降水入渗法计算公式
降雨入渗法涌水量计算
![降雨入渗法涌水量计算](https://img.taocdn.com/s3/m/2bfb7c23482fb4daa58d4ba7.png)
二、涌水量的预测拟采用大气降水渗入量法对隧道进行涌水量计算1.大气降水渗入法(DK291+028-DK292+150段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.16;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2最大涌水量为: Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。
正常涌水量为: Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。
2. 大气降水渗入法(DK292+150-DK293+440段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.18;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2最大涌水量为: Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。
正常涌水量为: Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。
3.大气降水渗入法(DK293+440- DK293+870段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.12;W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
土壤水文学2下渗计算过程
![土壤水文学2下渗计算过程](https://img.taocdn.com/s3/m/45b5829355270722182ef730.png)
开始积水的时间: tp Fp i
由于只有当 R>Ks 时才可能发生积水,此时,入渗率可表示 为:
f i
t tp
f
Ks
1 s
i st
F
t tp
上式中F表示积水以后的累积入渗量 。由于不是由 t=0时开始积水,所以 需要采用下式计算:
Ks t tp tp
F sf
i
t
1 KS
F
sf
s
0 ln 1
sf
F
s 0
f
ห้องสมุดไป่ตู้
KS
1
s
f
s
0
F
time
f
t ts te
1 KS
F
sf
s
i ln 1
sf
F
s i
ts -te
FS
te
Time shifted GA infiltration curve
ts
time
• 现举例说明:
设一种壤土,s 0.48,i 0.20,Ks 0.05cm / h,s f 取25cm,
5
0.4 3
1
e
3 t 60
F20
0.510 1.510
1 60
0.33
f 20
5 3.19 5
0.33 0 0.67 0
4.11
t
4.11
0.4
5
0.4e
3 60
t' 4.3min
k ttpo t
f fc fo fc e 60
3t204.3
f 0.4 5 0.4 e 60
2. 霍顿模型
霍顿入滲公式 Horton (1939)观测土壤水份入滲速率,以指数递减
隧道涌水量的预测
![隧道涌水量的预测](https://img.taocdn.com/s3/m/1502a5d8cc22bcd127ff0c3a.png)
隧道涌水量的预测摘要:通过对隧道工程地质勘察,以不同方法计算的隧道涌水量,经分析对比,确定隧道最大涌水量,对隧道的设计、施工起到超前预防作用。
关键词:隧道涌水量,水文地质试验,渗透系数,汇水面积,降水入渗系数1前言隧道涌水量的计算,是工程地质勘察过程中非常重要的一环,尤其对于长-特长隧道,其数值的大小,直接关系到设计、施工所采取的涌、排水措施。
本文通过工程地质勘察过程中不同隧道涌水量计算的实例,讨论了隧道涌水量预测过程中需要注意的几个问题。
2水文地质试验水文地质试验是隧道涌水量计算的关键一环,应根据水文地质条件和场地条件,选用抽水、压水、注水及提水试验等方法。
下面仅就各种试验时应注意的问题介绍如下:2.1抽水试验1、稳定流抽水试验的水位降深次数,一般进行3次,当勘探孔的出水量较小或试验时出水量已达到极限时,水位降深可适当减少,但不得少于2次。
2、当出水量和动水位与时间关系曲线只在一定范围内波动,且没有持续上升或下降趋势时,判断为抽水试验稳定。
2.2压水试验1、压水试验宜采用自上而下的分段压水方法,同一工程中试验段长度应保持一致。
2、试验段长度一般为5m,最长不得超过10m。
3、压水试验宜采用3个压力阶段,一般采用0.3Mpa、0.6 Mpa、1.0 Mpa。
4、压水试验中,每10min宜观测一次压水流量,每一压力阶段在流量达到稳定后延续1.5-2.0h即可结束。
2.3注水试验注水试验一般采用钻孔常水头注水法。
1、采用清水向孔内注水,当水位升高到设计的高度后,控制水头、水量保持稳定。
2、注水试验应进行3次水位升高,每次水位升高宜采用2、4、6m,间距不宜小于1m。
2.4提水试验提水试验采用定水位降深法。
1、单位时间内提水次数应均匀,提出的水量大致相等,并达到水位水量相对稳定。
2、水位水量每隔30min测定一次,计算出出水量,出水量波动值为±10%,水位波动范围10-20cm,即为稳定。
3、提水试验延续时间,应在水位、水量相对稳定后在进行4h即可结束。
降雨入渗法涌水量计算
![降雨入渗法涌水量计算](https://img.taocdn.com/s3/m/469e9bf83b3567ec112d8a7c.png)
二、涌水量的预测拟采用大气降水渗入量法对隧道进行涌水量计算1.大气降水渗入法(DK291+028-DK292+150段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.16;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2最大涌水量为:Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。
正常涌水量为:Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。
2. 大气降水渗入法(DK292+150-DK293+440段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.18;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2最大涌水量为:Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。
正常涌水量为:Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。
3.大气降水渗入法(DK293+440- DK293+870段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.12;W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
600管半小时渗水量计算公式
![600管半小时渗水量计算公式](https://img.taocdn.com/s3/m/1706cbb56429647d27284b73f242336c1eb9301d.png)
600管半小时渗水量计算公式
半小时渗水量的计算公式可以用以下方式表示:
渗水量=饱和渗透率×饱和土壤体积×时间间隔
其中,饱和渗透率是指土壤的渗透性能,在单位时间内单位面积的土
壤能够渗入水的体积。
饱和土壤体积是指单位面积的土壤体积,通常以立
方米/平方米为单位。
时间间隔是指测量渗水量的时间,单位为小时。
下面通过一个具体的例子来计算半小时渗水量:
假设块土地的饱和渗透率为0.1立方米/小时/平方米,饱和土壤体积
为0.3立方米/平方米,时间间隔为0.5小时。
渗水量=0.1立方米/小时/平方米×0.3立方米/平方米×0.5小时
=0.015立方米
在半小时的时间内,该土地的渗水量为0.015立方米。
需要注意的是,以上计算公式是基于理想条件下的渗水量,实际情况
中可能会受到多种因素的影响,例如土壤的结构、含水量、温度等因素。
因此,在实际测量过程中,可能需要进行修正或者使用更精确的计算方法。
此外,需要注意在使用以上计算公式时,要确保单位的一致性。
尤其
是饱和渗透率和饱和土壤体积的单位必须一致,否则计算结果会出错。
希望以上内容能够对您有所帮助。
高速公路隧道施工对地下水环境的影响分析
![高速公路隧道施工对地下水环境的影响分析](https://img.taocdn.com/s3/m/75c33867e55c3b3567ec102de2bd960590c6d98b.png)
| 工程前沿 | Engineering Frontiers·20·2020年第23期高速公路隧道施工对地下水环境的影响分析李 阳1,游哲远2(1.重庆高速巫云开建设有限公司,重庆 401147;2.招商局生态环保科技有限公司,重庆 400060)摘 要:高速公路隧道建设能缩短公路里程,提高运行效率,被大量运用在山区高速公路建设中。
但隧道的建设将产生一系列地下水环境问题,主要表现为隧道内涌水及地表枯水两种现象。
文章结合具体实例,按照环境影响评价相关要求,对一特长隧道施工期地下水环境的影响进行评价。
评价结果显示,隧道施工对地下水的影响范围为1155m,产生的涌水量为12422m 3/d(453.41万m 3/年)。
在此基础上,文章还针对涌水风险提出了施工期地下水环境的保护措施与建议。
关键词:高速公路;隧道;地下水;涌水中图分类号:U456.3 文献标志码:A 文章编号:2096-2789(2020)23-0020-03作者简介:李阳,男,高级工程师,研究方向为高速公路。
通信作者:游哲远,女,工程师,研究方向为环境科学。
随着社会经济的快速发展及高速公路路网的不断完善,我国隧道工程建设得到了前所未有的迅速发展。
我国已是世界上隧道及地下工程规模最大、数量最多、地质条件和结构形式最复杂、修建技术发展速度最快的国家[1]。
隧道是高速公路的重要组成部分,其施工建设显著缩短了高速公路里程,提高了高速公路运行效率,但是,隧道工程的建设会产生一系列地下水环境问题,主要表现为两种现象:一是隧道内涌水,这将恶化围岩稳定状态,导致施工困难,增大工程造价,严重时或将产生施工事故,造成人员伤亡;二是地表枯水,造成饮水困难。
隧道施工期较长,会产生连续排放的施工废水,如不进行严格管理和控制,可能会对隧道内地下水产生一定影响。
1 隧道建设诱发的地质灾害实例在隧道的建设过程中,可能会出现一系列的地质灾害,这给隧道的施工安全以及建成后的运营带来了很大影响,其中由地下水环境带来的涌水影响非常大。
降水计算公式
![降水计算公式](https://img.taocdn.com/s3/m/db341ca6f18583d0496459be.png)
降水计算公式Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、潜水计算公式1、公式1Q kH S S R r r=-+-1366200 .()lg()lg()式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);R为引用影响半径(m);r为基坑半径(m)。
2、公式2Q k H S S b r=--1366220 .()lg()lg()式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);b为基坑中心距岸边的距离(m);r为基坑半径(m)。
3、公式3Q k H S Sb r b b b =--⎡⎣⎢⎢⎤⎦⎥⎥1366222012.()lg 'cos ()'ππ式中:Q 为基坑涌水量(m 3/d);k 为渗透系数(m/d);H 为潜水含水层厚度(m);S 为水位降深(m);b 1为基坑中心距A 河岸边的距离(m);b 2为基坑中心距B 河岸边的距离(m);b '=b 1+b 2;r 0为基坑半径(m)。
4、公式4Q k H S SR r r b r =-+-+1366220200.()lg()lg ('')式中:Q 为基坑涌水量(m 3/d);k 为渗透系数(m/d);H 为潜水含水层厚度(m);S 为水位降深(m);R 为引用影响半径(m);r 0为基坑半径(m);b ''为基坑中心至隔水边界的距离。
5、公式5Q k h h R r r h l l h r =-++--+--136610222000.lg lg(.)h H h -=+2式中:Q 为基坑涌水量(m 3/d);k 为渗透系数(m/d); H 为潜水含水层厚度(m);R 为引用影响半径(m);r 0为基坑半径(m);l 为过滤器有效工作长度(m);h 为基坑动水位至含水层底板深度(m); h -为潜水层厚与动水位以下的含水层厚度的平均值(m)。
降雨入渗法涌水量计算
![降雨入渗法涌水量计算](https://img.taocdn.com/s3/m/046ec19d55270722192ef7f3.png)
二、涌水量的预测拟采用大气降水渗入量法对隧道进行涌水量计算1.大气降水渗入法(DK291+028-DK292+150段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.16;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2最大涌水量为:Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。
正常涌水量为:Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。
2. 大气降水渗入法(DK292+150-DK293+440段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.18;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2最大涌水量为:Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。
正常涌水量为:Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。
3.大气降水渗入法(DK293+440- DK293+870段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.12;W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
阿拉善盟平原地下水资源计算
![阿拉善盟平原地下水资源计算](https://img.taocdn.com/s3/m/e965433087c24028915fc3ee.png)
③河 道渗漏 补给量
采 用 水 文 分 析 法 ,利 用 水 文 测 站 径 流量 资 料进 行 计 算 。 计算公式为 :
阿 拉 善 盟 是 一 个 以 蒙 古族 为 主体 、 族 为 多 数 、 1 汉 由 6个 兄 弟 民族 组 成 的 多 民族 聚 居 区 ,0 7年 , 盟 总 人 口 27 0 20 全 13 0
地 表 水体 入 渗 补 给 量 由河 川 入 平 原 区 的 径 流 总 量 , 除 引提 扣 水量 和入 湖库 水 量 后 , 经 验 比例 系数 确 定 。 按
二、 平原 区地 下 水 资 源量 计 算
1 下 水 资源 计 算 面 积 的确 定 . 地
阿 拉 善 盟 地 下水 资 源 计 算 面 积 为 19 7 15 2平 方 公 里 , 其
生 态 建 设
S el t ii n h l aj a s g
阿拉善盟平原地下水资源计算
张 玉珍
( 阿拉 善 左 旗 水 利 队) 一、源自阿拉 善 盟 自然概 况
H 含 水 层 厚 度( 1 一 米 K 渗 透 系 数( 天 ) 一 米/
I 水 力 坡 度 一
阿拉 善 盟 位 于 内蒙 古 自治 区 西 部 ,地 理 坐 标 介 于东 经
人 。有 宜耕 土 地 3 0万 亩 , 有 水 浇 地 3 万 亩 ; 场 总 面 积 0 现 3 草
Q河 补 =Q上 一 ( Q下) - ) ( x 1 式 中 : 补 一 道 渗漏 补 给量 ( 方 米 / ) Q河 河 万立 年 Q上 , 下一 、 Q 上 下游 水 文 测 站 实 测水 量 (  ̄方 米 / T r Y 年)
B 计 算 剖 面长 度( 一 米)
水文地质参数的计算 降水入渗补给系数—概念
![水文地质参数的计算 降水入渗补给系数—概念](https://img.taocdn.com/s3/m/cfe70307227916888486d758.png)
0.33— 0.38
0.22— 0.18 0.16— 0.12 0.40— 0.28 0.29— 0.22 0.26— 0.18 0.15— 0.13
0.25— 0.23
0.16— 0.14 0.12— 0.10 0.24— 0.22 0.18— 0.16 0.14— 0.12 0.12— 0.11
在降水量稀少(降水入渗补给量甚微)、田 间灌溉入渗补给量基本上是地下水唯一补给 来源的干旱区,选取灌区地下水埋深大于潜 水蒸发极限埋深的计算时段(该时段内潜水 蒸发量可忽略不计),采用下式计算灌溉入 渗补给系数值
Q开 hF Q灌
h 为计算时段初地下水水位较高(或地下水埋深较小)时取
1.1 降水入渗补给系数—水均衡法
在浅层地下水开采强度大、地下水埋藏较深且已形成地 下水水位持续下降漏斗的平原区(又称超采区),可采用水量 平衡法及多元回归分析法推求降水入渗补给系数值。
1.1 降水入渗补给系数—经验值
分区 包气带岩性 中砂、粗砂 细砂、粉砂 冲洪积 平原区 粉土 粉质粘土 水位埋深(m) <2 0.28—0.30 0.26—0.28 0.14—0.23 0.11—0.16 2 —4 0.35—0.45 0.28—0.32 0.23—0.33 0.16—0.24 4—6 6 —8 0.30—0.35 0.28—0.30 0.28—0.25 0.18—0.16 >8
粘土
细砂、粉砂 冲湖积 平原及 滨海平原 粉土 粉质粘土 粘土
0.09—0.13
0.25—0.36 0.14—0.24 0.12—0.19 0.11—0.13
0.14—0.16
0.36—0.40 0.20—0.28 0.15—0.26 0.13—0.15
降水计算公式
![降水计算公式](https://img.taocdn.com/s3/m/99cee61102768e9950e73820.png)
一、潜水计算公式1、公式1Q kH S SR r r =-+-1366200.()lg()lg()式中: Q 为基坑涌水量(m 3/d);k 为渗透系数(m/d);H 为潜水含水层厚度(m); S 为水位降深(m);R 为引用影响半径(m);r 0为基坑半径(m)。
2、公式2Q kH S Sb r =--1366220.()lg()lg()式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m);S 为水位降深(m);b 为基坑中心距岸边的距离(m); r 0为基坑半径(m)。
3、公式3Q kH S Sb r b b b =--⎡⎣⎢⎢⎤⎦⎥⎥1366222012.()lg 'cos ()'ππ式中:Q 为基坑涌水量(m 3/d);k 为渗透系数(m/d);H 为潜水含水层厚度(m); S 为水位降深(m);b 1为基坑中心距A 河岸边的距离(m);b 2为基坑中心距B 河岸边的距离(m);b '=b 1+b 2; r 0为基坑半径(m)。
4、公式4Q kH S SR r r b r =-+-+1366220200.()lg()lg ('')式中: Q 为基坑涌水量(m 3/d);k 为渗透系数(m/d);H 为潜水含水层厚度(m); S 为水位降深(m);R 为引用影响半径(m);r 0为基坑半径(m);b ''为基坑中心至隔水边界的距离。
5、公式5Q kh h R r r h l l h r =-++--+--136610222000.lg lg(.)h H h -=+2式中:Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d);H 为潜水含水层厚度(m);R 为引用影响半径(m); r 0为基坑半径(m);l 为过滤器有效工作长度(m);h 为基坑动水位至含水层底板深度(m);h -为潜水层厚与动水位以下的含水层厚度的平均值(m)。
隧道涌水量计算表
![隧道涌水量计算表](https://img.taocdn.com/s3/m/3a1619f5102de2bd96058839.png)
工程名称
分段
起讫里程
降水入渗 多年平均降 隧道通过含水体地段 系数 水量(mm) 的集水面积(km2)
长度(m)
隧道正常涌水量
a
A1 A2
DK165+655 DK166+600 DK166+600 DK167+000
W
1434.61 1434.61
A
0.6 0.26
H
Qs
1179.25 511.01
0.50 0.50
945 400
合
3
计Байду номын сангаас
0.86
1345
2
1690.26
其中Qs:
当隧道通过潜水含水体且埋藏深度较浅时,可采用降水入渗法预测隧道正常涌水量。Qs=2.74a·W·A 隧道涌水量(m /d);a:降水入渗系数 ;W:多年平均降水量(mm);A:隧道通过含水体地段的集水面积(km )
根据隧道通过地段的年均降水量、最大降水量、集水面积并考虑地形地貌、植被、地质和水文地质条件选取合适的降 水入渗系数经验值,可以宏观、概略预测隧道正常涌水量和最大涌水量。
水文地质参数的计算综述
![水文地质参数的计算综述](https://img.taocdn.com/s3/m/b910ec8269dc5022abea0019.png)
0.33— 0.38
0.22— 0.18 0.16— 0.12 0.40— 0.28 0.29— 0.22 0.26— 0.18 0.15— 0.13
0.25— 0.23
0.16— 0.14 0.12— 0.10 0.24— 0.22 0.18— 0.16 0.14— 0.12 0.12— 0.11
1.4 灌溉入渗补给系数 —计算
根据野外灌溉试验资料,确定不同土壤岩 性、地下水埋深、次灌溉定额时的值 在缺乏地下水水位动态观测资料和有关试 验资料的地区,可采用降水前土壤含水量 较低、次降水量大致相当于次灌溉定额情 况下的次降水入渗补给系数值近似地代表 灌溉入渗补给系数值
ቤተ መጻሕፍቲ ባይዱ 1.4 灌溉入渗补给系数 —计算
在侧向径流较微弱、地下水埋藏较浅的平原区,可根
据降水后地下水水位升幅、变幅带相应埋深段给水度值 的乘积与降水量的关系计算值。计算公式为:
年
h次
P年
1.1 降水入渗补给系数—地中渗透仪
采用水均衡试验场地中渗透仪测定不同地下水埋深、岩性、 降水量的值,直观、快捷。但是,地中渗透仪测定的值是特定 的地下水埋深、岩性、降水量和植被条件下的 值,地中渗透 仪中地下水水位固定不变,与野外地下水水位随降水入渗而上 升的实际情况不同。因此,当将地中渗透仪测算的值移用到降 水入渗补给量均衡计算区时,要结合均衡计算区实际的地下水 埋深、岩性、降水量和植被条件,进行必要的修正。当地下水 埋深不大于2m时,地中渗透仪测得的值偏大较多,不宜使用。
在降水量稀少(降水入渗补给量甚微)、田 间灌溉入渗补给量基本上是地下水唯一补给 来源的干旱区,选取灌区地下水埋深大于潜 水蒸发极限埋深的计算时段(该时段内潜水 蒸发量可忽略不计),采用下式计算灌溉入 渗补给系数值
土壤水文学2下渗计算过程
![土壤水文学2下渗计算过程](https://img.taocdn.com/s3/m/45b5829355270722182ef730.png)
大多数的入滲公式都是描述土壤的入滲能力(infiltration capacity),一般常用的有霍顿公式、菲利普公式、格林-安
普公式以及美國水土保持局的入滲公式。
入渗量与入渗率
入渗量是入渗开始后一定时间内,通过地表单位面积 入渗到土壤中的总水量,通常用水深表示(mm):
L
F (t) (z, t) (z,0)dz
3. Green-Ampt模型
原理:
• Green-Ampt模型研究的 是初始干燥的土壤在薄层 积水时的入渗问题。基本 假定是,入渗时存在着明 确的水平湿润锋面,将湿 润的和未湿润的区域截然 分开。也可以说含水量 的分布呈阶梯状,湿润区 为饱和含水量s,湿润峰 前即为初始含水量i,如 图示。这种模型又称活塞 模型。
ln
f0 f
fc fc
累積入滲量Fp = itpo,且此 時之入滲率f = i,故可得
t po
1 ik
f0
i
fc
ln
f0 fc i fc
入滲公式修正
入滲公式所計算出之單位時間入滲
水量,称为入滲能力fp(t)。所以
f(t) = min [fp(t),i(t)]
例題5-5 已知土壤起始入滲率f0 = 5 cm/hr、稳定入滲率fc
5
0.4 3
1
e
3 t 60
F20
0.510 1.510
1 60
0.33
f 20
5 3.19 5
0.33 0 0.67 0
4.11
t
4.11
0.4
5
0.4e
3 60
t' 4.3min
k ttpo t
f fc fo fc e 60
降水计算公式之欧阳道创编
![降水计算公式之欧阳道创编](https://img.taocdn.com/s3/m/14593d6965ce0508763213fb.png)
一、潜水计算公式1、公式1式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);R为引用影响半径(m);为基坑半径(m)。
r2、公式2式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);b为基坑中心距岸边的距离(m);为基坑半径(m)。
r3、公式3式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);为基坑中心距A河岸边的距离(m);b1为基坑中心距B河岸边的距离(m);b2b'=b1+b2;为基坑半径(m)。
r4、公式4式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);R为引用影响半径(m);为基坑半径(m);rb''为基坑中心至隔水边界的距离。
5、公式5式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H 为潜水含水层厚度(m);R 为引用影响半径(m);r 0为基坑半径(m);l 为过滤器有效工作长度(m);h 为基坑动水位至含水层底板深度(m);h 为潜水层厚与动水位以下的含水层厚度的平均值(m)。
6、公式6式中:Q 为基坑涌水量(m 3/d);k 为渗透系数(m/d);r 0为基坑半径(m);S 为水位降深(m);l 为过滤器有效工作长度(m);b 为基坑中心距岸边的距离(m);m 为含水层底板到过滤器有效工作部分中点的长度。
7、公式7(1)、b>l(2)、b >l式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);为基坑半径(m);rS为水位降深(m);l为过滤器有效工作长度(m);b为基坑中心距岸边的距离(m)。
8、公式8式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);R为引用影响半径(m);为基坑半径(m);rb''为基坑中心至隔水边界的距离(m);为过滤器进水部分长度0.5处至静水位的距离(m);hsT为过滤器进水部分长度0.5处至含水层底板的距离(m);为不完整井阻力系数。
降水计算公式之欧阳家百创编
![降水计算公式之欧阳家百创编](https://img.taocdn.com/s3/m/c8e289b9b84ae45c3a358cce.png)
一、潜水计算公式欧阳家百(2021.03.07)1、公式1式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);R为引用影响半径(m);为基坑半径(m)。
r2、公式2式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);b为基坑中心距岸边的距离(m);为基坑半径(m)。
r3、公式3式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);为基坑中心距A河岸边的距离(m);b1为基坑中心距B河岸边的距离(m);b2b'=b1+b2;为基坑半径(m)。
r4、公式4式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);R为引用影响半径(m);为基坑半径(m);rb''为基坑中心至隔水边界的距离。
5、公式5式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);R为引用影响半径(m);为基坑半径(m);rl为过滤器有效工作长度(m);h 为基坑动水位至含水层底板深度(m);h 为潜水层厚与动水位以下的含水层厚度的平均值(m)。
6、公式6式中:Q 为基坑涌水量(m 3/d);k 为渗透系数(m/d);r 0为基坑半径(m); S 为水位降深(m);l 为过滤器有效工作长度(m);b 为基坑中心距岸边的距离(m);m 为含水层底板到过滤器有效工作部分中点的长度。
7、公式7(1)、b>l(2)、b >l式中:Q 为基坑涌水量(m 3/d);k 为渗透系数(m/d);r 0为基坑半径(m); S 为水位降深(m);l 为过滤器有效工作长度(m);b 为基坑中心距岸边的距离(m)。
8、公式8式中:Q为基坑涌水量(m3/d);k为渗透系数(m/d);H为潜水含水层厚度(m);S为水位降深(m);R为引用影响半径(m);为基坑半径(m);rb''为基坑中心至隔水边界的距离(m);为过滤器进水部分长度0.5处至静水位的距离(m);hsT为过滤器进水部分长度0.5处至含水层底板的距离(m); 为不完整井阻力系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩溶管道及巨大的溶 蚀裂隙,通常有效直 径以米计。径流方式 以管流为主。
张开的岩溶裂隙及各 级构造裂隙,通常有 效直径以分米计。径 流方式为混合流〔管 流~隙流〕。
0.50~ 0.80
0.30~ 0.50
0.60~0.40
0.40~ 0.20
微小岩溶裂隙、层间 裂隙、溶孔及成岩过 程中形成的各种原生 孔隙和缝隙等,有效 直径以厘米~毫米计 。径流方式以隙流为 主。
涌水量 α-降水入渗系数 W-年降水量 A-汇水面积
m3 Q=2.74*α*W*A 130.08
mm
km2
0.2
1826
0.13
表2 宜万铁路碳 酸盐岩降水入渗 系数、地下水涌
入系数表
地层
岩性
岩溶发育强 度
T1j〔嘉陵江组〕 T1d〔大冶组〕 P2c〔长兴组〕 P1q〔栖霞组〕 P1m〔茅口组〕 O1、O2+3、Є2+3
0.15~ 0.30
降水入渗系数α
0.01~0.10 0.10~0.15
0.15~0.20 0.20~0.50
灰岩、白云质灰 岩、白云岩、鲕 状灰岩及生物碎 屑灰岩
灰岩、含燧石灰 岩、瘤状灰岩、 生物碎屑灰岩
强烈发育 中等发育
C2、D3
泥质灰岩、 白云岩
(3)降水入渗系
数的经验数据:
当缺少观测、试
验资料时,可按
表3“降水入渗系
数α经验数据”近
似确定含水体的
降水入渗系数。
表3 降水入渗系
数α经验数据〔
《规程》表8.5.2
〕
岩层完整程度 降水入渗系数α
完整岩石 较完整岩石
0.01~0.10 0.10~0.15
弱发育
岩溶发育程 度
岩溶微弱发 育
岩溶弱发育
较破碎岩石
破碎岩石 极破碎岩石
0.15~0.18
0.18~0.20 0.20~0.25
岩溶中等发 育
岩溶强烈发 育
岩溶含水介质类型 及径流形式
地下水涌 降水入渗 入系 数