类
按膜的结构分为:
对称膜(Symme) 复合膜(Composite Membrane)
高聚物熔体挤出→沿挤出方向形成平行排列的微晶
→热处理使结构进一步完善→冷拉伸致孔→热定型。
24
25
形成半晶态聚合物是拉伸法的关键
牵伸倍数和牵伸温度对于形成微孔尺寸和
孔隙率是很重要的。 结晶的变化和结晶形态的变化是能否形成
微孔及微孔大小的决定因素。
26
微孔膜的制备⑵ 烧结法
将粉状聚合物或金属粉均匀加热,控制温度和压力, 使粉粒间存在一定空隙,只使粉粒的表面熔融但并不全 熔,从而相互粘结形成多孔的薄层或管状结构。膜孔径 的大小,由原料粉的粒度及浇结温度来控制。此法多用 于聚乙烯、聚四氟乙烯、金属粉末等膜材料。
7
3芳香聚酰胺(PA)
优 点


高吸水性,具有较高的通量和较低的截留分子量; 机械稳定性、热稳定性较好; pH 范围宽(4-11); 操作压力要求低
缺 点

耐氯性能较差; 易被蛋白类溶质污染。
可制备反渗透复合膜。
8
4聚酰亚胺(PI)
优 点 缺 点

高吸水性,具有较高的通量和较低的截留分子量; 热稳定性较好(耐温125度); pH 范围宽(4-11); 耐氯性能较差; 易污染。 可制备反渗透复合膜、超滤膜和气体分离膜。
30
致密膜的制备

溶剂蒸发法 压延法 拉伸法
31
高分子膜的制备
非对称膜的制备
32
相转化法
相转化法是聚合物从溶液中沉析成固体的过程中从一 个均相液态转变成两个液态(液—液分相)而引发的形 成聚合物浓相和聚合物稀相,浓相最终发展成膜本体, 稀相转化成孔道。 聚合物溶液(溶胶) 聚合物稀相→孔
5聚烯烃类
聚丙烯


耐酸碱性、耐溶剂性和耐热性好; 亲水性差
微滤膜材料,常采用拉伸法制备平板膜和热致相分离制中空纤维膜 聚氯乙烯

耐酸碱、耐微生物侵蚀、通量大,但热稳定性和耐光性差。
主要用于制备超滤膜
11
6芳香聚合物
聚碳酸酯 主要用于核径迹刻蚀法制核孔微滤膜,也是气体分离(氧/氮)膜
聚酯

化学稳定性好,吸湿性小,强度高,尺寸稳定性好,耐热、 耐溶剂性能好。
E V
h ,i

44503 .62 32499 .49) 65.5 2 49.8 24.9
g ,i
d
18.9J 0.5 / cm1.5
F V
d ,i
1270 .69 2 900.33 450.164 / 65.5 2 49.8 24.9
聚合物浓相→膜本体
常用的有热凝胶法和浸沉凝胶法
33
聚合物
溶剂
添加剂
均质制膜液
流涎法制成平板型、圆管型;纺丝法制成中空纤维
蒸出部分溶剂
凝固液浸渍
水洗
后处理
图 L—S法制备
分离膜工艺流程框图
非对称膜
34
相转变制膜



不对称膜通常用相转变法(phase inversion method) 制造,其步骤如下: 1.将高聚物溶于一种溶剂中; 2.将得到溶液浇注成薄膜; 3.将薄膜浸入沉淀剂(通常为水或水溶液)中,均 匀的高聚物溶液分离成两相,一相为富含高聚物的 凝胶,形成膜的骨架,而另一相为富含溶剂的液相, 形成膜中空隙。
42
浸没沉淀法
聚合物 10-40%
制膜液
溶剂 60-90% 致孔剂 10-30%
凝胶浴

溶剂必须能溶解聚合物,且与凝胶介质水混溶, 与其他组分不起化学反应。 在常温下制膜,溶剂最好是低沸点的极性溶剂。 致孔剂必须溶于溶剂,且与凝胶介质水混溶。 致孔剂最好是高沸点的极性物质。
43
膜材料的选择-溶解度参数
Fd,i(J0.5cm1.5/mol) 1270.69
Eh,i(J/mol) Ecoh,i(J/mol)
-31946.81
44503.62 46894.40
32499.49 33496.00
计算氢键溶解度参数δh色散溶解度参数δd和总溶解度参数δsp
47
解:
h
19.35J 0.5 / cm1.5

缺 点

与氯作用,寿命降低;
膜有压实现象,高压下通量降低; 易被生物降解
常用来制备非对称反渗 透膜,也可制备卷式 超滤膜和纳滤膜。
5
醋酸纤维素膜的结构示意图
1% 表皮层,孔径 (8-10)×10-10m 过渡层,孔径 200×10-10m 99% 多孔层,孔径 (1000-4000) ×10-10m
(5a )
F V F V
d
p
5b
5c
Ecoh,i,Vi,Fd,i,Fp,i,Eh,i,Vg,i等 分别是各结构单元i的分量
g ,i
h
E V
h ,i
5d
g ,i
46
例题:聚酰胺酰肼 的重复单元
三种结构基团对摩尔体积和溶解度参数的贡献
参数 结构基团 苯环 Vi(cm3/mol) Vg,i(cm3/mol) 52.52 65.5 CONHNHCO 19 49.8 900.33 CONH 9.5 24.9 450.164
27
微孔膜的制备⑶ 核径迹刻蚀法
高分子薄膜在垂直方向受到同位素裂变碎片或重粒子 加速器放出的带电粒子的轰击,聚合物分子的长链断裂。 由于在断裂处形成活性很高的化学反应能力,能够优先 被 化学蚀刻剂所溶解,形成蚀穿的孔洞。膜孔的大小由 侵蚀的程度来控制。
相关文档
最新文档