分析影响隧道围岩稳定性因素
隧道工程中的围岩稳定性分析
隧道工程中的围岩稳定性分析隧道工程是一项复杂而重要的工程,涉及到许多工程学科的知识。
其中一个关键的因素就是隧道围岩的稳定性。
围岩的稳定性对隧道的安全和可持续运营起着至关重要的作用。
因此,隧道工程中的围岩稳定性分析成为了工程师们研究和解决的难题。
隧道工程中的围岩稳定性分析可以分为岩石力学分析和数值模拟两个方面。
岩石力学分析是指通过实地勘探和采样,对隧道围岩的物理力学性质进行实验室测试,并通过理论计算和分析,了解围岩的强度、变形性能、破坏特性等。
这样可以为隧道设计提供关键的参数和参考依据。
进行岩石力学分析时,首先需要对围岩进行采样。
通过岩芯和地质面的观察,可以得到围岩的颜色、结构、岩石类型等基本信息。
然后,利用岩石工程力学测试,如拉伸试验、压缩试验等,确定围岩的强度和变形特性。
同时,还需要进行单轴和三轴剪切试验,以评估岩石的抗剪强度。
这些实验数据可以为后续的数值模拟提供基础。
数值模拟是利用计算机模拟隧道施工和运营过程中围岩的变形和破坏情况。
通过数值模拟,可以对围岩的稳定性进行全面准确的分析和预测。
在数值模拟中,主要采用有限元法进行计算。
首先,需要根据岩石力学分析得到的实验数据,建立围岩的材料模型和边界条件。
然后,将隧道建模,并将岩石材料模型应用于模拟中。
最后,对围岩施加负荷,通过计算机模拟围岩的变形和破坏情况。
在进行围岩稳定性分析时,需要考虑到许多因素。
其中,地下水是一个重要的因素。
地下水的存在会显著影响围岩的稳定性。
当隧道施工过程中遇到地下水时,要通过合理的抽水措施来控制地下水位,减少对围岩的影响。
此外,还要考虑到隧道周围的地质构造和应力状态等因素。
这些因素的综合分析和计算可以帮助工程师们确定围岩稳定性的状况,并制定相应的安全措施。
围岩稳定性分析的准确性对隧道工程的安全和可持续运营至关重要。
它可以帮助工程师们了解围岩的力学特性,预测围岩的变形和破坏情况,制定合理的施工方案和安全措施。
因此,在隧道工程中,围岩稳定性分析是一项必不可少的工作。
地铁隧道施工中的围岩稳定性分析
地铁隧道施工中的围岩稳定性分析地铁隧道作为现代城市交通系统的重要组成部分,其施工过程中的围岩稳定性分析是一项非常关键的工作。
围岩稳定性的好坏直接关系到隧道的安全性和使用寿命,因此对于地铁隧道的施工方来说,合理的围岩稳定性分析非常重要。
一、围岩特性分析在进行围岩稳定性分析之前,首先需要对围岩的特性进行分析。
围岩的特性包括岩性、结构、强度、稳定性等方面。
岩性可以分为软岩、硬岩等不同类型,而结构则包括岩体的裂缝、节理等特征。
这些特性对于围岩的稳定性具有重要影响。
二、应力环境分析地铁隧道施工中,围岩所承受的应力环境是很复杂的,包括地表荷载、地下水压力、地壳运动等多个方面。
在进行围岩稳定性分析时,需要充分考虑这些应力环境的影响。
例如,地表荷载会对围岩产生额外的压力,而地下水压力则可能导致围岩的软化和溶解。
因此,在分析围岩稳定性时需要考虑这些应力环境的综合影响。
三、工程地质调查与分析工程地质调查是进行围岩稳定性分析的基础,通过对地铁隧道所在地区的地质情况进行综合分析,可以更好地评估围岩的稳定性。
工程地质调查包括地层、地下水、岩土体等方面的调查。
这些数据可以为围岩稳定性的分析提供重要的依据。
四、围岩稳定性评价指标在对围岩稳定性进行分析时,需要根据具体情况选取合适的评价指标。
常用的评价指标包括有效应力、稳定性系数、岩体开挖应力等。
通过这些指标的分析,可以评估围岩的稳定性,并采取相应的支护措施。
五、围岩支护设计基于围岩稳定性的分析结果,需要进行围岩支护的设计。
根据不同的围岩特性和施工条件,可以选择不同的支护方式,如钢筋网片、喷射混凝土、锚杆等。
支护设计的目的是保证围岩的稳定性,防止隧道发生塌方等意外情况。
六、围岩监测与预警施工过程中,对围岩进行实时监测是非常重要的,通过监测实时了解围岩的变形和应力状态,可以及时采取措施进行处理。
围岩监测包括地下水位监测、应力监测、位移监测等多个方面,通过这些监测数据可以预测围岩的破坏程度,并及时进行预警。
隧道工程的围岩稳定性分析
隧道工程的围岩稳定性分析隧道工程是一项复杂而重要的工程项目,其中围岩的稳定性对于隧道的安全运行至关重要。
本文将对隧道工程中的围岩稳定性进行分析,并提出相关解决方案。
一、围岩稳定性的重要性围岩是指构成隧道周围墙壁的地质层,其稳定性是保证隧道工程安全运行的关键。
围岩的稳定性受到多种因素的影响,包括岩层的物理和力学性质、水文地质条件、地应力状态等。
二、围岩稳定性分析方法为了评估围岩的稳定性,我们可以采用以下几种分析方法:1. 岩体力学参数测试:通过现场采样和实验室测试,获取围岩的力学参数,如强度、刚度等。
这些参数的准确性对于稳定性分析非常重要。
2. 采用数值模拟方法:利用有限元或离散元等数值模拟方法,对围岩进行力学分析,预测其变形和破坏情况。
这种方法可以考虑多种力学因素,并得到相对准确的结果。
3. 实地观察和监测:利用现场观察和监测手段,对隧道的变形、裂缝、水渗等现象进行观察和记录。
这些观测数据可以为围岩稳定性评估提供重要依据。
三、围岩稳定性分析的影响因素围岩稳定性受到多种因素的影响,下面列举一些常见的影响因素:1. 地质情况:包括岩性、岩层结构、断裂和节理等。
不同的地质条件会对围岩的稳定性产生不同的影响。
2. 水文地质条件:地下水位、地下水流等因素对围岩的饱水状态和应力分布有着重要的影响。
3. 地下应力状态:地应力是指地层中存在的自重应力和外界荷载所引起的应力。
合理的地应力分析对于围岩稳定性评估至关重要。
4. 施工过程:隧道的施工过程中,如钻孔、爆破、掘进等操作会对围岩稳定性产生一定的影响,需要合理考虑。
四、围岩稳定性分析解决方案在进行围岩稳定性分析时,我们可以采用以下一些解决方案:1. 合理设计支护结构:通过合理的支护结构设计,可以有效地改善围岩的稳定性。
常用的支护方法包括锚杆支护、喷射混凝土衬砌等。
2. 注浆加固:在围岩中注入硬化材料,增加其强度和刚度,提高稳定性。
注浆加固是常用的围岩稳定措施之一。
隧道围岩变形与稳定性监测与控制
隧道围岩变形与稳定性监测与控制隧道建设是现代交通和城市发展的重要组成部分。
然而,隧道建设面临的一个主要问题就是围岩变形与稳定性监测与控制。
隧道围岩的变形不仅会导致工程安全问题,还会对周围环境产生一定的影响。
因此,对隧道围岩的变形与稳定性进行监测和控制是极为重要的。
一、隧道围岩变形的原因隧道围岩的变形主要受到以下几个因素的影响:1. 地质条件:不同地质条件下的围岩变形方式各有不同。
例如,在软弱土层中,围岩的变形主要表现为挤压和侧壁塌落;而在岩石中,围岩的变形则主要表现为岩体的断裂和滑移。
2. 施工方式:隧道的施工方式对围岩变形有直接的影响。
开挖方式、开挖速度、支护方法等都会对围岩产生不同程度的影响。
3. 地下水位:地下水位对围岩变形有很大的影响。
水压的存在会使围岩产生渗透变形,增加围岩的稳定性问题。
二、隧道围岩变形与稳定性监测为了确保隧道工程的安全性,必须对隧道围岩的变形与稳定性进行监测和预警。
隧道围岩变形与稳定性监测主要包括以下几个方面:1. 地质勘探:通过地质勘探,了解地下水位、地层岩性、构造特征等信息,为后续的监测和控制提供基础数据。
2. 监测仪器:利用各种现代化仪器和传感器对围岩的变形进行实时监测。
常用的仪器有变形仪、应力计、位移传感器等。
3. 隧道测量:通过隧道测量,获取隧道围岩的变形参数和变形速度,以便及时发现和解决变形问题。
4. 数据分析:通过对监测数据的分析,了解围岩变形的规律和趋势,为隧道工程的调整和支护提供科学依据。
三、隧道围岩变形与稳定性控制隧道围岩的变形与稳定性控制主要包括以下几个方面:1. 合理的施工方式:根据不同地质条件和隧道类型,选择合理的施工方法。
例如,在薄层软土地区,可以采用液压掘进机等非开挖方法,降低围岩变形的风险。
2. 针对性的支护措施:根据不同岩体和地层的特点,采取对应的支护措施。
例如,在岩石地层中,可以采用锚杆支护、喷射混凝土衬砌等方式,提高围岩的稳定性。
围岩稳定性的影响因素
围岩稳定性的影响因素一、地质因素的影响1.岩土体结构状态岩土体结构是在长时间的地质构造运动中形成的,是对围岩稳定性起主要作用的地质因素。
围岩的结构状态通常用其破碎程度或完整状态来表示。
原始状态的岩土体,在长期的地质构造运动的作用下,产生各种结构面、形变、错动、断裂等,趋于破碎,在不同程度上丧失了其原有的完整状态。
因此,结构状态的完整程度或破碎状态,可在一定程度上表征岩土体受地质构造运动作用的严重程度,对隧道围岩的稳定起着主导作用。
实践经验指出,在岩性相同的条件下,岩体越破碎,隧道就越易失稳。
因此在各种分级方法中,都把岩体的破碎程度作为基础指标。
岩体的完整状态或破碎程度有两个含义:一是构成岩体的岩块大小;二是这些岩块的组合形态。
前者一般采用裂隙的密集程度(裂隙率、裂隙间距、体裂隙率等)来表达,即结构面法线方向上单位长度内结构面的数目或结构面的平均间距,或采用单位体积中的裂隙数等;后者主要考虑构成岩体的完整状态的各种岩块的组合比例。
岩体结构状态的特征是相互联系的,构成了裂隙岩体的基本特性,是影响围岩分级的重要因素。
2.岩石的工程性质岩石的工程性质是多方面的,一般主要指岩石的强度或坚固性。
在岩体结构状态成为控制围岩稳定性的主要因素时,强调岩石强度意义是不大的。
例如,在碎块状岩体中,岩石强度再大也阻止不了隧道围岩的坍落。
但在较为完整的岩体结构中,如岩体具有整体的巨块状结构或大块状结构,岩石强度就具有一定的意义。
在这类围岩中,因裂隙少,结构面强度高,故岩石强度在一定程度上与岩体强度接近。
岩石强度在完整的岩体中是起主要作用的,此时岩石越硬,隧道越稳定。
完整岩体,一般都被认为是均质的连续介质。
隧道开挖后,围岩强度高,具有极大的稳定性,仅在个别情况下有局部的碎块、剥离现象。
在这种情况下进行理论分析,也是以岩石强度为依据。
此外,在判定某些裂隙岩体的强度时,也以岩石强度为基础。
在围岩分级中,岩石的坚固性或强度都以岩石的饱和单轴极限抗压强度为基准,这是因为它的试验方法简便,数据分散性小,且与其他物性指标有着良好的互换性。
断层倾角对隧道围岩稳定性影响研究
断层倾角对隧道围岩稳定性影响研究隧道是一种人工开凿的地下通道,常用于交通运输和供水等领域。
隧道工程的稳定性是保证隧道安全运营的重要因素之一。
而断层倾角是指地层中断层面与水平面的夹角,对隧道围岩稳定性有着重要影响。
本文将从断层倾角的定义、断层倾角对隧道围岩稳定性的影响机理、影响因素及优化措施等方面进行研究,以期为隧道工程的设计和施工提供参考。
一、断层倾角的定义断层是地壳中因地质构造活动而形成的裂隙面,其倾角是指断层面与水平面的夹角。
断层倾角的大小直接影响着断层活动性和隧道围岩的稳定性。
二、断层倾角对隧道围岩稳定性的影响机理1. 断层活动性:断层倾角越大,说明断层活动性越强,隧道围岩的稳定性越差,易发生断层滑动和断裂;2. 地应力分布:断层倾角的变化会引起地应力分布的不均匀,对围岩表面造成不同程度的压力作用,增大了围岩的应力集中程度;3. 拱效应:断层倾角较大的地质构造,会对隧道围岩产生压缩作用,形成一定的拱效应,增加了围岩的稳定性;4. 断层倾角会导致隧道围岩的非均质性增加,增加了围岩的裂隙和孔隙,对隧道围岩的稳定性产生不利影响。
三、影响断层倾角的因素1. 地壳构造:断层倾角与地壳构造紧密相关,不同类型的断层具有不同的倾角特点;2. 活动程度:断层的活动程度越强,断层倾角越大;3. 地层性质:地层的硬度、稳定性等特性会影响断层倾角的形成。
四、优化措施1. 断层勘探:在隧道设计前,需要进行详细的断层勘探工作,确定断层的倾角和活动性,为隧道设计提供准确的数据支持;2. 改变隧道布置:针对断层倾角较大的区域,可以适当调整隧道的布置,尽量避开断层影响范围;3. 增加支护措施:对于断层倾角较大的区域,可以采取加固措施,如增加钢筋混凝土衬砌厚度、设置锚杆等,提高围岩的稳定性;4. 断层活动监测:在隧道运营过程中,应对断层活动进行实时监测,一旦发现异常情况,及时采取相应措施,保证隧道的安全运行。
分析影响隧道围岩稳定性因素
文章编号:1004 5716(2003)05 59 02中图分类号:U451+ 2 文献标识码:B 分析影响隧道围岩稳定性因素习小华(西安科技学院,陕西西安710054)摘 要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。
关键词:围岩稳定性;天然应力状态;地质构造毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。
从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。
但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。
因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。
1 岩石性质及岩体的结构围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。
从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。
从围岩的完整性(围岩完整性可以用岩石质量指标RQ D、节理组数Jn、节理面粗糙程度Jy、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SR F八类因素进行定量分析)角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。
如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩)即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。
断层破碎带隧道围岩稳定性分析
碎 带施 工过 程进 行现 场监 控量 测 , 得到 了隧道洞 周 的变形 规律 , 推 导 了围岩 的弹性 、 弹塑性 二 次 、 三次
应 力状 态及 位移 状态 , 得 到 了径 向应力 与 切 向应 力 随 距洞 周距 离增 加 的 变 化 规律 . 孙星亮 、 侯 永会
1 围岩 稳 定 性 影 响 因素 分 析
第2 O卷
第 4期
兰 州 工业 学 院 学 报
J o u na r l o f L a n z h o u I n s t i t u t e o f T e c h n o l o g y
V0 1 . 2 0 No . 4
2 0 1 3年 8月
A u g . 2 0 1 3
.
断层 破碎 带 围岩 自稳 时 间短 , 经 常 出现坍 塌 、 冒
顶 等事 故 ] . 因此 , 断 层 破 碎带 隧道 开 挖 过 程 中的 围岩稳定 性 具有 重 要 的 理论 研 究 意 义 和 技 术 支 持 价值 , 是 岩土 工程 学科 的研 究重 点 和难 点之 一 . 目前 国 内外 很 多 学 者 都开 展 了针 对 由工 程 地
道 施 工过程 实施 了监 控 , 并采 用 回 归分析 的方 法预 测 了该 隧道 两 个 断 面的 最终 沉 降. 以该 隧道 为
原型, 基 于有 限元原理与岩体的弹塑性本构关 系, 采用A D I N A软件 , 建立 了有限元模 型并进行 了
隧道 开挖过 程 的模拟 计 算并预 测 了最终沉 降. 模 拟 计 算 结果 表 明 : 隧道 开挖 过程 中最 大 垂 直位 移
始终位 于拱 顸 , 上 台阶 左侧及 上 台阶 右侧 土体 开挖后 , 拱 顶下 沉及 周边 收敛速 率增 大. 现 场监 测 结
隧道洞口段围岩的稳定性分析
1尖点突变模型 隧道洞口段松散围岩在正常的围岩压力作用下,其变形一般具有渐 变特征。若开挖导致掌子面和洞顶临空,掌子面和洞顶围岩就会因一时无 法适应应力重分布的较大调整,发生剪切和压裂破坏。加之支护不及时, 会从掌子面失稳和洞顶局部坍落相结合的破坏形式,转换成以洞顶大面 积坍塌为主的破坏形式。换言之,围岩变形会由相对稳定的渐变状态变为 失稳扩展状态。可见,隧道洞口段松散围岩失稳具有突变特征,因此,可借 助突变理论研究隧道洞口段松散围岩的稳定性。鉴于尖点突变模型的临 界曲面容易构造,几何直观性强,本文采用尖点突变模型研究洞口段围岩 稳定性,其势函数为
平衡曲面根的判别式为
∆=8u3 + 27v2(3)
该式是判断系统稳定性的主要判据。 尖点突变模型的分叉集为 8u3 + 27v2 = 0(4) 根据该式可以进一口松散围岩段的塌方概况 2.1塌方工程 张 德 沟 隧 道 按 单 向 行 车 双 车 道 分 离 式 设 计 ,左 线 起 讫 桩 号 Z K 2 8 + 6 2 4 ~ Z K 2 9 + 7 1 5 ,最 大 埋 深 为 1 9 0 . 8 9 m 。隧 道 左 线 出 洞 口 段 ZK29+675~ZK29+715,长度为40m,位于斜坡地带,坡高约30.0~40.0m,斜 坡自然坡度约45°,出露岩性主要为含砾粉质粘土,局部基岩出露,基本 无汇水条件。根据设计资料显示:该段为Ⅴ级围岩复合式衬砌,地层大致 分为两层:隧道上覆第四系全新统坡积(Q4dl)碎石土,呈灰褐色-褐黄色、 稍湿、稍密、土质结构不均,含大量风化岩碎块;下地层为强~中风化闪长 岩,节理裂隙发育,岩体破碎,基本呈镶嵌破裂状态。 隧道左线洞口段采用环形开挖预留核心土法施工,每循环进尺1m, 初期支护采用锚网喷联合支护形式。当掌子面掘进至ZK29+708时,洞顶 出现掉块,随着时间的推移,洞顶掉块并迅速发展为垮塌,向前延伸至 ZK29+711,向后延伸至ZK30+705。观察到在ZK29+705~ZK29+711段洞顶上 方形成一个近似漏斗状的塌陷坑,向坑内观察,塌陷坑侧壁周围土体极为 松散,坑内可见诸多折断的钢筋网。 2.2塌方特征及影响因素 (1)塌方特征 此次塌方表现出显著的特征:①属于洞口浅埋段贯穿型塌方,具有连带 性,在掌子面前后均有塌方,且掌子面后的“锚+网+喷”初期支护被严重破坏; ②地表形成“漏斗”状的塌陷坑;③塌方稳定后,出洞口仰坡坡度接近80°。 (2)塌方影响因素分析 根据张德沟隧道左线洞口段的工程地质条件及现场的施工条件,分 析认为影响塌方的客观因素是洞口段特殊的地质条件,即洞口段的埋深 浅,上覆较厚的全风化闪长岩和含砾粉质黏土,岩体呈镶嵌破裂状;主观 因素是开挖进尺过大,掌子面上部开挖后支护不及时,导致掌子面、洞顶、 侧壁围岩失稳。 3隧道洞口段尖点突变模型 3.1力学模型 隧道围岩体在未开挖扰动的情况下,围岩处于三轴应力状态下,出洞口 段软弱围岩处于相对稳定平衡状态。在开挖作用下,浅埋洞口段松散岩体 因无法适应应力重分布的较大调整而发生压裂破坏,软弱围岩存在下滑趋 势。这是在隧道施工中常遇到的情况,会引发拱顶大范围的坍落甚至冒顶。 图1为顶板围岩简化后的三铰链结构,图中p为上覆松散层对拱顶的 均布压力,Qc为简化后中间岩柱对拱顶围岩稳定性的贡献,θ为三铰链结 构中斜杆与水平方向的夹角。
爆破施工对隧道围岩的稳定性影响分析
爆破施工对隧道围岩的稳定性影响分析摘要:隧道钻爆施工技术在城市山区隧道中应用,可以有效加速施工进度,控制施工成本。
但受周边环境影响,爆破施工对隧道围岩的影响日益突出,特别是爆破振动和爆破应力波的影响已成为制约爆破开挖的主要因素。
关键词:爆破;隧道;围岩;稳定性;爆炸1.隧道开挖爆破产生的破坏和扰动1.爆破的内部作用(1)扩大空腔。
即爆炸使炮孔周围产生破坏,破变大。
(2)压碎区。
又称压缩区,即直接与药包接触的岩石,在爆炸发生后,爆炸产生的爆轰压力激发了在岩石中传播的冲击波,冲击波的强度远远大于岩石的动抗压强度。
使岩石破碎或形成压缩空洞。
(3)破裂区。
即冲击波在通过压碎区后,强度变小,以致于低于岩石的动抗压强度,无法直接造成岩石的破碎。
这种低于岩石动抗压强度的波称为压缩波。
压缩波在压碎区外围的岩石中传播,引起切向拉应力,使得外围的岩石产生径向裂缝。
同时压缩波还会使外围岩石压缩,岩石的应力释放,出现环向裂缝。
径向环向的交互作用,使得岩石被割据成块。
(4)振动区。
在破裂区外围的岩石,应力波强度无法使岩石产生破坏。
但是,这些应力波会产生岩石的弹性振动。
1.2爆破的外部作用外部作用与内部作用相对立。
当药包的中心与自由面的垂直距离低于临界值,则爆炸后,爆炸的破坏作用能到达自由面,造成自由面附近的岩石破坏。
主要从以下几点讨论外部作用。
(1)爆炸产生的冲击波或者应力波在到达自由面后,会发生发射,反射波与入射波相反。
反射波则为拉力波,使得岩石被拉断。
导致岩石从自由面向内部破碎。
(2)自由面反射回来的拉伸波,与裂缝端口处的应力场相互叠加,导致裂缝的延伸。
(3)岩石中的准静态应力场被改变。
使得岩石在自由面方向受到剪切破坏更加容易。
1.隧道围岩应力状态在隧道爆破开挖过程中,爆破冲击荷载使岩体中的细小结构缺陷(如微裂缝、微孔隙等)扩展为宏观裂缝,导致岩体本身的力学性能下降,结构劣化。
同时,爆破和开挖等工程力量破坏了岩体的初始地应力场,导致岩体中的应力重新分布。
海底隧道围岩稳定性分析现状及方法
海底隧道围岩稳定性分析现状及方法摘要:随着经济的快速发展,我国正处于隧道建设的高潮时期,在隧道建设上我国每年都投入大量的人力、物力和财力,这就迫切需要实现隧道建设高效与经济。
隧道施工过程中,洞室周围岩体发生应力重新分布,当这种重新分布应力超过围岩的强度极限时,将会造成围岩的失稳破坏,因此隧道施工过程中洞室围岩稳定性评价与受力状态研究就显得日益重要。
关键词:隧道;围岩;稳定性1隧道围岩稳定性影响因素分析现状1.1地质结构地质结构是多因素的综合影响,其中软弱结构面是影响隧道围岩稳定的一个重要因素,所谓软弱结构面是指相对发育软弱的结构面,即张开度较大,充填物较差,成组性好,规模较大,有利于滑移的优势方位的结构面。
由于结构面产状不同,与洞轴线的组合关系不同,对隧道工程围岩稳定的影响程度亦不相同。
这些结构面是岩体中的薄弱部位,它们的力学强度较低因此,岩体软弱结构面分布状况经常是围岩稳定与否的控制性因素。
1.2地应力水平围岩地应力因素对隧道工程围岩稳定性的影响是众所周知的,特别是高初始应力的存在。
岩石强度与初始应力之比(rc/σmax)大于一定值时,可以认为对洞室围岩稳定不起控制作用,当这个比值小于一定值时,再加上洞室周边应力集中结果,对围岩稳定性或变形破坏的影响表现就显著了。
海底隧道由于其处于海底,围岩前期固结压力较大,岩体在海水压力和自重应力下已经固结,海水压力即使是浅海地区也有几百千帕,对于海底软岩或是含软弱结构面的岩体,岩石强度较低,rc/σmax值较小,隧道拱底两侧会发生严重的应力集中现象,此外弱层内部会出现较大面积的塑性区。
1.3地下水地下水的存在及活动使它在隧道周围产生水利学的、力学的、物理和化学的作用几乎总是不利于洞室的稳定。
这种不利的作用大致体现在三个方面:①由于洞室开挖,地下水有了新的排泄通道,因此在洞周会产生渗压梯度。
而且经常是不对称指向洞内的附加体积力,增加了周围岩石向洞内的挤压力;②润滑作用。
隧道围岩稳定性的各类因素分析
隧道围岩稳定性的各类因素分析1、芭蕉隧道工程概况芭蕉隧址区位于汉江流域―任河北侧的陡峻山地中,山顶海拔高度在900m 左右,任河谷底高程为310m~629 m,切割深度为500m~600m,属中切割的中低山区。
山体斜坡坡度多在45°~55°,斜坡沟谷处坡度在55°~65。
ZK272+225~ZK272+249段进行了变更后的施工,然而施工至里程ZK272+238处时,掌子面再次出现塌方,塌方涌出大量粒状或粉状物,含水量高,且已经施工的ZK272+225~ZK272+238段出现了不同程度的变形,存在很大的安全隐患。
因而需要对ZK272+225~ZK272+249进行进一步的加强支护。
2、芭蕉隧道稳定性分析方法2.1工程地质类比法在对拟建的隧道围岩稳定性进行分析时,可参考已建工程,对其地质条件,岩体类型及相关的监测资料进行对比分析,从而对拟建的工程稳定性进行判断。
目前这种方法较为成熟,已形成多种围岩分类标准,可以根据不同的围岩形式确定出支护衬砌的厚度和形式。
2.2力学分析法自从人们对围岩稳定性的研究开始,对其的力学研究一直处于不断进步的过程,主要经历了从古典压力理论、散体压力理论以及发展到现在更为先进的弹性、塑性力学理论。
隧道开挖之后,因改变了岩体之间原有的受力状态,使得围岩内部受力重新分布,并有可能出现应力集中的不利状态,因此需对其受力状态进行受力分析,如果围岩所受的应力均小于岩体的弹性极限强度,则围岩稳定,处于弹性状态,而当围岩部分受力超出其受力状态时,使得处于弹塑性状态,会因围岩受力不均匀而使得围岩发生部分坍塌,因此需对围岩进行弹塑性进行分析。
2.3芭蕉隧道不良地质判定方法芭蕉隧道ZK272+225~ZK272+249段虽然进行了变更施工,但仍在ZK272+238处发生了塌方事故,因而表明变更后的施工工艺仍不能保持围岩稳定性的要求,必须采取更严格的措施。
对于芭蕉隧道的地址判定我们应该采用工程地質类比法和力学分析法相结合,隧道开挖之后的岩体之间原有的受力状态进行改变,因此需对其受力状态进行受力分析,在对地址进行严格勘测,这样也就能够更好的提高隧道的稳定性。
复杂岩体中隧道施工引起的地应力重分布及其对围岩稳定性的影响
复杂岩体中隧道施工引起的地应力重分布及其对围岩稳定性的影响摘要随着地下空间利用的不断深入,隧道施工在现代城市和交通基础设施建设中变得越来越重要。
然而,复杂岩体中隧道施工所引起的地应力重分布对围岩的稳定性产生了深远影响。
本论文旨在研究复杂岩体中隧道施工引起的地应力重分布现象,并分析其对围岩稳定性的影响机制。
通过分析现有文献和实际工程案例,我们探讨了地应力重分布的成因、影响范围以及可能导致的围岩失稳机制。
研究发现,复杂地质条件下,隧道施工会导致地应力分布发生显著变化,进而引发围岩的开裂、变形甚至坍塌。
为了有效应对这一问题,合理的支护设计和施工方法显得尤为重要。
因此,我们还讨论了针对复杂岩体的隧道施工中应采取的支护措施,并提出了优化围岩稳定性的建议,以确保隧道施工的安全性和可持续性。
关键词:复杂岩体、隧道施工、地应力重分布、围岩稳定性、支护措施一、引言随着城市化进程的不断推进,地下空间的利用成为缓解城市交通、储存能源等问题的有效手段。
隧道作为地下交通和通信设施的重要组成部分,在现代城市基础设施建设中占据重要地位。
然而,隧道施工所面临的地质条件千差万别,尤其是复杂岩体中的隧道施工,往往面临着地应力的显著变化,进而对围岩稳定性造成影响。
二、地应力重分布的成因地应力重分布是指隧道施工过程中,由于开挖活动导致原有的地应力分布发生变化,进而影响周围围岩的稳定性。
复杂岩体中隧道施工引起的地应力重分布主要由以下几个因素导致:2.1 岩体应力状态变化隧道开挖过程中,岩体受到应力释放。
原本处于地壳深部的岩体,在受到开挖活动影响后,受到的应力得到部分释放。
这导致了原有的地应力分布受到破坏,周围围岩会逐渐调整其应力状态,以达到新的平衡状态。
这种应力状态的变化可能导致围岩的开裂、变形和失稳。
2.2 隧道开挖对地应力场的干扰隧道的开挖会对周围岩体的地应力场产生直接的干扰。
开挖活动使得原本相对稳定的地应力场发生改变,出现应力的聚集或分散现象。
关于大洞径隧洞围岩稳定性分析
关于大洞径隧洞围岩稳定性分析摘要:随着我国经济的不断发展,社会进程的日益加快,我国的隧道开挖工程也得到了充分的发展空间。
然而,在我国社会主义现代化建设工作的要求下,大洞径隧洞的需求量也愈来愈大,这就带给了隧道开挖企业以巨大的压力:在我国现今的地质条件下,大洞径隧洞的开挖过程中存在的许多的变量,如岩土自身特性的不确定性,天气的不确定性以及地质的多变性都严重地影响了大洞径隧洞的开挖工作的开展,且洞径愈大,变量也随之而愈大。
因此,如何有效控制大洞径隧洞开挖过程中的变量已经成为了现今每一个隧道开挖企业都极为重视的一个问题了。
本文将通过对围岩的稳定性进行全方位的分析,来达到提高开挖人员对大洞径隧洞开挖过程中的变量控制工作力度的目的。
关键词:大洞径隧洞;稳定性;岩土特性中图分类号: tv554 文献标识码: a 文章编号:1、围岩稳定性分析在大洞径隧洞开挖过程中的意义围岩的稳定性是影响着整个大洞径隧洞开挖成效的一个主要因素:就我国目前的开挖技术来说,围岩的稳定性在开挖的过程中并没有能够得到有效的控制,这就意味着工程实施企业必须从其它的方面来弥补对围岩的稳定性不足的问题。
而在我国现今的地质条件下,大洞径隧洞开挖工程已经成为了一项存在变量极多的工程了,每一项工作的开展都会影响着整个大洞径隧洞开挖工程的进度及质量,这就要求各项工作的开展都必须具有一定的针对性,且必须能够协调好各个阶段与各个阶段、各项工作与各项工作之间的关系,尤其是在地质结构愈发复杂,开挖技术对地质结构的破坏不断加大,且大洞径隧洞本身所具有的岩土多样化等工程环境下,工程开展过程中各项工作的衔接更是尤为重要的。
这对工程管理人员来说,是一个考验,也是一个入职的条件:任何的管理工作是具有针对性和系统性的。
要想成为一个合格的工程管理人员,就必须在管理的过程中凸显出管理工作的系统性及针对性,从根本上确保对工程全局的控制。
而针对围岩的稳定性弥补来说,工程管理人员要突显出对其的管理工作的针对性和系统性,则必须对围岩的稳定性进行全方位的分析,就稳定性分析结果出发,制定出一系列的保障措施,从实效上实现对围岩稳定性的有效控制。
隧道开挖围岩稳定性分析
Sui dao kai wa wei yan wen ding xing fen xi
隧道开挖围岩稳定性分析
唐春琴
一、地形地貌 某隧道所在区海拔高程介于 93.05m ~ 640.1m 之间, 相对高差 547.05m,地层岩性主要为侏罗系中统自流井 组(J2z)、(J2z)及沙溪庙组侏罗系下统三叠系上统香溪 群(T3-J1x),岩性以砂岩、泥岩、砂质泥岩、粉砂岩, 局部夹薄层炭质页岩和炭质泥岩。
5-7 2.5-5 1.6-3.2 中等
<5 >5 >3.2 严重
>11 <1 <0.6 变形小
7-11 1-2.5 0.6-1.6 轻微 477 18.08 13.11 12.64 1.43 1.04
5-7 2.5-5 1.6-3.2 中等
<5 >5 >3.2 严重
单元层代号 <1-3> <1-3>
二、软弱岩组稳定性
1. 软弱岩组工程地质特性
岩石的单轴抗压强度小于 30MPa 的岩层称为软岩,
软弱岩层是指强度低、孔隙度差、胶结程度大、受结构面
切割及风化影响显著。在隧道围岩压力的作用下产生显著
变形的工程岩体。软岩隧道围岩强度低,结构松软,易吸
水膨胀,因而围岩隧道变形大。隧道围岩含有大量的软弱
岩组如表 1。
2. 软弱岩组围岩变形分析
关于围岩是否会发生大变形以及变形量有多大,在有
支护压力、原地应力作用下隧道围岩的相对变形和掌子面
变形预测公式,计算公式如下 : εt(%)=0.15(1-pi/po)(σcm/Po)-(3Pi/Po+1)/(3.8Pi/Po+0.54)
现代化背景下隧道围岩稳定性影响因素浅析
现代化背景下隧道围岩稳定性影响因素浅析摘要由于隧道工程自身优势,隧道工程建设数量日益增多。
隧道空间是依靠围岩而成的,因而围岩稳定性对于隧道施工具有非常重要的影响。
影响围岩稳定性的因素很多,根据隧道工程实际施工经验,总结了影响围岩稳定性的多个因素,针对每个因素对隧道的影响做了具体阐述,为隧道工程施工和隧道设计提供了重要参考依据。
关键词围岩;状态;岩石;施工目前,我国经济建设速度突飞猛进,隧道工程以它自身的优越性越发得到人们的认可,国内外各大城市均大量地进行隧道工程建设。
公路隧道、水底隧道、城市道路隧道、铁路隧道等隧道工程在日益增多。
围岩稳定性对于隧道工程具有十分重要的影响,影响围岩稳定性因素越来越受到广大学者的重视。
影响围岩稳定性的因素归纳起来主要有两类,一类是地质状态,包括岩体的基本特征、结构状态、地下水状态、岩体强度及初始应力状态。
另一类是人为因素,包括施工方法、断面形式,支护结构形式等。
1 地质结构1.1 围岩完整状态围岩完整状态,即围岩破碎程度,包括两个方面,一是岩体岩块大小,二是构成这些岩块所处状态。
围岩破碎程度越差,隧道結构就越不稳定。
结构岩体在不同工程地质条件下,就会形成稳定、次稳定或不稳定的围岩。
目前,为了便于判断围岩的完整状态,大连海事大学道桥所研究所推出了完整性系数(Kv)与岩体体积节理数(Jv),完整性系数定性的确定方式参考表1。
1.2 岩石本身强度隧道所处位置的围岩性质是决定围岩稳定性的重要因素。
如果在较大块岩体中,结构面强度较高,裂隙较少,岩石与岩体强度比较接近,这时,岩石越硬、则其强度就会越高,围岩状态也就会越稳定。
隧道结构经常会出现一些岩溶、蠕变、大变形、湿陷性以及水膨胀等问题,这些失稳现象是与岩性密切相关的[1]。
1.3 初始应力状态岩体的初始应力主要是由岩体的自重和地质构造运动所引起的。
在岩体中进行开挖以后,改变了岩体的初始应力状态,使岩体中的应力重新分布,引起岩体变形,甚至破坏。
隧道围岩破坏机理分析
隧道围岩破坏机理分析本文叙述了隧道围岩出现破坏的影响因素及破坏类型,并分析对破坏的力学机理进行了分析。
标签:隧道围岩;影响因素;破坏类型;机理分析1 影响隧道围岩稳定的地质环境隧道在开挖之前,岩体处于一定的应力平衡状态,开挖使隧道围岩发生卸荷回弹和应力重分布[1]。
如果围岩足够强固,不会因卸荷回弹和应力状态的变化而发生显著的变形和破坏,那么开挖出的隧道就不需要采取任何加固措施而能保持稳定。
但是有时或因隧道围岩应力状态的变化大,或因岩体强度低,以致围岩适应不了回弹应力和重分布的应力的作用而丧失其稳定性。
此时,如果不加固或者虽然加固但未保证其质量,都会引起隧道围岩的破坏,对隧道的施工和營运造成危害。
在国内外的隧道建筑史上,这样的事故屡见不鲜。
影响隧道围岩稳定性的地质环境因素大体上可分为两大类:一类是内在因素;一类是外部环境,内在因素是影响隧道围岩稳定的基本的决定性的因素,主要包括:围岩初始应力场状态、围岩的结构状态、岩石的基本性质和地下水状态等。
外部环境是通过内在因素的作用而起作用的,主要包括:施工方法、支护措施、隧道的形状和尺寸及隧道的埋深等[2]。
1.1内在因素的影响(1)围岩的初始应力状态在围岩范围内,隧道周边具有最为不利的应力条件(在平面应力场中处于应力差最大的单向应力状态)。
隧道开挖后,只要洞壁各点的应力均未超过能够导致岩体破坏的临界值,则整个围岩就能够稳定;相反,任何围岩的破坏必将首先从隧洞周边开始,然后沿半径方向向岩体内部发展。
因此,研究隧道周边应力的集中规律和特点,对评价围岩的稳定性具有十分重要的意义。
(2)围岩的岩性及结构围岩的岩性和结构,重要是通过围岩的强度来影响隧道围岩的稳定性的。
从岩性角度,可以将围岩分为塑性围岩和脆性围岩两大类。
塑性围岩对隧道围岩的稳定性最为不利。
脆性围岩中,破碎结构的稳定性最差,薄层状结构次之,而厚层状及块状岩体则通常具有很高的稳定性。
围岩的结构状态通常用其破碎程度或完整状态来表示。
隧道施工中的围岩稳定性分析与处理
隧道施工中的围岩稳定性分析与处理隧道施工是一项复杂而又具有挑战性的工程,而隧道围岩的稳定性是确保隧道施工顺利进行的关键。
本文将从围岩的性质和特点、围岩稳定性分析方法以及围岩处理方法等方面探讨隧道施工中的围岩稳定性问题。
围岩的性质和特点对于隧道施工的稳定性至关重要。
围岩由各种类型的岩层组成,例如花岗岩、辉石岩等。
这些岩层具有不同的物理和力学性质,如硬度、强度、稳定性等。
此外,围岩的结构也非常复杂,其中可能存在节理、褶皱、断层等地质构造。
这些特点决定了围岩在隧道施工中的行为和稳定性。
在隧道施工前,我们需要进行围岩稳定性分析,以了解围岩的性质和行为,为施工提供科学的依据。
其中一种常用的方法是岩体分类。
通过对围岩性质进行调查和实验,我们可以将围岩划分成不同的等级,例如稳定等级、控制等级等。
这可以帮助我们确定需要采取的措施以及施工中可能面临的风险。
另一种常用的方法是地质雷达探测。
地质雷达可以通过发送无线电波,并测量其反射信号来探测围岩内的隐蔽结构和裂缝。
这可以帮助我们了解围岩的内部情况,以及可能的不稳定因素,如地下水位、断层、岩石裂缝等。
通过这些信息,我们可以更好地预测围岩可能面临的挑战和风险。
一旦了解了围岩的特点和施工中可能遇到的问题,我们可以采取相应的围岩处理方法来保证施工的安全和稳定。
例如,在围岩较为稳定的情况下,我们可以选择使用钻孔爆破的方法,通过控制爆破的强度和方向来破坏围岩,提供施工的空间。
在围岩较不稳定的情况下,我们可以选择使用支护技术,例如喷射混凝土、锚杆以及岩锚等。
这些措施可以增强围岩的稳定性,并防止围岩的坍塌和塌方。
此外,我们还可以采用地下水控制技术来处理围岩稳定性问题。
地下水是围岩稳定性的重要因素之一,过高的地下水位有可能导致围岩变软和溶解。
通过合适的排水和防水措施,我们可以有效地控制地下水位,从而降低围岩的水分含量,提高围岩的稳定性。
总之,隧道施工中的围岩稳定性是一项复杂而又重要的问题。
隧道工程--(5)
2
0.75~0.55 0.55~0.35 0.35~0.15
<0.15
完整性
完整
较完整
破碎
较破碎
极破碎
● 岩石质量指标(RQD):是综合反映岩体的强度和岩
体的破碎程度的指标。所谓岩石质量指标是指钻探时 岩心复原率,或称为岩芯采取率,即: RQD(%) = 10cm以上岩芯累计长度 × 100 单位钻孔长度 岩石质量指标分级认为: RQD > 90% 为优质; 75% < RQD < 90% 为良好; 50% < RQD < 75% 为好; 25% < RQD < 50% 为差; RQD < 25% 为很差
● 复合指标是一种用两个或两个以上的岩性指标或综合岩
性指标所表示的复合性指标。具有代表性的复合指标分级, 是巴顿N.Barton 等人提出的岩体质量-Q指标,即:
Q =( RQD/ Jh)( Jr/Ja)( Jw / SRF)
RQD:岩石质量指标; Jh:节理组数目,岩体愈破碎,Jh取值愈大; Jr:节理粗糙度,节理愈光滑,Jr取值愈小; Ja:节理蚀变值,蚀变愈严重,Ja取值愈大, Jw:节理含水折减系数,节理渗水量愈大,水压愈高,Jw 取值愈小, SRF:应力折减系数,围岩初始应力愈高,SRF取值愈大
地下水 在公路隧道围岩的分级中,遇有地下水时,一般的处 理采用降级的方法 ①整体的硬质岩石中,一般的地下水对其稳定性影响 不大,不考虑降级; ②块状硬质岩和整体软质岩中,地下水将影响其稳定 性,产生局部坍塌,或软化软弱结构面,围岩分级时一般 可酌情降低1级; ③碎石状松散结构的岩体中,裂隙中有泥质充填物, 地下水对稳定性影响很大,可根据地下水的性质、水量、 渗流条件、动水和静水压力等情况,判断其对围岩的危害 程度,可降低1~2级;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析影响隧道围岩稳定性因素
习小华
摘要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。
关键词:围岩稳定性;天然应力状态;地质构造
毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。
从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。
但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。
因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。
1 岩石性质及岩体的结构
围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。
从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。
从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。
如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。
这种情况下,围岩岩性对围岩的稳定性的影响是很微弱的,即一般是稳定的,可以不采取支护,能适应各种断面形状及尺寸的隧道。
如果隧道围岩的整体性质差、强度低,节理裂隙发育或围岩破碎(如塑性围岩)即围岩为破碎、较破碎或极破碎,则围岩的二次应力会产生较大的塑性变形或破坏区域,同时节理裂隙间的岩层错动会使滑移变形增大,势必给围岩的稳定带来重大的影响,不利于隧道洞室稳定;软硬相间的岩体,由于其中软岩层强度低,有的因层间错动成为软弱围岩而对围岩的稳定性不利。
从岩体的结构角度,可将岩体结构划分为整体块状结构(整体结构和块状结构) 、层状结构(薄层状结构和厚层状结构) 、碎裂结构(构镶嵌结构和层状碎裂结构) 、散体结构(破碎结构和松散结构) 。
松散结构及破碎结构岩体的稳定性最差;薄层状结构岩体次之;厚层状块体最好。
对于脆性的厚层状和块状岩体,其强度主要受软弱结构面的分布特点和较弱夹层的物质成分所控制,结构面对围岩的影响,不仅取决于结构面的本身特征,还与结构面的组合关系及这种组合与临空面的交切关系密切相关。
一般情况下,当结构面的倾角≤30°时,就会出现不利于围岩稳定的分离体,特别是当分离体的尺寸小于隧道洞跨径时,就有可能向洞内产生滑移,造成局部失稳;当倾角> 30°时,将不会出现不利于围岩稳定性的分离体。
而软弱夹层对围岩稳定性的影响主要取决于它的性状和分布。
一般认为软弱夹层的矿物成分、粗细颗粒含量、含水量、易溶盐和有机质等的含量是决定其性质的主要因素,对不同类型的软弱夹层,这些因素是不大相同的。
由于软弱夹层的抗强度较低,故它不利与隧道围岩的稳定。
围岩岩体的变形和破坏的形式特点,不仅与岩体内的初始应力状态和隧道形状有关,而且还与围岩的岩性及岩体结构有关,但主要的是和围岩的岩性及结构有关(见表1) 。
表1 围岩的变形破坏的形式及其与岩石性质及结构的关系
2 岩体的天然应力状态
岩体的天然应力是岩体的自重应力、构造应力、变异及残余应力在某一个具体地区以特定方式作用的结果。
已经有大量的实践资料证明,大多数地区的岩体的天然应力状态是以水平方向为主的即水平应力通常大于垂直应力。
一般情况下,隧道轴向与水平主应力垂直,以改善隧道周边的应力状态。
但水平应力很大时,则隧道方向最好与之平行以保证边墙的稳定性。
然而,岩体的天然应力对隧道的影响主要取决于垂直于隧道轴向水平应力的大小与天然应力的比值(ζ) ,它们是围岩内应力重分布状态的主要因素。
例如,圆形隧道,当ζ= 1 时,围岩中不会出现拉应力集中,压应力分布也比较均匀,围岩稳定性最好;当ζ≤1/ 3 时围岩出现拉应力,压应力集中也较大,对围岩稳定不利。
最大天然主应力的数量级及隧道轴向的关系,对隧道围岩的变形特征有明显的影响,因为最大主应力方向围岩破坏的概率及严重程度比其它方向大。
因此,估算这种应力的大小并设法消除或利用非常重要的。
3 地质构造
褶曲和断裂破坏了岩层的完整性降低了岩体的力学强度,一般来说,岩体经受的构造变动的次数愈多,愈强烈,岩层的节理裂隙就愈发育,岩体的稳定性也就愈差。
例如围岩岩石强度不等的坚硬和软弱岩层相间的岩体在构造变动中,坚硬和软弱岩层常会在接触处发生触动,形成厚度不等的层间破碎带,极大的破坏了岩体的完整性。
由于隧道通过坚硬和软弱相间层状岩体时,易在接触面处发生变形或塌落,因此,隧道应尽可能避免设在坚硬和软弱岩层之间的岩层破碎带、褶皱或断层带;在无法避免的情况下,隧道应尽量设在坚硬岩层中,或尽量把坚硬岩层作为顶层围岩。
褶皱的形式、疏密程度、轴向与隧道轴线的交角不同,围岩的稳定性不同,这是由于褶皱的核部岩层受到强烈的张力和压力的作用,故核部的岩层就比翼部的岩层破碎的多,因此,隧道横穿褶皱翼部比横穿核部有利。
在断层附近,因地层的相对位移会使破碎带的宽度很大,若岩层发生倒转,不仅节理裂隙十分发育,而且往往会出现大的逆断层。
如果隧道通过断层,断层宽度愈大,走向与隧道轴向交角愈小,在隧道内出露的愈长,对围岩稳定性影响愈大。
另外,断层破碎带物质的碎块性质及其胶结情况也都影响围岩的稳定性。
破碎带组成物质如为坚硬岩块,并且挤压紧密或已胶结,比软弱的断层泥组成稀疏的糜棱岩或未胶结的压碎岩要稳定些。
因此,可以把构造强烈的程度作为衡量围岩稳定性状况的一个基本因素,其影响程度如表2 。
表2 围岩受地质构造影响程度等级划分
4 地下水
围岩岩体中地下水赋存条件与活动状况,既影响围岩的应力状态又影响围岩的强度,进而影响隧道围岩的稳定。
围岩中地下水状态一般可以分三级,即干燥、有渗水、潮湿。
实践证明,只要隧道围岩是干燥的,即便是通过软弱的或破碎的岩层时,围岩的稳定性总是较好的或危害比较微弱,并且易于克服。
当隧道处于含水层中或隧道的围岩透水性较强即隧道围岩中的地下水状态为有渗水或潮湿时,地下水对隧道围岩稳定性的影响比较明显,主要表现在静水压力作用、动水压力作用、软化作用和溶解作用、对可溶岩体的溶蚀作用及对滑动面的润滑作用等。
它们作用的机理如下:静水压力作用在衬砌上,相当于给衬砌增加了一定的额外荷载,因此,在设计衬砌强度和厚度时,应充分考虑静水压力的影响。
另外一方面,静水压力能够使岩体的结构面张开,减少了滑动摩擦力,从而增加了围岩的坍塌和滑落的可能性。
动水压力的作用促使岩块沿着水流方向移动的同时也冲刷和带走岩石裂隙中的细少的矿物颗粒,从而增加了围岩的破坏的程度。
另外,地下水对岩石的溶解作用和软化作用也有一定的影响。
5 结语
上述因素并不是一成不变的而是在地壳内外营力的作用下不断变化的,例如,岩石结构面的性质可以在风化营力作用下不断恶化,而且有些恶化速度相当快。
因此,不论是选择隧道的位置,还是对隧道进行衬砌、考虑隧道的施工方法以及对隧道围岩稳定性进行维护、还是对隧道围岩进行等级划分时,必须从发展的观点考虑岩石的性质、岩体结构、天然应力状态、地下构造、地下水等这些自然因素对隧道围岩稳定性的影响。
参考文献
[1]张倬元. 工程地质分析原理[M] . 北京:地质出版社,1981.
[2]王洪亮. 隧道构造裂隙及其影响带的治理[ J ] . 建材技术与应用, 2001 ,02.
[3]李相然. 城市地下工程实用技术[M] . 北京:中国建材工业出版社, 2000 ,07.
本篇文章选自《西部探矿工程》 2003年第5期。