4.1.1立体图形与平面图形课件
合集下载
新人教七上数学第1课时 认识立体图形与平面图形
![新人教七上数学第1课时 认识立体图形与平面图形](https://img.taocdn.com/s3/m/4dba4280f424ccbff121dd36a32d7375a417c699.png)
二 立体图形
观察与思考
问题1 说一说下面这些几何图形有什么共同特点?
这些几何图形的各部分不都在同一平面内, 它们是立体图形.
你还能举出其他立体图形的例子吗?
认识一下棱柱和棱锥:
六棱柱
四棱锥
三棱柱
你能再举出一些棱柱、棱锥的实例吗?
2. 观察小茗的房间,说说你能看到哪些立体图形. 球、圆柱、正方体、长方体、三棱柱、圆锥……
做一做
1. 图中实物的形状对应哪些立体图形?把相应的实 物与图形用线连接起来.
正方体 球 六棱柱 圆锥 长方体 四棱锥
思考: (1) 棱锥与棱柱的区别是什么?
(2) 圆锥与圆柱的区别是什么?
问题2 根据已有的数学经验,我们能否把它们进行分 类?你的标准是什么?
正方体
长方体 三棱柱
六棱柱 圆柱
圆锥
导入新课
情境引入
多 姿 多 彩 的 图 形
从城市建筑到乡村住宅,从立交桥到交通标志, 从剪纸艺术到城市雕塑,从动物形态到申奥标志…… 图形世界是多姿多彩的!
物体的形状、大小和位置关系是几何研究的内容.
讲授新课
一 几何图形
合作探究
观察这个纸盒,从中可以看出哪些你熟悉的图形?
看整体
看上面
看顶点
看侧面
看棱
.
从整体上看,它的形状是 长方体 ;看不同的 侧面,得到的是 正方形 或 长方形 ;看棱得到的 是 线段 ;看顶点得到的是 点 .
类似地,观察罐头、足球或篮球的外形,可以得 到圆柱、球、圆等. 长方体、圆柱、球、长(正)方形、 圆、线段、点等,以及小学学过的三角形、四边形等, 都是从物体外形中抽象出来的,它们都是几何图形.
3. 下列几何体中属于棱锥的是
人教版初中数学七年级上册第四章 几何图形初步 几何图形 教学课件 立体图形与平面图形形(第2课时)
![人教版初中数学七年级上册第四章 几何图形初步 几何图形 教学课件 立体图形与平面图形形(第2课时)](https://img.taocdn.com/s3/m/1add39f9d05abe23482fb4daa58da0116c171f2e.png)
人教版 数学 七年级 上册
4.1 几何图形
4.1.1 立体图形与平面图形 (第2课时)
导入新知
题西林壁 ——苏轼
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.
导入新知
【想一想】“横看成岭侧成峰”一句中,蕴含了怎样的数学 道理?
素养目标
3.在平面图形和立体图形互相转换的过程中,初 步建立空间观念.
2. 知道一些简单的立体图形的展开图.
1. 初步体会从不同的方向观察同一个物体可能 会看 到不同的平面图形,能识别简单物体从正面看、从 左面看、从上面看的平面图形.
探究新知 知识点 1 从不同方向看同一个物体
他们为什么会出现争执?
这是数字“9”。 这是数字“6”。
探究新知 如图,把茶壶放在桌面上,那么下面五幅图片分别
是从哪个方向看得到的?
从正面看 从右面看 从左面看 从后面看别是从什么方向看的?
1
背面
2
顶部
3
4
正面
5右
侧
左 侧
探究新知 排一排
一辆汽车从小明的面前经过,小明拍摄了一组照片. 请按照汽车被摄入镜头的先后顺序给下面的照片编号, 并与同伴进行交流.
探究新知
从左面看
巩固练习
分别画出圆柱体、圆锥及球体的从正面、左面、上面 看到的图形.
巩固练习
从正面看 从左面看
从上面看
探究新知
知识点 2 立体图形的展开图
将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?
友情提示: 沿着棱剪,展开后是 一个平面图形.
探究新知
正方体的展开图
1
2
34
5
6
7
8
4.1 几何图形
4.1.1 立体图形与平面图形 (第2课时)
导入新知
题西林壁 ——苏轼
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.
导入新知
【想一想】“横看成岭侧成峰”一句中,蕴含了怎样的数学 道理?
素养目标
3.在平面图形和立体图形互相转换的过程中,初 步建立空间观念.
2. 知道一些简单的立体图形的展开图.
1. 初步体会从不同的方向观察同一个物体可能 会看 到不同的平面图形,能识别简单物体从正面看、从 左面看、从上面看的平面图形.
探究新知 知识点 1 从不同方向看同一个物体
他们为什么会出现争执?
这是数字“9”。 这是数字“6”。
探究新知 如图,把茶壶放在桌面上,那么下面五幅图片分别
是从哪个方向看得到的?
从正面看 从右面看 从左面看 从后面看别是从什么方向看的?
1
背面
2
顶部
3
4
正面
5右
侧
左 侧
探究新知 排一排
一辆汽车从小明的面前经过,小明拍摄了一组照片. 请按照汽车被摄入镜头的先后顺序给下面的照片编号, 并与同伴进行交流.
探究新知
从左面看
巩固练习
分别画出圆柱体、圆锥及球体的从正面、左面、上面 看到的图形.
巩固练习
从正面看 从左面看
从上面看
探究新知
知识点 2 立体图形的展开图
将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?
友情提示: 沿着棱剪,展开后是 一个平面图形.
探究新知
正方体的展开图
1
2
34
5
6
7
8
《立体图形与平面图形》PPT公开课课件
![《立体图形与平面图形》PPT公开课课件](https://img.taocdn.com/s3/m/9ccc1043bfd5b9f3f90f76c66137ee06eef94e4b.png)
二、 合作交流,探究新知
你能把下列几何图形分类吗?说说你的理由.
A
B
C
D
E
F
立体图形: 各个部分不在同一个平面内. C、E、F
平面图形: 各个部分都在同一个平面内. A、B、D
简单几何体的分类
简单的 几何体
圆柱 柱体
棱柱
锥 体 {圆俊
球体
三、 运用新知
下列实物与给出的哪个几何体相似?
三、 运用新知
“几何”学的主要研究对象: 图形的形状、大小和位置关系.
二、 合作交流,探究新知
你能说出下列图形的名字吗?
三角形 形
平行四边
正方形
梯形
五边形
八边形
圆
圆环
椭圆
五角星
几何图形的各部分都在同一平面内,这样的几何图形叫做平面图形。
二、 合作交流,探究新知
观察下列图形,从中找出你熟悉的几何图形:
从实物中抽象出来 的各种图形统称为 几何图形.
第四章几何图形初步
4.1 几何图形
4.1.1 立体图形与平面图形
一、创设情境,引入新知
天安门
上海
台球桌
交通标志
向左和 向右转弯
靠右侧 道路行驶
靠左侧 道路行驶
立交直行和 立交直行 左转弯行驶 和 右转弯
行驶
环岛行驶
单向行驶 单向行驶 (向左或向右) (直行)
机动车道 非机动车道
步行街
鸣喇叭
准许试刹车 干路先行
从上面看
长
方
从左面看
体
从正面看
三、 运用新知
从上面看
从
正
面
从左面看
圆柱体
看
立体图形与平面图形 第2课时 从不同的方向看立体图 形和立体图形的展开图课件
![立体图形与平面图形 第2课时 从不同的方向看立体图 形和立体图形的展开图课件](https://img.taocdn.com/s3/m/38e36df477a20029bd64783e0912a21614797fd9.png)
从 正 面 看
从 左 面 看
从
上 面 看
从 左 面
从
看
正
面
看
从 上 面 看
自学检测2(3分钟) 1.如图,右面三幅图分别是从哪个方向看这个棱柱得到的?
上面
正面
左面
2.分别画出圆柱体、圆锥及球体的从正面、左面、上面看到的图形。
自学检测2(3分钟)
2.分别画出圆柱体、圆锥及球体的从正面、左面、上面看到的图形.
(5) (×)
(6) (×)
一线不过四,田凹应弃之
当堂训练 1、无论从哪方向看图都一样的几何体是_正__方__体__、__球___。
2、从正面看( B )
从左面看 ( B )
从上面看 ( C )
变式
从正面看( A ) 从左面看( A ) 从上面看( B )
A
B
C
3.如右图,桌上放着一个圆柱和一个长方体,请 说出下面三副图分别是从哪个方向看到的。
从左面看
从正面看
从正面看
从左面看
从上面看
自学指导2(3分钟) 常见的立体图形从不同方向看得到不同的平面图形.
1. 分别从正面、左面、上面观察这个长方体,看一看各能得到什么平面图形?
从正面看
从左面看
从上面看
2. 分别从正面、左面、上面观察三棱柱和四棱锥,各能得到什么平面图形?
提示:可见棱应画为实线形线段;不可见棱应画为虚线形线段.
从正面看
从左面看
从上面看
3. 如图,分别从正面、左面、上面观察这个立体图形,请画出你看到的 平面图形.
自主检测2 4.试着画出以下图形从正面看到的平面图形。
看得见的线用实线, 看不见的线用虚线。
人教版七年级上册4.1.1 立体图形与平面图形课件(34张PPT)
![人教版七年级上册4.1.1 立体图形与平面图形课件(34张PPT)](https://img.taocdn.com/s3/m/3e8cebdf4693daef5ef73d57.png)
从实物中抽象出的各种图形统称为几何图形.
4.1 几何图形
说一说下面这些几何图形的名称,它们有什 么共同特点?
有些几何图形的各部分不都在同一平面内, 它们是立体图形.
请再举出一些立体图形的例子.
图中实物的形状对应哪些立体图形?把相 应的实物与图形用线连接起来.
正方体 球 六棱柱
圆锥 长方体 四棱锥
图1
图2
想
下面三视图是表示哪个几何体?
一
想
?
A
B
C
D
思考: 1. 下图中的三视图表示哪个几何体?
主视图
左视图
俯视图
A
B
2.如图,你能看到哪些立体图形?
(第2题)
(第3题)
3.如图,你能看到哪些平面图形?
4.用两条线段、两个三形、两个圆拼成图案.试 着画几个,并取一个恰当的名字.
体
三棱柱
四棱柱 棱
柱 五棱柱
六棱柱
圆
锥
锥
体
三棱锥
四棱锥
棱 锥 五棱锥
六棱锥
常见立体图形的归类
立体图形
圆柱 柱体
棱柱
球体
三棱柱
四棱柱 五棱柱 六棱柱
……
圆锥 锥体
棱锥
三棱锥 四棱锥
五棱锥 六棱锥
……
认识一下棱柱和棱锥: 你能再举出一些棱柱、棱锥的实例吗?
六棱柱
四棱锥
例2.用一个小立方块搭一个几何体,它的主视 图和俯视图如图1所示,尝试画出所有可能的 左视图。想一想,搭成这个几何体最少需要多 少个小立方块?最多需要多少个小立方块?
例3.用小立方块搭一个几何体,使得它的主视图和 俯视图如图2所示,这样的几何体是否只有一种? 它最少需要多少个小立方块?最多需要多少个小立 方块?
4.1 几何图形
说一说下面这些几何图形的名称,它们有什 么共同特点?
有些几何图形的各部分不都在同一平面内, 它们是立体图形.
请再举出一些立体图形的例子.
图中实物的形状对应哪些立体图形?把相 应的实物与图形用线连接起来.
正方体 球 六棱柱
圆锥 长方体 四棱锥
图1
图2
想
下面三视图是表示哪个几何体?
一
想
?
A
B
C
D
思考: 1. 下图中的三视图表示哪个几何体?
主视图
左视图
俯视图
A
B
2.如图,你能看到哪些立体图形?
(第2题)
(第3题)
3.如图,你能看到哪些平面图形?
4.用两条线段、两个三形、两个圆拼成图案.试 着画几个,并取一个恰当的名字.
体
三棱柱
四棱柱 棱
柱 五棱柱
六棱柱
圆
锥
锥
体
三棱锥
四棱锥
棱 锥 五棱锥
六棱锥
常见立体图形的归类
立体图形
圆柱 柱体
棱柱
球体
三棱柱
四棱柱 五棱柱 六棱柱
……
圆锥 锥体
棱锥
三棱锥 四棱锥
五棱锥 六棱锥
……
认识一下棱柱和棱锥: 你能再举出一些棱柱、棱锥的实例吗?
六棱柱
四棱锥
例2.用一个小立方块搭一个几何体,它的主视 图和俯视图如图1所示,尝试画出所有可能的 左视图。想一想,搭成这个几何体最少需要多 少个小立方块?最多需要多少个小立方块?
例3.用小立方块搭一个几何体,使得它的主视图和 俯视图如图2所示,这样的几何体是否只有一种? 它最少需要多少个小立方块?最多需要多少个小立 方块?
几何图形初步认识PPT课件
![几何图形初步认识PPT课件](https://img.taocdn.com/s3/m/f20961da844769eae109edb4.png)
2021
19
练习:
2.如图,你能看到哪些立体图形?
(第2题)
(第3题)
3.如图,你能看到哪些平面图形?
2021
20
常见图形的归类
立 体 图 形
几 何 图 形平
面 图 形
柱 圆柱
体
三棱柱
棱柱 四棱柱:(长方体、正方
体五棱等柱)
球
六棱柱
体
……
锥 圆锥 三棱锥
体
四棱锥
棱锥 五棱锥
六棱锥
台 圆台 …… 体 棱台
正面
左面
2021
上面
34
练一练:
从正面、左面、上面 看这个由正方体组合成的 立体图形各能得到什么平 面图形?
从正面看
从左面看
2021
从上面看
35
练一练:分别从正面、左面、上面观察下面的立体图 形,各能得到什么平面图形?
立体图形
正面
左面
上面
2021
36
分别从正面、左面、上面看一个由若干个正方体组成的立 体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗? 动手试试看!
第四章 几何图形初步
4.1.1立体图形和平面图形(1)
2021
1
学习目标:
1.可以从简单实物的外形中抽象出几何图形,并 了解立体图形与平面图形的区别;
2.会判断一个几何图形是立体图形还是平面图形, 能准确识别棱柱与棱锥.
学习重点: 立体图形和平面图形的概念.
学习难点: 从实物的外形中抽象出几何图形.
2021
48
练习1. 将正确答案的序号填在横线上:
圆柱的展开图是—(—4—) ;圆锥的展开图是——(—6—);
苏教版七年级上册数学 4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图 教学课件
![苏教版七年级上册数学 4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图 教学课件](https://img.taocdn.com/s3/m/fa0536fcaaea998fcd220eb2.png)
学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、 拖鞋等进入教室。 尊敬老师,服从任课老师管理。 不做与课堂教学无关的事,保持课堂良好纪律秩序。
谢 谢 大 家 听课时有问题,应先举手,经教师同意后,起立提问。
这是一个工件的立体图,设计师们常常画出从不同方向看 它得到的平面图形来表示它.
我们把从正面看到的图形
叫做主视图,从左面看到的图形 叫左视图,从上面看到的图形叫 做俯视图. 主视图,左视图,俯视 图合称三视图.
正方体
主视图
左视图
俯视图
正方体的三视图都 是正方形
圆柱
圆柱的主视图和 左视图都是长方
形,俯视图是圆。
正面
左面
上面
从左面看
分别画出图中几何体的主视图、左视 图和 俯视图。
从上面看
主视图
左视图
从正面看
俯视图
有些立体图形是有一些平面图形围成的,将他们的表面适当剪 开,可以展开成平面图形。这样的平面图形称为相应立体图形 的展开图
探究常见的立体图形的展开图:
圆 柱
展开
长方体
展开
棱柱
展开
圆锥
展开
将一个正方体的表面沿某些棱剪开,展成一个平面图形
主视图
左视图
俯视图
四棱锥
主视图
四棱锥的三视图下图
左视图
俯视图
说出圆锥、球的三视图各是什么图形.
一个长方体的立体图如图所 示,请画它的三视图.
解: 所求三视图如图
主注视意方向:要写上 各视图的名称
主视图 俯视图
左视图
几何体
课件3:4.1.1 立体图形与平面图形
![课件3:4.1.1 立体图形与平面图形](https://img.taocdn.com/s3/m/f1887505bf1e650e52ea551810a6f524ccbfcb81.png)
A.从正面看 B.从左面看 C.从上面看 D.三种一样 【解析】选B.从正面看是由5个小正方形构成的平面图形; 从左面看是由3个小正方形构成的平面图形;从上面看是由 5个小正方形构成的平面图形.
15.(宁波·中考)骰子是一种特别的数字立方体(如图),它符合
以下规则:相对两面的点数之和总是7.下面四幅图中可以折成
符合规则的骰子的是( )
•• • •• ••
•
• •
•
•• •
••
••
•
•• ••
•••
•••••
•
••• •
••• •••
•• ••
•••••
• •
•
•• ••
•••••
•••
••
••• •••
••
•
•••
•••••
•• ••
••• •••
A
B
C
D
【解析】选C.先判断折叠起来后相对的两面,再看
相对两面的点数之和是否等于7.
A.三角形
B.正方形
C.圆
D.长方形
3.如图所示,将下列图形与对应的图形名称用线连接 起来.
4.下列图形中,都是柱体的一组是( C )
5.长方形、正方形、圆等都是 平面 图形. 6.写出下列几何体的名称.
三棱柱
三棱锥
圆锥
7.下列图形中为圆柱的是( D ).
8.埃及金字塔类似于几何体( C ).
A.圆锥 B.圆柱 C.棱锥 D.棱柱
9.下列图形中不是立体图形的是( D ).
A.球
B.圆柱
C.圆锥 D.圆
10.小明为班级专栏设计了一个图案,如图所示,主 题是“我们喜爱合作学习”,请你也尝试用圆、扇形、 三角形、四边形、直线等为环保专栏设计一个图案, 并标明你的主题.
15.(宁波·中考)骰子是一种特别的数字立方体(如图),它符合
以下规则:相对两面的点数之和总是7.下面四幅图中可以折成
符合规则的骰子的是( )
•• • •• ••
•
• •
•
•• •
••
••
•
•• ••
•••
•••••
•
••• •
••• •••
•• ••
•••••
• •
•
•• ••
•••••
•••
••
••• •••
••
•
•••
•••••
•• ••
••• •••
A
B
C
D
【解析】选C.先判断折叠起来后相对的两面,再看
相对两面的点数之和是否等于7.
A.三角形
B.正方形
C.圆
D.长方形
3.如图所示,将下列图形与对应的图形名称用线连接 起来.
4.下列图形中,都是柱体的一组是( C )
5.长方形、正方形、圆等都是 平面 图形. 6.写出下列几何体的名称.
三棱柱
三棱锥
圆锥
7.下列图形中为圆柱的是( D ).
8.埃及金字塔类似于几何体( C ).
A.圆锥 B.圆柱 C.棱锥 D.棱柱
9.下列图形中不是立体图形的是( D ).
A.球
B.圆柱
C.圆锥 D.圆
10.小明为班级专栏设计了一个图案,如图所示,主 题是“我们喜爱合作学习”,请你也尝试用圆、扇形、 三角形、四边形、直线等为环保专栏设计一个图案, 并标明你的主题.
人教版七年级数学上册《立体图形与平面图形》第2课时教学课件
![人教版七年级数学上册《立体图形与平面图形》第2课时教学课件](https://img.taocdn.com/s3/m/7b9b697a26d3240c844769eae009581b6ad9bd5f.png)
面图形是( B )
A
B
C
D
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
从不同的方向看立体图形:
立 体
立体图形从正面、左面、上面看得到平面图形,
图
常用这些平面图形来表示立体图形.
形
与
平
面
立体图形的展开图:
图
形
将立体图形的表面适当剪开,可以展开成平面
图形.这样的平面图形称为相应立体图形的展开图.
交流 分别从正面、左面、上面观察圆柱、球、圆锥、三棱柱, 看一看分别能得到什么平面图形?
圆锥
从正面看 从上面看
从左面看
别忘了中 间的点
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
交流
分别从正面、左面、上面观察圆柱、球、圆锥、三棱柱,
看一看分别能得到什么平面图形?
别忘了中间的线,看得见的线 用实线,看不见的线用虚线
从正面看 从左面看
从上面看
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
交流 分别从正面、左面、上面观察圆柱、圆锥、球、三棱柱, 看一看分别能得到什么平面图形?
小组合作 1.独立观察思考,画出平面图形; 2.分组交流讨论,得出最终结果; 3.分小组展示讨论结果.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
三棱柱
从正面看 从左面看 从上面看
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
拓展 分别从正面、左面、上面观察下面这个三棱柱,看一看 分别能得到什么平面图形?
三棱柱
从正面看
物体摆放的方式不同,从同一方向 看,得到的平面图形也会有所不同.
从上面看
A
B
C
D
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
从不同的方向看立体图形:
立 体
立体图形从正面、左面、上面看得到平面图形,
图
常用这些平面图形来表示立体图形.
形
与
平
面
立体图形的展开图:
图
形
将立体图形的表面适当剪开,可以展开成平面
图形.这样的平面图形称为相应立体图形的展开图.
交流 分别从正面、左面、上面观察圆柱、球、圆锥、三棱柱, 看一看分别能得到什么平面图形?
圆锥
从正面看 从上面看
从左面看
别忘了中 间的点
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
交流
分别从正面、左面、上面观察圆柱、球、圆锥、三棱柱,
看一看分别能得到什么平面图形?
别忘了中间的线,看得见的线 用实线,看不见的线用虚线
从正面看 从左面看
从上面看
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
交流 分别从正面、左面、上面观察圆柱、圆锥、球、三棱柱, 看一看分别能得到什么平面图形?
小组合作 1.独立观察思考,画出平面图形; 2.分组交流讨论,得出最终结果; 3.分小组展示讨论结果.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
三棱柱
从正面看 从左面看 从上面看
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
拓展 分别从正面、左面、上面观察下面这个三棱柱,看一看 分别能得到什么平面图形?
三棱柱
从正面看
物体摆放的方式不同,从同一方向 看,得到的平面图形也会有所不同.
从上面看
4.1.1立体图形与平面图形 教学课件(共18张PPT) 人教版数学七年级上册
![4.1.1立体图形与平面图形 教学课件(共18张PPT) 人教版数学七年级上册](https://img.taocdn.com/s3/m/529a1ee168dc5022aaea998fcc22bcd126ff42e0.png)
三角形
长方形
五边形
圆形
正方形
六边形
平行四边形
线段
探究思考,形成新知
有些几何图形的各部分不都在同一平面内,它们是立体图形. 你能再举一些立体图形的例子吗?
探究思考,形成新知
问题3 根据已有的数学经验,我们能否把它们进行分类? 你的标准是什么?
柱体
正方体
பைடு நூலகம்
圆锥 三棱柱 六棱柱 圆柱 长方体
柱体:两个底面互相平行 且完全相同
.
探究思考,形成新知
.
长方体、长(正)方形、线段、点、圆柱、球、圆等,以及小 学学过的三角形、四边形等,都是从物体外形中得出的,它们都是 几何图形.
探究思考,形成新知
有些几何图形的各部分都在同一平面内,它们是平面图形.
探究思考,形成新知
问题2 请举一些平面图形的例子
探究思考,形成新知
常见的平面图形
立体图形与平面图形(第一课时)
创设情境,提出问题
物体的形状、大小和位置关系是几何研究的内容.
探究思考,形成新知
问题1 观察这个快递纸盒,从中可以看出哪些图形? 从整体上看,它的形状是长__方__体____; 看不同侧面,得到长__方__形__或_正__方__形__; 看棱得到的是 __线__段____; 看顶点得到的是___点_____.
A.长方体 B.圆柱体 C. 球体 D.圆锥体
小结分享,深化提升
柱体 圆柱 三棱柱
棱柱 四棱柱
...
圆锥
几 何
立体图形
锥体
棱锥
三棱锥
四棱锥 ...
图
球体
形 平面图形 多边形 圆 线段 角
小结分享,深化提升
立体图形和平面图形-完整版PPT课件全
![立体图形和平面图形-完整版PPT课件全](https://img.taocdn.com/s3/m/b9cb3b4b6d175f0e7cd184254b35eefdc8d315f1.png)
第四十四页,共五十五页。
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型
第四十五页,共五十五页。
练习:下列图形中可以作为一个正方体的展开图的是( ).
C
(A)
(B)
(C)
(D)
第四十六页,共五十五页。
探究常见的立体图形的展开图
下面是一些立体图形的展开图,用它们能围成什么样的立 体图形?把它们画在一张硬纸片上,剪下来,折叠、 粘贴,看看得到的图形和你想象的是否相同.
作业
教科书习题4.1第 4 题.
第三十八页,共五十五页。
4.1.1 立体图形与平面图形
(第3课时)
第三十九页,共五十五页。
学习目标:
1. 能画出简单的几何体的展开图; 2. 能根据展开图判断几何体的形状,并能理解
这样做的现实意义.
学习重点: 通过“展开”和“围成”两种途径认识常见几何
体的展开图.
立体图形
正面
左面
上面
第三十六页,共五十五页。
分别从正面、左面、上面看一个由若干个正方体组成的立体图形,
得到的平面图形如下图所示,你能搭出这个立体图形吗?动手试试看!
正面
左面
上面
第三十七页,共五十五页。
小结
这节课我们主要学习了从不同方向看立体图形得到平面图形,
回顾学习过程,谈一谈自己有哪些学习成果.
第四章 几何图形初步
9.1.1立体图形和平面图形(1)
第一页,共五十五页。
学习目标:
1.可以从简单实物的外形中抽象出几何图形,并了解立 体图形与平面图形的区别;
2.会判断一个几何图形是立体图形还是平面图形, 能准确识别棱柱与棱锥.
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型
第四十五页,共五十五页。
练习:下列图形中可以作为一个正方体的展开图的是( ).
C
(A)
(B)
(C)
(D)
第四十六页,共五十五页。
探究常见的立体图形的展开图
下面是一些立体图形的展开图,用它们能围成什么样的立 体图形?把它们画在一张硬纸片上,剪下来,折叠、 粘贴,看看得到的图形和你想象的是否相同.
作业
教科书习题4.1第 4 题.
第三十八页,共五十五页。
4.1.1 立体图形与平面图形
(第3课时)
第三十九页,共五十五页。
学习目标:
1. 能画出简单的几何体的展开图; 2. 能根据展开图判断几何体的形状,并能理解
这样做的现实意义.
学习重点: 通过“展开”和“围成”两种途径认识常见几何
体的展开图.
立体图形
正面
左面
上面
第三十六页,共五十五页。
分别从正面、左面、上面看一个由若干个正方体组成的立体图形,
得到的平面图形如下图所示,你能搭出这个立体图形吗?动手试试看!
正面
左面
上面
第三十七页,共五十五页。
小结
这节课我们主要学习了从不同方向看立体图形得到平面图形,
回顾学习过程,谈一谈自己有哪些学习成果.
第四章 几何图形初步
9.1.1立体图形和平面图形(1)
第一页,共五十五页。
学习目标:
1.可以从简单实物的外形中抽象出几何图形,并了解立 体图形与平面图形的区别;
2.会判断一个几何图形是立体图形还是平面图形, 能准确识别棱柱与棱锥.
立体图形与平面图形ppt课件全
![立体图形与平面图形ppt课件全](https://img.taocdn.com/s3/m/f99d015902d8ce2f0066f5335a8102d276a2613e.png)
4.1 几何图形
4.1.1 立体图形与平面图形
第1课时 认识几何图形
第四章 几何图形初步
从古老简朴的青砖黛瓦到恢宏大气的现代建筑。
从四通八达的立交桥到街头巷尾的交通标志。
从能从具体事物中抽象出几何图形,并用几何 图形描述一些现实生活中的物体.(2)能分清立体图形和平面图形,并了解它们之 间的联系.
各部分不都在同一平面内.
你能找出一些立体图形的实例吗?
有些几何图形的各部分不都在同一平面内,它们是立体图形.
思考 它们对应的立体图形是什么?
三棱柱
四棱锥
六棱柱
做一做 把相应的实物与图形用线连接起来.
正方体 球 六棱柱 圆锥 长方体 四棱锥
观察 下面这些几何图形又有什么共同特点?
几何图形的定义
知识点1
思考 几何的研究内容是什么?
物体的形状、大小和位置关系.
不同的物质具有不同的性质.
长方体
思考 从这个纸盒中,我们可以看出哪些熟悉的图形?
正方形
长方形
线段
点
几何图形:我们把从形形色色的物体外形中抽象出来的各种图形叫做几何图形.
立体图形与平面图形
知识点2
观察 下面这些几何图形有什么共同特点?
各部分都在同一平面内.
有些几何图形的各部分都在同一平面内,它们是平面图形.
思考 下面各图中包含哪些简单的平面图形?请再举出一些平面图形的例子.
长方形、圆、三角形、正方形……
思考 立体图形和平面图形是同一类图形吗?它们之间有什么联系?
立体图形中某些部分是平面图形,如正方体的每个面都是正方形.
立体图形与平面图形是两类不同的几何图形,但它们是互相联系的.
强化练习
1.如图,说出下图中的一些物体的形状所对应的立体图形.
4.1.1 立体图形与平面图形
第1课时 认识几何图形
第四章 几何图形初步
从古老简朴的青砖黛瓦到恢宏大气的现代建筑。
从四通八达的立交桥到街头巷尾的交通标志。
从能从具体事物中抽象出几何图形,并用几何 图形描述一些现实生活中的物体.(2)能分清立体图形和平面图形,并了解它们之 间的联系.
各部分不都在同一平面内.
你能找出一些立体图形的实例吗?
有些几何图形的各部分不都在同一平面内,它们是立体图形.
思考 它们对应的立体图形是什么?
三棱柱
四棱锥
六棱柱
做一做 把相应的实物与图形用线连接起来.
正方体 球 六棱柱 圆锥 长方体 四棱锥
观察 下面这些几何图形又有什么共同特点?
几何图形的定义
知识点1
思考 几何的研究内容是什么?
物体的形状、大小和位置关系.
不同的物质具有不同的性质.
长方体
思考 从这个纸盒中,我们可以看出哪些熟悉的图形?
正方形
长方形
线段
点
几何图形:我们把从形形色色的物体外形中抽象出来的各种图形叫做几何图形.
立体图形与平面图形
知识点2
观察 下面这些几何图形有什么共同特点?
各部分都在同一平面内.
有些几何图形的各部分都在同一平面内,它们是平面图形.
思考 下面各图中包含哪些简单的平面图形?请再举出一些平面图形的例子.
长方形、圆、三角形、正方形……
思考 立体图形和平面图形是同一类图形吗?它们之间有什么联系?
立体图形中某些部分是平面图形,如正方体的每个面都是正方形.
立体图形与平面图形是两类不同的几何图形,但它们是互相联系的.
强化练习
1.如图,说出下图中的一些物体的形状所对应的立体图形.
4.1.1(1)认识立体图形与平面图形
![4.1.1(1)认识立体图形与平面图形](https://img.taocdn.com/s3/m/1d080469f5335a8102d22033.png)
这是一件令全国都振奋的事情
它发生在2001年7月13日
它的举办体现了一种精神
它将在2008年举行,地点是北京
2008北京奥运会的奥运村模型图
世贸中心重建方案
大 连 天 伦 商 厦
上 海 东 方 明 珠
北京西站
温 岭 大 厦
温 岭 电 信 大 楼
太平新貌
繁昌小区
乡 村 一 角
城北大石、泽太互通立交
交 通 标 志
箬 横 拼 搏 雕 塑
小 区 东 雕 辉 塑 公 园 海 鸟 雕 塑
北 山 河 绿 地 雕 塑
三 星 转 盘 申 奥 雕 塑
4.1 多姿多彩的图形
3.1.1 立体图形和平面图形(一)
长方体
正方体
球
圆柱
圆锥
长方体、正方体、球、圆柱、圆锥等 几何图形都是立体图形(solid figure)。 你还能再举出生活中类似于这些立体 图形的物体吗?
3.1.1 立体图形和平面图形(一)
帐篷
笔筒
金字塔
棱柱
棱锥
棱柱、棱锥也都是立体图形。
你能举出生活中类似于棱柱、棱锥的物体吗?
3.1.1 立体图形和平面图形(一)
圆
棱锥
以上图形都是立体图形
请你说出图中含有的一些立体图形。
3.1.1 立体图形和平面图形(一)
用橡皮泥做出以下立体图形:
3.1.1 立体图形和平面图形(一)
发 现 了 什 么 ?
学 会 了 什 么 ?
你 知 道 了 什 么 ?
请 你 谈 收 获
3.1.1 立体图形和平面图形(一)
请你用几何图形帮小明设计庭院。
作业:
1、作业本(2) P24
2、教科书 P115~116 习题3.1(1~3)题
它发生在2001年7月13日
它的举办体现了一种精神
它将在2008年举行,地点是北京
2008北京奥运会的奥运村模型图
世贸中心重建方案
大 连 天 伦 商 厦
上 海 东 方 明 珠
北京西站
温 岭 大 厦
温 岭 电 信 大 楼
太平新貌
繁昌小区
乡 村 一 角
城北大石、泽太互通立交
交 通 标 志
箬 横 拼 搏 雕 塑
小 区 东 雕 辉 塑 公 园 海 鸟 雕 塑
北 山 河 绿 地 雕 塑
三 星 转 盘 申 奥 雕 塑
4.1 多姿多彩的图形
3.1.1 立体图形和平面图形(一)
长方体
正方体
球
圆柱
圆锥
长方体、正方体、球、圆柱、圆锥等 几何图形都是立体图形(solid figure)。 你还能再举出生活中类似于这些立体 图形的物体吗?
3.1.1 立体图形和平面图形(一)
帐篷
笔筒
金字塔
棱柱
棱锥
棱柱、棱锥也都是立体图形。
你能举出生活中类似于棱柱、棱锥的物体吗?
3.1.1 立体图形和平面图形(一)
圆
棱锥
以上图形都是立体图形
请你说出图中含有的一些立体图形。
3.1.1 立体图形和平面图形(一)
用橡皮泥做出以下立体图形:
3.1.1 立体图形和平面图形(一)
发 现 了 什 么 ?
学 会 了 什 么 ?
你 知 道 了 什 么 ?
请 你 谈 收 获
3.1.1 立体图形和平面图形(一)
请你用几何图形帮小明设计庭院。
作业:
1、作业本(2) P24
2、教科书 P115~116 习题3.1(1~3)题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正面
左面
上面
小结
这节课我们主要学习了从不同方向看立体图形得到平面图形, 回顾学习过程,谈一谈自己有哪些学习成果.
作业
教科书习题4.1第 4 题.
4.1.1 立体图形与平面图形 (第3课时)
七年级数学上册 (人教版2012年秋季使用) 几何图形初步
学习目标: 1. 能画出简单的几何体的展开图; 2. 能根据展开图判断几何体的形状,并能理解 这样做的现实意义.
制作立体模型的步骤: 1.画出展开图; 2.裁剪、 折叠、粘贴; 3.修饰、加工. 画出正确的展开图是关键.
练习1. 将正确答案的序号填在横线上:
(6) (4) 圆柱的展开图是———;圆锥的展开图是————;
(3) 三棱柱的展开图是____.
练习2.下列图形能折叠成什么图形?
圆柱
五棱柱
圆锥
三棱柱
北京奥林匹克公园占地约1135hm2.总建筑面积 约200万m2,内有可容纳9万观众的国家体育场(鸟巢)、 国家游泳中心(水立方)、国家体育馆等14个比赛场馆.
怎样画出一个五角 星?怎样设计一个产品 包装盒?怎样绘制一张 校园布局平面图?不同 的图形各有什么特点和 性质?所有这些,都需要 我们知道更多的图形知 识.
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型
练习:下列图形中可以作为一个正方体的展 开图的是( C ).
(A)
(B)
(C)
(D)
探究常见的立体图形的展开图
下面是一些立体图形的展开图,用它们能围成什么样 的立体图形?把它们画在一张硬纸片上,剪下来,折叠、 粘贴,看看得到的图形和你想象的是否相同.
作业:
1.习题4.1第6、7 题. 2.(选做题)根据所学知识,手工制做一个长方体形状的盒子.
第2题
第3题
3.(选做题)如图:一只圆桶的下方有一只小壁虎,上方有 一只蚊子,小壁虎要想尽快吃到蚊子,应该走哪条路径?
正方体
球
六棱柱
圆锥
长方体
四棱锥
常见的几何体:
棱柱 柱体
棱锥 锥体 球体
圆柱
圆锥
练习: 请写出下列几何体的名称:
长方体 三棱柱
圆锥
球
圆柱
正方体
说一说下面这些几何图形又有什么共同特点?
有些几何图形的各部分都在同一平面内, 它们是平面图形.
下面各图中包含哪些简单的平面图形?请再举出一 些平面图形的例子.
练习:
1.图中的各立体图形的表面包含哪些平面图形? 试指出这些平面图形在立体图形中的位置.
练习:
2.如图,你能看到哪些立体图形?
(第2题)
(第3题)
3.如图,你能看到哪些平面图形?
小结: 本节课主要学习了立体图形和平面图形的概念, 并初步经历了由具体实物的外形中抽象出几何图形 的过程,体验到了现实生活与数学的密切联系.
作业: 1.结合身边的实际物体,看一看可以得到哪些 几何图形,其中哪些是立体图形?哪些是平面图形? 说出来与同学交流一下. 2.动手画一画你所熟悉的立体图形. 3.选用合适的材料和工具,做一个三棱柱和一 个四棱锥.
4.1.1 立体图形与平面图形 (第2课时) 七年级数学上册 (人教版2012年秋季使用) 几何图形初步
从 正 面 看
从 上 面 看 从 左 面 看
从 正 面 看
从 左 面 看
从 上 面 看
练习:如图,右面三幅图分别是从哪个方向看 这个棱柱得到的?
上面
正面
左面
探究:右图是一个 由 9 个正方体组成的立 体图形,分别从正面、 左面、上面观察这个图 形,各能得到什么平面 图形?
正面
左面
上面
练一:
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体 正方体
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体 正方体
圆柱体
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体 正方体
活动步骤:
1.根据立体图形,选择适当比例, 画出它们的展开图; 2.利用展开图,折叠出火车模型; 3.修饰完善,完成设计制作.
小结:
这节课我们学习了将立体图形展开成平面图形,认识了多种 立体图形的展开图,并且从展开图的角度进一步了解了立体图形 与平面图形的转化关系. 回顾本节课的学习,你掌握了什么本领?向大家汇报一下!
学习重点: 通过“展开”和“围成”两种途径认识常见 几何体的展开图.
本课件可与几何画板课件《正方体的11种展 开图》配合使用.
这些精美的包装盒是怎么制成的?
要设计、制作一个包装盒,除了美术设计以外,还要了 解它展开后的形状,好根据它来准备材料,这就是我们今天 学习的立体图形的展开图.
有些立体图形是由一些平面图形围成的,将它们的 表面适当剪开,可以展成平面图形.这样的平面图形称为 相应立体图形的展开图.
实践感知
自己动手把一个包装盒剪开铺平,看看它的展开图 由哪些平面图形组成?再把展开的纸板复原为包装盒, 体会包装盒与它的展开图的关系.
探究常见的立体图形的展开图:
将正方体的表面沿棱适当剪开,观察它的展开图 是怎样的,然后画出示意图.(沿着不同的棱剪开,会 得到不同的展开图,比一比,看谁得到的结果多!)
• 对于生活中的各种各样的物体,数学中关注的是 1、它们的 形状 (如方的、圆的等); 2、 大小 (如长度、面积、体积等); 3、 位置 (如相交、垂直、平行等)。 它们的颜色、重量、材料等则是其他学科所关注。
从整体上看,它的形状是 长方体
从侧面看,它的形状是 长方形
从前面看,它的形状是 正方形
只看棱、顶点等到局部,得到的是 线段、点等
类似地观察罐头、足球或篮球的外形,可以得 圆柱、球、圆等.长方体、圆柱、球、长(正)方 形、圆、线段、点等,以及小学学过的三角形、四 边形等,都是从物体外形中得出的. 从实物中抽象出的各种图形统称为几何图形.
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
学习目标: 1.能够画出从不同方向看一些常见的立体图形所 得到的平面图形,能够根据从不同方向看一个立体 图形得到的平面图形,想象并描述它的形状; 2.体会立体图形与平面图形的相互转化关系. 学习重点: 从正面、左面、上面看一些简单几何体或它们的组 合得到平面图形.
学习难点: 准确画出观察所得的平面图形.
练习3. 如图是一个小正方体的展开图,把展开图 折叠成小正方体后,与有“建”字的一面相对的那一面 上的字是( D ). 建 设 和 谐
c
社 会
(A)和
(B)谐
(C)社
(D)会
拓广探索: 如图,左边的图形可能是右边哪个图形的展开图?
(D)
(C)
实践活动
如图,是一些火车车厢的模型,他们对应着什么样的立体 图形?选择适当的比例,在一张硬纸板上画出他们的展开图, 折叠起来,得到火车车厢的模型.你还可以给他们加上窗子, 或是装上货物,加上车轮……
圆柱体
球
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体 正方体
圆柱体
球
圆锥体
说一说下面这些几何图形有什么共同特点?
有些几何图形的各部分不都在同一平面内,它们 是立体图形. 请再举出一些立体图形的例子.
认识一下棱柱和棱锥:
六棱柱
四棱锥
三棱柱
图4.1- 4中实物的形状对应哪些立体图形?把相应 的实物与图形用线连接起来.
从正面、左面、上面 看这个由正方体组合成的 立体图形各能得到什么平 面图形?
从正面看
从左面看
从上面看
练一练:分别从正面、左面、上面观察下面的立体图 形,各能得到什么平面图形?
立体图形 正面 左面 上面
分别从正面、左面、上面看一个由若干个正方体组成的立 体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗? 动手试试看!
例1:分别从正面、左面、上面观察这个长 方体,看一看各能得到什么平面图形?
从正面看
从左面看
从上面看
例2:分别从正面、左面、上面看圆柱、圆锥、 球,各能得到什么平面图形?
立体图形 从正面看 从左面看 从上面看
.
例3:分别从正面、左面、上面观察三棱柱 和四棱锥,看一看各能得到什么平面图形?
提示:可见棱应画为实线形线段;不可见棱应 画为虚线形线段.
题 西 林 壁 ---苏轼 横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.
想一想: “横看成岭侧成峰” 一句中,蕴含了怎样的数学道理?
对于一些立体图形的问题,常把它们转化为平面图形 来研究和处理.从不同方向看立体图形,往往会得到不同形 状的平面图形.在建筑、工程等设计中,也常常用从不同方 向看到的平面图形来表示立体图形. 这是一个工件的立体图,设计师们常常画出从不同方 向看它得到的平面图形来表示它.
4.1.1 立体图形与平面图形 (第1课时) 七年级数学上册 (人教版2012年秋季使用) 几何图形初步
学习目标:
1.可以从简单实物的外形中抽象出几何图形,并 了解立体图形与平面图形的区别; 2.会判断一个几何图形是立体图形还是平面图形, 能准确识别棱柱与棱锥. 学习重点: 立体图形和平面图形的概念. 学习难点: 从实物的外形中抽象出几何图形.