选修2-1第三章空间向量与立体几何教案1

合集下载

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(11)精选教学PPT课件

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(11)精选教学PPT课件

2答案
练习 3⑴.在正方体 ABCD A1 B1C1 D1中 , E 、F 分别是 BB1 、 CD 的中点,求证: D1F 平面ADE .
证明: 设正方体的棱长为1,
1 则 AD ( 1, 0, 0), D1 F (0, , 1), 1 2 AD D1 F ( 1, 0, 0) (0, , 1) 0. 2 1
3.中点坐标公式 已知 A( x1 , y1 , z1 ) , B( x2 , y2 , z2 ) x1 x2 y1 y2 z1 z2 , , ) 则线段 AB 的中点坐标A(1,0,0), B(0,1,0) , C (0,0,2) , ⑴已知 (1,-1,2) 则顶点 D 的坐标为______________; ⑵ Rt △ ABC 中, BAC 90 , A(2,1,1), B(1,1, 2) , 2 C ( x,0,1) ,则 x ____; ⑶已知 A(3,5, 7) , B(2,4, 3) ,则 AB 在坐标平面 yOz 上的射影的长度为_______. 101
5
练习 3: ⑴在正方体 ABCD A1 B1C1 D1中 ,
E 、F 分别是 BB1 、 CD 的中点,
D1 A1 D A F B B1 E
C1
求证: D1F 平面ADE .
C
⑵如图,在平行六面体 ABCDA1B1C1D1 中,O 是 B1D1 的中点, 求证:B1C∥面 ODC1.
6
1答案
x
OP ( x, y, z ) P( x, y, z )
若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1) 2
空间向量类似于平面向量可以用坐标表示, 而且也类似于平面向量可以用坐标 来进行各种运算及进行有关判断. 如: 1.长度的计算

(教师用书)高中数学 第三章 空间向量与立体几何教案 苏教版选修2-1

(教师用书)高中数学 第三章 空间向量与立体几何教案 苏教版选修2-1

第3章空间向量与立体几何3.1空间向量及其运算3.1.1 空间向量及其线性运算3.1.2 共面向量定理(教师用书独具)●三维目标1.知识与技能(1)了解空间向量与平面向量的联系与区别.(2)理解空间向量的线性运算及其性质.(3)理解共面向量定理.2.过程与方法(1)学生通过类比平面向量的学习过程了解空间向量的研究内容和方法,经历向量及其运算由平面向空间的推广,体验数学概念的形成过程.(2)通过类比平面向量基本定理,得出共面向量基本定理,并能利用共面向量基本定理证明向量共面,学会判定与证明向量共面及四点共面的方法.3.情感、态度与价值观逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知能力.●重点难点重点:了解空间向量与平面向量的联系与区别,理解空间向量的线性运算及其性质.难点:共面向量定理的理解及应用.先回顾平面向量的定义及线性运算法则,类比得出空间向量的有关定义及运算法则,并通过空间图形进行严格的理论验证,从而突出教学重点.对于共面向量定理,完全可由平面向量基本定理类比得出,重在应用其证明共面问题,通过例题,体现向量法证明线线平行、线面平行的方法与步骤,从而突破教学难点.(教师用书独具)●教学建议本节内容是第三章《空间向量与立体几何》的第一节,由于是起始节,所以这节课中也包含了章引言的内容.章引言中提到了本章的主要内容和研究方法,即类比平面向量来研究空间向量的概念和运算.向量是既有大小又有方向的量,它能像数一样进行运算,本身又是一个“图形”,所以它可以作为沟通代数和几何的桥梁,在很多数学问题的解决中有着重要的应用.本章要学习的空间向量,将为解决三维空间中图形的位置关系与度量问题提供一个十分有效的工具.采用的教学方式是通过问题启发引导学生自主完成概念的探究过程,紧紧围绕教学重点展开教学,并从教学过程的每个环节入手,努力突破教学难点.●教学流程回顾平面向量的定义,类比得出空间向量的定义、几何表示、符号表示;找出空间向量与平面向量的区别与联系.⇒回顾平面向量的线性运算法则,得出空间向量的线性运算法则,并通过空间图形加以验证,得出空间向量线性运算满足的运算律.理解单位向量、共线向量、平行向量等概念,理解共线向量定理成立的条件及作用.⇒理解共面向量的定义,区分向量共面与直线共面的区别,理解共面向量定理的内涵,会用共面向量定理证明向量共面,从而证明立体几何问题如共面问题、线面平行问题等.⇒通过例1及变式训练,使学生掌握空间向量的线性运算法则,在常见的立体图形中,灵活的应用三角形和平行四边形法则进行空间向量的运算,实现利用给定向量表示某一向量的目的.⇒通过例2及变式训练,使学生体会共线向量定理的两个应用,正向可用来证明线线平行,逆用可用来求解字母参数,体会向量法解证立体几何问题的步骤与规律.⇒通过例3及变式训练,使学生体会共面向量定理的两个应用,正向可用来证明线面平行,四点共面,逆用可用来求解字母参数,体会向量法解证立体几何问题的步骤与规律.⇒通过易错易误辨析,体会零向量的特殊性,在分析向量间关系及向量运算时,应注意零向量的特殊性.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.在空间,把既有大小又有方向的量叫做空间向量.已知空间四边形ABCD ,则AB →+BC →+CD →+DA →=0还成立吗?【提示】 成立.根据向量的加法法则,表示相加向量的有向线段依次首尾相接,其和为从第一个向量的首指向最后一个向量的尾,故AB →+BC →+CD →+DA →=AA →=0.向量加法可以推广到有限个向量的和,并且可用口诀记忆:首尾首尾首指向尾.【问题导思】共线向量一定是同一直线上的向量吗?【提示】 共线向量不一定是同一直线上的向量,而是表示向量的有向线段只要可以平移到同一直线上即可,因此共线向量也叫平行向量.对空间任意两个向量a,b (a ≠0),b 与a 共线的充要条件是存在实数λ,使b =λa .如果两个向量a 、b ),使得p =x a +y b .图3-1-1如图3-1-1,在长方体ABCD -A ′B ′C ′D ′中,化简下列各式,并在图中标出化简得到的向量:【思路探究】 观察各式涉及的向量在图形中的位置特点,将减法运算转化为加法运算,利用向量加法的三角形法则即可化简.【自主解答】(3)设M 是线段AC ′的中点,则12AD →+12AB →-12=12AD →+12AB →+12=12(AD →+AB →+)=12=AM →.向量,AM →如图所示.1.进行向量的线性运算,实质是进行向量求和,解题时应抓住两条主线:一是基本“形”,通过作出向量,运用平行四边形法则或三角形法则求和;二是基于“数”,熟练掌握AB →+BC →=AC →及向量中点公式.2.用已知向量表示空间向量,实质是向量的线性运算的反复应用.图3-1-2如图3-1-2,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别为AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示:(1)AC 1→;(2)AP →; (3)A 1N →;(4)MP →+NC 1→.【解】 (1)AC 1→=AB →+BC →+CC 1→=b +c +a . (2)∵P 为D 1C 1→的中点, ∴D 1P →=12D 1C 1→=12AB →=12b ,∴AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12AB →=a +c +12b .(3)A 1N →=A 1A →+AB →+BN →=-AA 1→+b +12AD →=-a +b +12c .(4)∵MP →=MA 1→+A 1D 1→+D 1P → =12AA 1→+AD →+12AB → =12a +c +12b . NC 1→=NC →+CC 1→=12AD →+AA 1→=12c +a .∴MP →+NC 1→=(12a +c +12b )+(12c +a )=32a +12b +32c .图3-1-3如图3-1-3,已知点E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,其中E ,H 是中点,F ,G是三等分点,且CF =2FB ,CG =2GD .试判断四边形EFGH 的形状.【思路探究】 证明向量EH →∥FG →且模不相等. 【自主解答】 ∵E ,H 分别是AB ,AD 的中点, ∴EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →. 又∵CF →=2FB →,CG →=2GD →, ∴CF →=23CB →,CG →=23CD →,∴FG →=CG →-CF →=23CD →-23CB →=23(CD →-CB →)=23BD →, ∴BD →=32FG →,∴EH →=34FG →,∴EH →∥FG →,|EH →|=34|FG →|.又点F 不在直线EH 上,∴EH ∥FG ,且EH ≠FG , ∴四边形EFGH 是梯形.1.证明EFGH 为梯形,必须证明两点:①EH →∥FG →; ②|EH →|≠|FG →|.2.利用向量共线可证空间图形中的两直线平行,为向量法证明立体几何问题奠定了基础.设e 1,e 2是空间两个不共线的向量,已知AB →=e 1+k e 2,BC →=5e 1+4e 2,DC →=-e 1-2e 2,且A 、B 、D 三点共线,求实数k 的值. 【解】 ∵BC →=5e 1+4e 2,DC →=-e 1-2e 2. ∴BD →=BC →+CD →=(5e 1+4e 2)+(e 1+2e 2)=6e 1+6e 2. ∵A ,B ,D 三点共线, ∴AB →=λBD →.∴e 1+k e 2=λ(6e 1+6e 2).∵e 1,e 2是不共线向量,∴⎩⎪⎨⎪⎧1=6λ ,k =6λ ,∴k =1.(2012·辽宁高考)如图3-1-4,直三棱柱ABC -A ′B ′C ′,点M ,N 分别为A ′B 和B ′C ′的中点.证明:MN ∥平面A ′ACC ′.图3-1-4【思路探究】 利用向量的线性运算得到向量MN →可以由平面A ′ACC ′内两个不共线的向量表示即可.【自主解答】 因为MN →=MA ′→+A ′N →,且点M ,N 分别为A ′B 和B ′C ′的中点,所以MN →=12BA ′→+12(A ′B ′→+A ′C ′→)=12(B ′A ′→+AA ′→)+12(A ′B ′→+A ′C ′→)=12AA ′→+12A ′C ′→. 因为MN ⊄平面A ′ACC ′,所以MN ∥平面A ′ACC ′.1.判断三个向量共面,即利用向量的线性运算实现其中一个向量能用另外两个向量惟一表示.2.利用向量判断线面平行有两种方法:一是利用共线向量定理,找出平面内的一个向量与直线上的向量共线;二是利用共面向量定理,找出平面内不共线的两个向量能表示出直线上的向量.两种方法中注意说明直线不在平面内.已知非零向量e 1,e 2不共线,如果AB →=e 1+e 2,AC →=2e 1+8e 2,AD →=3e 1-3e 2,求证:A ,B ,C ,D 四点共面. 【证明】 令λ(e 1+e 2)+μ(2e 1+8e 2)+ν(3e 1-3e 2)=0, 则(λ+2μ+3ν)e 1+(λ+8μ-3ν)e 2=0.∵e 1,e 2不共线,则⎩⎪⎨⎪⎧λ+2μ+3ν=0,λ+8μ-3ν=0,解得λ=-5,μ=1,ν=1是其中一组解, 则AB →=15AC →+15AD →,∴A 、B 、C 、D 四点共面.忽略零向量导致错误下列命题:①空间任意两个向量a ,b 不一定是共面的; ②a ,b 为空间两个向量,则|a |=|b |⇔a =b ; ③若a ∥b ,则a 与b 所在直线一定平行; ④若a ∥b ,b ∥c ,则a ∥c . 其中错误命题的序号是________. 【错解】 ②【错因分析】 ①空间任意两个向量都是共面的.②向量的模相等时,两个向量不一定相等,还要看向量的方向.③当a ∥b 时,它们所在直线平行或重合.④当b =0时,a 与c 不一定平行.【防范措施】 向量的平行(共线)不具备传递性,即若a ∥b ,b ∥c ,不一定有a ∥c ,但当b 为非零向量时,向量平行(共线)具备传递性,即若b ≠0,则当a ∥b ,b ∥c 时,有a ∥c .【正解】 ①②③④1.空间向量是平面向量的拓广和延伸,空间向量的线性运算法则和运算律与平面向量具有可类比性,但空间向量比平面向量应用范围更广泛.2.共线向量定理是判定两向量共线的充要条件,利用共线向量定理可以解决两方面的问题:(1)判定两向量共线;(2)由两向量共线,求待定字母的值.3.共面向量定理是判断三向量共面的理论依据,依此可以证明三向量共面,从而证明四点共面与线面平行问题.1.在空间四边形ABCD 中,AB →+BC →+CD →+DA →=______. 【解析】 AB →+BC →+CD →+DA →=AC →+CD →+DA →=AD →+DA →=0. 【答案】 02.在长方体ABCD -A 1B 1C 1D 1中,化简式子:DA →-DB →+B 1C →-B 1B →+CB 1→-CB →=________. 【解析】 DA →-DB →+B 1C →-B 1B →+CB 1→-CB →=BA →+BC →+BB 1→=BD →+BB 1→=BD 1→. 【答案】 BD 1→3.有下列命题:①平行于同一直线的向量是共线向量;②平行于同一平面的向量是共面向量;③平行向量一定是共面向量;④共面向量一定是平行向量.其中正确的命题有________.【解析】 “共面向量一定是平行向量”不正确,即共面向量不一定共线.①②③均正确. 【答案】 ①②③图3-1-54.如图3-1-5,在空间四边形ABCD 中,E 、F 为AB 、CD 的中点,试证EF →,BC →,AD →共面. 【证明】 空间四边形ABCD 中,E 、F 分别是AB 、CD 上的点,利用多边形加法法则可得⎭⎬⎫EF →=EA →+AD →+DF →,EF →=EB →+BC →+CF →.①又E 、F 分别是AB 、CD 的中点,故有EA →=-EB →,DF →=-CF →.②将②代入①中,两式相加得2EF →=AD →+BC →. 所以EF →=12AD →+12BC →,即EF →与BC →、AD →共面.一、填空题1.下列命题中真命题的个数是________. ①空间中任两个单位向量必相等;②将空间中所有的单位向量移到同一起点,则它们的终点构成一个圆; ③若两个非零向量a ,b 满足a =k b ,则a ,b 同向; ④向量共面即它们所在的直线共面.【解析】 ①是假命题,单位向量模相等,但方向不一定相同,因此空间中任两个单位向量不一定相等; ②是假命题,将空间中所有的单位向量移到同一起点,则它们的终点构成一个球面; ③是假命题,当k >0时,a ,b 同向,当k <0时,a ,b 反向;④是假命题,表示共面向量的有向线段所在的直线可以“平移”(平行移动)到同一平面,但不一定共面. 【答案】 02.平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 和BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →=________. 【解析】 B 1M →=B 1B →+BM →=c +12BD →=c +12B 1D 1→=c +12b -12a =-12a +12b +c .【答案】 -12a +12b +c3.非零向量e 1、e 2不共线,若k e 1+e 2与e 1+k e 2共线,则k =________. 【解析】 若k e 1+e 2与e 1+k e 2共线,则k e 1+e 2=λ(e 1+k e 2),∴⎩⎪⎨⎪⎧k =λ,λk =1,∴k =±1.【答案】 ±14.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA →上,且OM →=2MA →,N 为BC 的中点,则MN →=________.(用a ,b ,c 表示)【解析】 如图, MN →=ON →-OM →=12(OB →+OC →)-23OA → =12(b +c )-23a =-23a +12b +12c .【答案】 -23a +12b +12c5.如图3-1-6,在正方体ABCD —A 1B 1C 1D 1中,下列各式中运算的结果为BD 1→的是________.图3-1-6①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→-A 1A →)+DD 1→.【解析】 (A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→,(BC →+BB 1→)-D 1C 1→=BC 1→+C 1D 1→=BD 1→. 【答案】 ①② 6.有四个命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ; ③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面; ④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →. 其中真命题是________(填序号).【解析】 由共面向量定理知,①真;若p 与a ,b 共面,当a 与b 共线且p 与a 和b 不共线时,就不存在实数组(x ,y )使p =x a +y b 成立,故②假.同理③真,④假.【答案】 ①③7.在下列各式中,使P ,A ,B ,C 四点共面的式子的序号为________. ①OP →=OA →-OB →-OC →; ②OP →=17OA →+14OB →+12OC →;③PA →+PB →+PC →=0; ④OP →+OA →+OB →+OC →=0; ⑤OP →=12OA →-OB →+32OC →.【解析】 根据四点共面的充要条件,易知①②④不适合,③⑤适合. 【答案】 ③⑤8.(2013·平遥高二检测)已知点G 是△ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ=________.【解析】 如图,取AB 的中点D , OG →=OC →+CG → =OC →+23CD →=OC →+23·12(CA →+CB →)=OC →+13[(OA →-OC →)+(OB →-OC →)]=13OA →+13OB →+13OC →. ∴OA →+OB →+OC →=3OG →. 【答案】 3 二、解答题图3-1-79.如图3-1-7,已知平行六面体ABCD -A ′B ′C ′D ′,M 是线段CC ′的中点,G 是线段AC ′的三等分点,化简下列各式,并在图中标出化简得到的向量:(1)AB →+BC →; (2)AB →+AD →+AA ′→; (3)AB →+AD →+12CC ′→;(4)13(AB →+AD →+AA ′→).【解】 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′→=AC →+AA ′→=AC →+CC ′→=AC ′→. (3)AB →+AD →+12CC ′→=AB →+BC →+CM →=AC →+CM →=AM →.(4)13(AB →+AD →+AA ′→)=13AC ′→=AG →. 向量AC →,AC ′→,AM →,AG →如图所示.10.如图3-1-8所示,四边形ABCD 、ABEF 都是平行四边形且不共面,M 、N 分别是AC 、BF 的中点,判断CE →与MN →是否共线.图3-1-8【解】 ∵M 、N 分别是AC 、BF 的中点,四边形ABCD 、ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →,MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →, ∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →)=2MN →, ∴CE →∥MN →,即CE →与MN →共线.图3-1-911.如图3-1-9,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,AB =2EF ,H 为BC 的中点.求证:FH ∥平面EDB . 【证明】 因为H 为BC 的中点,所以FH →=12(FB →+FC →)=12(FE →+EB →+FE →+ED →+DC →)=12(2FE →+EB →+ED →+DC →).因为EF ∥AB ,CD ∥AB ,且AB =2EF ,所以2FE →+DC →=0,所以FH →=12(EB →+ED →)=12EB →+12ED →.因为EB →与ED →不共线,由共面向量定理知,FH →,EB →,ED →共面. 因为FH ⊄平面EDB ,所以FH ∥平面EDB .(教师用书独具)已知A 、B 、M 三点不共线,对于平面ABM 外的任一点O ,确定下列各条件下,点P 是否与A 、B 、M 一定共面. (1)OB →+OM →=3OP →-OA →; (2)OP →=4OA →-OB →-OM →.【思路探究】 判断点P 是否在平面MAB 内,可先看MP →能否用向量MA →、MB →表示.当MP →能用MA →、MB →表示时,点P 位于平面MAB 内,否则点P 不在平面MAB 内.【自主解答】 (1)原式可变形为 OP →=OM →+(OA →-OP →)+(OB →-OP →) =OM →+PA →+PB →,∴OP →-OM →=PA →+PB →, ∴PM →=-PA →-PB →,∴P 与M 、A 、B 共面. (2)原式可变形为 OP →=2OA →+OA →-OB →+OA →-OM →=2OA →+BA →+MA →, ∴AP →=-AO →-AB →-AM →,表达式中还含有AO →, ∴P 与A 、B 、M 不共面.1.解答本题中注意构造以P 、A 、B 、M 中某一点为起点,另三点为终点的三个向量来判断此三向量是否共面,若共面又共起点,此四点必共面,否则不共面.2.要证四点共面,可先作从同一点出发的三个向量,由向量共面推知点共面,应注意待定系数法的应用.已知A 、B 、C 三点不共线,对平面ABC 外的任一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →、MB →、MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 【解】 (1)∵OM →=13OA →+13OB →+13OC →,∴13(OA →-OM →)+13(OB →-OM →)+13(OC →-OM →)=0, ∴MA →+MB →+MC →=0, ∴MA →=-MB →-MC →,∴MA →、MB →、MC →三个向量是共面向量. (2)由(1)知MA →、MB →、MC →三个向量共面, 又有共同起点M ,所以M 、A 、B 、C 四点共面, 即点M 在平面ABC 内.3.1.3 空间向量基本定理 3.1.4 空间向量的坐标表示(教师用书独具)●三维目标 1.知识与技能(1)掌握空间向量基本定理,能恰当地选择基底,用基向量表示空间任一向量. (2)理解空间向量的正交分解,理解向量坐标的意义.(3)掌握向量加法、减法、数乘的坐标运算法则,会应用向量坐标进行线性运算,能判断向量共线. 2.过程与方法(1)由平面向量基本定理,类比得出空间向量基本定理,体会定理的条件及内涵;会在具体空间图形中,选取基底表示空间向量. (2)类比平面向量坐标运算法则,得出空间向量坐标运算法则,并运用这些法则进行向量坐标线性运算. (3)运用向量坐标进行向量共线的判定与应用. 3.情感、态度与价值观能过教师的引导,学生探究,激发学生求知欲望和学习兴趣,使学生具备探究、归纳、应用的能力,形成严谨的思维习惯. ●重点难点重点:用基底表示空间向量,向量线性运算的坐标表示. 难点:用基底表示空间向量.教学时,应采用类比思维的方法,先回顾平面向量基本定理及坐标表示,得出空间向量基本定理及坐标表示,降低问题的难度,在具体的常见几何体(正方体、三棱锥、棱柱)中,展示用基底表示空间向量的方法与过程,突出本节的重点,化解教学的难点.(教师用书独具)●教学建议空间向量基本定理是向量法研究立体几何问题的基石,是本章的重中之重,空间向量的坐标表示及坐标运算,是坐标法研究立体几何的工具.因此本节课是全章内容的工具性内容,为学生学习立体几何提供新角度、新手段、新方法.由于学生已学习了平面向量基本定理及坐标运算,因而本节宜采用类比教学法,多发挥学生自主探究能力,通过回顾→类比→完善→应用的环节获取新知识,应用新知识.除使用常规的教学手段外,还将使用多媒体投影和计算机辅助教学,增加教学的直观性和趣味性.●教学流程回顾平面向量基本定理,类比得出空间向量基本定理,强调基向量的不共面性,线性表示的惟一性,常见几何体中基底的一般选法,定义单位正交基,推导空间向量基本定理的推论 .⇒回顾平面向量的坐标表示,得出空间向量的坐标表示,理清向量坐标的实际意义,向量坐标与点坐标的关系.⇒回顾平面向量线性运算的坐标表示,得出空间向量的线性运算的坐标表示,向量坐标与起始点坐标的关系,共线向量的坐标条件.⇒通过例1及变式训练,让学生掌握基底的选取条件,即不共面向量,加深对基底概念的理解.⇒通过例2及变式训练,让学生掌握如何选取基向量,如何用基底表示某一向量,在具体操作中运用向量的线性运算法则.⇒通过例3及变式训练,让学生掌握向量坐标运算法则,掌握如何运用起点、终点坐标表示向量坐标.⇒通过例4及变式训练,让学生掌握向量共线的坐标条件的应用,由此判定向量共线或求值.⇒通过易错易误辨析,让学生分清向量共线与向量同向的区别,以免概念混淆,解题出错.⇒归纳整理,进行课堂小结,整体认识本节所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.p=x e1+y e2+z e3.如果三个向量e1,e2,e3如果空间一个基底的三个基向量是两两互相垂直,那么这个基底叫做正交基底.特别地:当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用{i ,j ,k }表示.设O ,A ,B ,C 是不共面的四点,则对空间任意一点P ,都存在惟一的有序实数组(x ,y ,z ),使得OP =xOA →+yOB →+zOC →.【问题导思】空间直角坐标系中,点的坐标与向量坐标有何联系与区别?【提示】 在空间直角坐标系中,当起点为原点时,向量坐标就是其终点坐标;当起点不是原点时,向量坐标是终点坐标减去起点坐标.所以向量坐标不是点的坐标,而是终点坐标与起点坐标的差值.在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则AB →=(a 2-a 1,b 2-b 1,c 2-c 1);当空间向量a 的起点移至坐标原点时,其终点坐标就是向量a 的坐标.【问题导思】空间向量的坐标运算与几何运算相比较,有哪些好处?【提示】 坐标运算实际上是实数间的运算,运算起来更为简捷方便. 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3)已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底?若能,试以此基底表示向量OD →=2e 1-e 2+3e 3;若不能,请说明理由.【思路探究】 判断{OA →,OB →,OC →}能否作为基底,关键是判断它们是否共面,一般假设其共面,利用共面向量定理分析;求OD →的表示式,设OD →=pOA →+qOB →+zOC →,利用待定系数法求系数.【自主解答】 假设OA →、OB →、OC →共面,由向量共面的充要条件知存在实数x 、y 使OA →=xOB →+yOC →成立. ∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3)=(-3x +y )e 1+(x +y )e 2+(2x -y )e 3,∵{e 1,e 2,e 3}是空间的一个基底, ∴e 1,e 2,e 3不共面, ∴⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解,即不存在实数x 、y 使OA →=xOB →+yOC →, ∴OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底. 设OD →=pOA →+qOB →+zOC →,则有2e 1-e 2+3e 3=p (e 1+2e 2-e 3)+q (-3e 1+e 2+2e 3)+z (e 1+e 2-e 3)=(p -3q +z )e 1+(2p +q +z )e 2+(-p +2q -z )e 3 ∵{e 1,e 2,e 3}为空间的一个基底,∴⎩⎪⎨⎪⎧p -3q +z =2,2p +q +z =-1,-p +2q -z =3,解之得⎩⎪⎨⎪⎧p =17,q =-5,z =-30,∴OD →=17OA →-5OB →-30OC →.1.判断三个向量能否作为基底,关键是判断它们是否共面,若从正面判断难以入手,可以用反证法结合共面向量定理或者利用常见的几何图形帮助,进行判断.2.求一向量在不同基底下的表示式(或坐标),一般采用待定系数法,即设出该向量在新基底下的表示式(或坐标),转化为在原基底下的表示式,对比系数.若{a ,b ,c }是空间的一个基底.试判断{a +b ,b +c ,c +a }能否作为空间的一个基底.【解】 假设a +b ,b +c ,c +a 共面,则存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a )成立,即a +b =μa +λb +(λ+μ)c . ∵{a ,b ,c }是空间的一个基底, ∴a ,b ,c 不共面. ∴⎩⎪⎨⎪⎧μ=1λ=1λ+μ=0,此方程组无解.即不存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a )成立,∴a +b ,b +c ,c +a 不共面. 故{a +b ,b +c ,c +a }能作为空间的一个基底.图3-1-10如图3-1-10,四棱锥P -OABC 的底面为矩形,PO ⊥平面OABC ,设OA →=a ,OC →=b ,OP →=c ,E ,F 分别是PC ,PB 的中点,试用a ,b ,c 表示:BF →,BE →,AE →,EF →.【思路探究】选取基向量→观察空间图形→利用线性运算→用基底表示向量【自主解答】 连结OB ,则BF →=12BP →=12(BO →+OP →)=12(-OA →-OC →+OP →)= -12a -12b +12c . BE →=BC →+CE →=-a +12CP →=-a +12(CO →+OP →)=-a +12(-b +c )=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12PC →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b +12c .EF →=12CB →=12OA →=-12a .1.空间中的任一向量均可用一组不共面的向量来表示,只要基底选定,这一向量用基底表达的形式是惟一的. 2.用基底来表示空间中的向量是用向量解决数学问题的关键,解题时注意三角形法则以及平行四边形法则的应用.图3-1-11如图3-1-11,在平行六面体ABCD -A ′B ′C ′D ′中,AB →=a ,AD →=b ,=c ,M 是CD ′的中点,N 是C ′D ′的中点,用基底{a ,b ,c }表示以下向量:(1)AM →;(2)AN →.【解】 (1)AM →=12(AC →+)=12(AB →+AD →+AD →+)=12(a +2b +c )=12a +b +12c . (2)AN →=12(+)=12[(AB →+AD →+)+(AD →+)]=12(AB →+2AD →+2)=12a +b +c .已知A ,B ,C 三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),求适合下列条件的点P 的坐标.(1)OP →=12(AB →-AC →);(2)AP →=12(AB →-AC →).【思路探究】 利用向量的坐标等于终点的坐标减去起点的坐标求出AB →,AC →,然后进行坐标运算得到OP →,AP →,从而可确定点P 的坐标. 【自主解答】 AB →=(2,6,-3),AC →=(-4,3,1).(1)OP →=12(AB →-AC →)=12(6,3,-4)=(3,32,-2),则点P 的坐标为(3,32,-2).(2)设点P 的坐标为(x ,y ,z ),则AP →=(x -2,y +1,z -2).由(1)知,AP →=12(AB →-AC →)=(3,32,-2),则⎩⎪⎨⎪⎧ x -2=3y +1=32z -2=-2,解得⎩⎪⎨⎪⎧x =5y=12z =0,则点P 的坐标为(5,12,0).1.牢记运算法则是正确进行向量线性运算的关键.2.涉及已知点的坐标进行向量运算时,注意利用终点的坐标减去起点的坐标得到向量的坐标,这是向量运算的前提.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),求AB →,AC →及2AB →+3AC →. 【解】 AB →=(-1,1,2)-(-2,0,2)=(1,1,0), AC →=(-3,0,4)-(-2,0,2)=(-1,0,2),2AB →+3AC →=2(1,1,0)+3(-1,0,2)=(2,2,0)+(-3,0,6)=(-1,2,6).已知A (1,0,0),B (0,1,0),C (0,0,2),求满足DB ∥AC ,DC ∥AB 的点D 的坐标.【思路探究】 由已知条件DB ∥AC ,DC ∥AB ,转化为向量平行,用共线向量定理及空间向量平行的坐标表示,可求得D 点的坐标. 【自主解答】 设D (x ,y ,z ),则DB →=(-x,1-y ,-z ),AC →=(-1,0,2), 由DB ∥AC ,设DB →=λAC →,即(-x,1-y ,-z )=(-λ,0,2λ), 则⎩⎪⎨⎪⎧-x =-λ,1-y =0,-z =2λ,解得⎩⎪⎨⎪⎧x =λ,y =1,z =-2λ,得D (λ,1,-2λ).∴DC →=(-λ,-1,2+2λ),AB →=(-1,1,0). 又DC →∥AB →,设DC →=μAB →,即(-λ,-1,2+2λ)=(-μ,μ,0), 则⎩⎪⎨⎪⎧-λ=-μ,-1=μ,2+2λ=0.解得λ=μ=-1.∴点D 的坐标为(-1,1,2).1.本例中,求点D 的坐标,主要是利用两向量平行的坐标条件,列出关于点D 的坐标的方程组,通过解方程组求得.2.两向量平行的充要条件有两个:①a =λb ,②⎩⎪⎨⎪⎧x 1=λx 2y 1=λy 2z 1=λz 2,依此,既可以判定两向量共线,也可以通过两向量平行求待定字母的值.设a =(2,3,0),b =(-3,-2,1),计算2a +3b,5a -6b ,并确定λ,μ的值,使λa +μb 与向量b 平行. 【解】 ∵a =(2,3,0),b =(-3,-2,1),∴2a +3b =2(2,3,0)+3(-3,-2,1)=(4,6,0)+(-9,-6,3)=(-5,0,3), 5a -6b =5(2,3,0)-6(-3,-2,1)=(10,15,0)-(-18,-12,6)=(28,27,-6). ∵λa +μb =λ(2,3,0)+μ(-3,-2,1)=(2λ-3μ,3λ-2μ,μ),且(λa +μb )∥b , ∴2λ-3μ-3=3λ-2μ-2=μ1. ∴λ=0,μ∈R ,即λ=0,μ∈R 时,λa +μb 与b 平行.误解“两向量平行”和“两向量同向”已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,求x ,y 的值.【错解】 由题意知a ∥b ,则x 1=x 2+y -22=y3,可得⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ②,把①代入②得x 2+x -2=0,解得x =-2或x =1.当x =-2时,y =-6;当x =1时,y =3.【错因分析】 “两向量同向”是“两向量平行”的充分不必要条件.错解忽略了“同向”这一条件的限制,扩大了范围. 【防范措施】 由于向量具有平移不变性,因此有关向量的平行问题与直线的平行是有区别的,并且两向量同向与向量平行也是不等价的,向量平行则两向量可能同向也可能反向,因此,解决这类问题时要特别注意限制条件.【正解】 由题意知a ∥b ,则x 1=x 2+y -22=y3,可得⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ②,把①代入②得x 2+x -2=0,解得x =-2或x =1.当x=-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧ x =-2y =-6时,b =(-2,-4,-6)=-2a ,向量a 与b 反向,不符合题意,故舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,向量a 与b 同向,故⎩⎪⎨⎪⎧x =1y =3.1.用基底表示空间几何体中一向量时,应结合立体图形,根据空间向量线性运算法则,写出要求的向量表达式. 2.建立空间直角坐标系后,空间向量都有惟一的坐标(x ,y ,z ),两向量间的线性运算也有相应的坐标运算法则.3.对于两向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),a ∥b ⇔a =λb ⇔⎩⎪⎨⎪⎧x 1=λx 2y 1=λy 2z 1=λz 2(b ≠0),依此可以判定两向量平行或由两向量平行求待定字母的值.1.下列说法正确的是________.①任何三个不共线的向量都可构成空间的一个基底; ②不共面的三个向量就可构成空间的单位正交基底; ③单位正交基底中的基向量模为1,且互相垂直;④不共面且模为1的三个向量可构成空间的单位正交基底.【解析】 根据基底的有关概念可知:任何三个不共面的向量都可以构成一个基底,当这三个基向量是模为1且两两垂直的向量时,称此基底为单位正交基底,故有③正确,①②④错误.【答案】 ③图3-1-122.如图3-1-12,已知平行六面体OABC -O ′A ′B ′C ′中,OA →=a ,OC →=c ,=b ,D 是四边形OABC 的中心,则OD →=________.【解析】 结合图形,充分利用向量加、减的三角形法则和平行四边形法则,利用基向量a 、b 、c 表示OD →.仔细观察会发现OD →与OA →、OC →是共面向量,故它们三者之间具有线性关系,即可得到答案.【答案】 12a +12c3.已知a =(1,-2,1),a +b =(-1,2,-1),则b =______. 【解析】 设b =(x ,y ,z ),则a +b =(x +1,y -2,z +1).∴⎩⎪⎨⎪⎧x +1=-1,y -2=2,z +1=-1.∴⎩⎪⎨⎪⎧x =-2,y =4,z =-2.∴b =(-2,4,-2). 【答案】 (-2,4,-2)4.设a =(1,5,-1),b =(-2,3,5).若(k a +b )∥(a -3b ),求k . 【解】 法一 ∵a =(1,5,-1),b =(-2,3,5).∴k a +b =k (1,5,-1)+(-2,3,5)=(k -2,5k +3,-k +5).a -3b =(1,5,-1)-3(-2,3,5)=(7,-4,-16).∵(k a +b )∥(a -3b ). ∴k -27=5k +3-4=-k +5-16.∴k =-13.法二 ∵(k a +b )∥(a -3b ). ∴k a +b =λ(a -3b ).∴⎩⎪⎨⎪⎧k =λ,1=-3λ,∴k =-13.一、填空题1.设命题p :a ,b ,c 是三个非零向量,命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的______条件(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”).【解析】 命题q 中,{a ,b ,c }为空间的一个基底,则根据基底的定义,可知a ,b ,c 为非零向量,且为不共面向量.故q ⇒p ,pD⇒/q ,所以命题p 是命题q 的必要不充分条件.【答案】 必要不充分2.设向量a ,b ,c 不共面,则下列可作为空间的一个基底的是________.①{a +b ,b -a ,a }; ②{a +b ,b -a ,b }; ③{a +b ,b -a ,c }; ④{a +b +c ,a +b ,c }.【解析】 因为只有③中三个向量不共面,所以可以作为一个基底. 【答案】 ③3.已知{i ,j ,k }为空间的一个基底,若a =i -j +k ,b =i +j +k ,c =i +j -k ,d =3i +2j -4k ,又d =α a +β b +γc ,则α=________,β=________,γ=________.【解析】 由题意知:⎩⎪⎨⎪⎧α+β+γ=3-α+β+γ=2α+β-γ=-4,解之得:⎩⎪⎨⎪⎧α=12β=-1γ=72.【答案】 12 -1 72图3-1-134.如图3-1-13,已知正方体ABCD —A ′B ′C ′D ′中,E 是底面A ′B ′C ′D ′的中心,a =12AA ′→,b =12AB →,c =13AD →,AE →=x a +y b +z c ,则x ,y ,z 的值分别为x =________,y =________,z =________.【解析】 由题意知AA ′→,AB →,AD →为不共面向量,而AE →=AA ′→+A ′E →=AA ′→+12(A ′B ′→+A ′D ′→)=AA ′→+12AB →+12AD →=2a +b +32c ,∴x =2,y =1,z =32.【答案】 2 1 325.已知A (3,2,1),B (-4,5,3),C (-1,2,1),则2AB →+5AC →的坐标为________. 【解析】 2AB →+5AC →=2(-7,3,2)+5(-4,0,0) =(-14-20,6+0,4+0)=(-34,6,4). 【答案】 (-34,6,4)6.(2013·平遥高二检测)已知a =(λ+1,0,2λ),b = (6,2μ-1,2),a ∥b ,则λ与μ的值分别为________.。

数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。

2.理解共线向量定理和共面向量定理及其意义。

3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。

三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。

5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(4)精选教学PPT课件

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(4)精选教学PPT课件
点M在OA上,且OM=2MA,N为BC的中点,则
MN=(
O
M
).
(A)
1 2
a
-2
3
b
+
1 2
c
(B)-
2 3
a
+
1 2
b+
1 2
c
A
C N
(C)
1 2
a
+
12b -
23 c
B
(D)
2 3
a
+
2 3
b

1 2
c
例3
10
例2(课本例)如图,已知平行四边形ABCD,从平 面AC外一点O引向量 OE kOA, OF kOB, OG kOC , OH kOD , 求证: ⑴四点E、F、G、H共面; ⑵平面EG//平面AC.
这个男孩不假思索地回答道:“我竭尽全力。” 16年后,这个男孩成了世界著名软件公司的老板。他就是比尔·盖茨。 泰勒牧师讲的故事和比尔·盖茨的成功背诵对人很有启示:每个人都有极大的潜能。正如心理学家所指出的,一般人的潜能只开发了2-8左右,像爱因斯坦那样伟大的大科学家,也只开发了12左右。一个人如果开发了50的潜能,就可以背诵400本教科书,可以学完十几所大 学的课程,还可以掌握二十来种不同国家的语言。这就是说,我们还有90的潜能还处于沉睡状态。谁要想出类拔萃、创造奇迹,仅仅做到尽力而为还远远不够,必须竭尽全力才行。
表示向量 OG
O
解:在△OMG中,
M
OG

OM

MG
1 2
OA

2 3
MN
C
G
A
N
1 OA 2 (ON OM )

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(15)精选教学PPT课件

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(15)精选教学PPT课件

如图 A, 空间一点 P 到平面 的距离为 d,已知平面 的
一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?
分析:过 P 作 PO⊥ 于 O,连结 OA.
P
n
则 d=| PO |= | PA | cos APO.
∵ PO ⊥ , n , ∴ PO ∥ n .
A1
B1
则 A1H 为所求相对两个面之间的距离.
D
由 A1 AB A1 AD BAD 且 AB AD AA1 A H
C B
可证得H 在 AC上.
2
AC

( AB

BC )2

11
2cos 60

3
AC
3
AA1 AC AA1 (AB BC) AA1 AB AA1 BC cos60 cos60 1.

cos A1 AC

|
AA1 AA1 |

AC | AC
|

1 3
sin A1 AC
6 几何分析 3 加向量运算
A1H AA1 sin A1 AC
6 ∴所求的距离是 6 . 妙!妙!妙!
3
3
能否用法向量运算求解呢?
几何法较难,如何用向量知识求点到平面的距离?2
如何用向量法求点到平面的距离:
A O

∴cos∠APO=|cos PA, n |.
∴d=| PA||cos PA, n |= | PA | | n | | cos PA, n | = | PA n | .
|n|
|n|
这个结论说明,平面外一点到平面的距离等于连结此点与平面 上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的 绝对值.

选修2-1第三章-空间向量与立体几何全章教案

选修2-1第三章-空间向量与立体几何全章教案

§3.1 空间向量及其运算§3.1.1空间向量及其加减运算【学情分析】:向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。

在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。

【教学目标】:(1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法(2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法(3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。

'【教学重点】:空间向量的概念和加减运算【教学难点】:空间向量的应用【课前准备】:Powerpoint课件babD BAOC三.类比推广、探求新知(2)在平面图形中向量加减法的可以通过三角形和平行四边形法则,同样对于空间任意两个向量b a ,都看作同一平面内的向量,它们的加法、减法当然都可以按照平面上的向量的加法和减法来进行,不需要补充任何新的知识,具体做法如下:)如图,可以从空间任意一点O 出发作b OB a OA ==,,并且从A 出发作b AC =,则BA b a OC b a =-=+,.babD BACOC探索1:空间三个以上的非零向量能否平移至一个明面上? 探索2:多个向量的加法能否由两个向量的加法推广? (1) 思考《选2-1》课本P92探究题归纳:向量加(减)法满足交换律和结合律。

例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。

(如图) —让学生知道,数学中研究的向量是自由向量,与向量的起点无关,这是数学中向量与物理中矢量的最大区别。

空间三个或更多的向量相加,不能同时将这些向量都用同一个平面上的有限线段来表示,但仍然可以用将它们依次用首尾相接的有向线段来表示,得到它们的和。

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(16)精选教学PPT课件

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(16)精选教学PPT课件

解:以点C为坐标原点建立空间
直角坐标系C xyz 如图所示,

C1 C1
1则
1
A(1,0,0), B(0,1,0),
1
所F1(以2 :,0,1)1, D1
(
2
,
2
,1)
11
AA11
AA
z FF11C1
C1 D1 D1
C
C
BB11
BB y
AF1 ( 2 ,0,1) , BD1
|
cos
A(0,0 , 0), B(0,1, 0) ,C(
3 , 1 , 0) 22
设 F1 方向上的单位向量坐标为(x, y , z) ,
由于 F1 与 AB , AC 的夹角均为 60 ,


cos
60
1 (x, y , z)( 2
3 , 1 , 0)① 22
又∵ x2 y2 z2 1 ③
S
AD 1 ,求平面 SCD 与平面 SBA 所成的 2
锐二面角的余弦值.
B AD
作业:自学课本 P118 例 4
1答案 2答案
B1
B
C
11
练习 1:
三棱柱 ABC ─A1B1C1 中, BCA 90 , BC CA CC1 , E 、F
分别是棱 A1B1 、A1C1 的中点,求 BD1 与 AF1 所成的角的余弦值.
6,BD=8,求CD的长.
分析:要求 CD 的长可以转化为求 CD 的模的大小.
C
B
A

D
怎么求 CD 呢? 显然直接求 CD 出不来,这时可以
结合图形发现 CD 用其他已知向量来表示的关系式,从

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(12)精选教学PPT课件

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(12)精选教学PPT课件

直线垂直于平面 ,则称这个向量垂直于平 面 ,记作 n ⊥ ,如果 n⊥ ,那 么 向 量 n 叫做平面 的法向量. n 给定一点 A 和一个向量 , 那么 l 过点A,以向量 n 为法向量的平面是 完全确定的. n
A
几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都 互相平行; 3.向量n 是平面的法向量,向 量m 是与平面平行或在平面 内,则有 n m 0

2
), sin
au a u

二面角 ─l ─ 的大小为 ( 0 ≤ ≤ ), cos
uv u v
10
.
画出图形意会
以上思考在今后的解题中会经常用到,注意体会.
练习 1.已知两点 A( 1 , 2,) 3 ,( B 2, 1, 3 ),求直线 AB 与坐 标平面 yOz 的交点. 2. 已知两点 A , 点 Q 在 OP (, 1 2, 3 ),( B 2, 1, 2 ),(, P 1 1, 2 ) 上运动,求当 QA QB 取得最小值时,点 Q 的坐标. 3.在正方体 ABCD A1 B1C1 D1 中,求证: DB1 是平 面 ACD1 的一个法向量.
2
(课本第 111 页)思考 1: 怎样用向量来表示点、 直线、 平面在空间中的位置? ⑴点 在空间中,我们取一定点 O 作为基点, 那么空间中任意一点 P 的位置就可以用向量
OP 来表示,我们把向量 OP 称为点 P 的位置向 量. P ⑵直线 P 空间中任 意一条直线 l a 的位置可以由 l 上一个定点 O A 以及一个定 B 方向确定. A
⊥ u ⊥ v u v 0.
画出图形意会
9
设直线 l , m 的方向向量分别为 a , b , 平面 , 的法向量分别为 u, v ,则

高中数学选修2-1教案第三章空间向量与立体几何3.2立体几何中的向量方法

高中数学选修2-1教案第三章空间向量与立体几何3.2立体几何中的向量方法

23.2立体几何中的向量方法第一课时 立体几何中的向量方法(1)教学要求:向量运算在几何证明与计算中的应用. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用. 教学难点:向量运算在几何证明与计算中的应用. 教学过程: 一、复习引入1.用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件 (如线段、角度等)转化为向量表示;⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢?⑴利用定义 a • b = |a ||b |cos v a ,b >或cos v a ,b >=卫b ,可求两个向量的数量积或夹角 问题;⑵利用性质a 丄a • b = 0可以解决线段或直线的垂直问题; ⑶利用性质aa =| a 丨2,可以解决线段的长或两点间的距离问题. 二、例题讲解1. 出示例1:已知空间四边形 OABC 中,:.OAf_BC ” OB _ AC •求证: 证明:OC AB = OC (OB -OA) = OC OB — OC OA .TT••• OA _ BC , OB _ AC , • OA BC 0, OB AC 0 ,)「0 , OB (OC -OA) =0 .• OA OC =OA OB , OB OC =OB OA .4•小结:利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量 表示未知向量,然后通过OC _ AB .二 OC OB = OC OA , OCAB = 0. ••• OC _ AB2.出示例2:如图,已知线段.DBD ' =30;,如果 AB = a , 解:由AC ,可知AC 由.DBD' =30;可知,v •汙『=(CA AB BD) AB BD )2 2 2 2 - 2 2=b a b 2b cos120 = a b .AB 在平面a 内,线段AC _,线段BD 丄AB ,线段DD ' _ :-,AC = BD = b ,求C 、D 间的距离.CA,BD >= 120 ,2= |CA |2 + | AB |2 + | BD |2 + 2( CA AB + CA BD +• CD a 2 b 2 .3.出示例3:如图,M 、N 分别是棱长为1的正方体 ABCD -A'B'C'D'的 棱BB'、B'C'的中点.求异面直线 MN 与CD'所成的角.1解:••• MN = - (CC ' BC ),2 1• MN CD' = (CC' BC)2 CD' = CC' CD ,(C? CD) = 1(|C^|2 + CC -L CD2+ BC CC' +BC CD ).•/ CC'_CD , CC'_BC , 1 2 1• MN CD' = |CC' |2 =2 2BC =0, BC CD =0 ,…求得 cos v MN ,CD' >BC CC 0 ,1 ,•••< MN ,CD' >= 60 ._CD ,向量的运算去计算或证明.2第二课时 立体几何中的向量方法(2)教学要求:向量运算在几何证明与计算中的应用. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用. 教学难点:向量运算在几何证明与计算中的应用. 教学过程: 一、复习引入讨论:将立体几何问题转化为向量问题的途径?(1 )通过一组基向量研究的向量法,它利用向量的概念及其运算解决问题;(2)通过空间直角坐标系研究的坐标法,它通过坐标把向量转化为数及其运算来解决问二、例题讲解1.出示例1:如图,在正方体 ABCD-ABGD I 中,E 、F 分别是BB l 、 CD 的中点,求证:UF _平面ADE .证明:不妨设已知正方体的棱长为1个单位长度, 且设DA = i , "DC =j , DD 1 = k .以i 、j 、k 为坐标向量建立空间直角坐标系D — xyz ,贝U1 1••• AD = (-1,0,0), D 1F = (0,,-1), ••• AD • D 1F = (-1,0,0) .(0,,-1)= 0, ••• D 1F _AD .的一些数据,以使问题的解决简单化.如在立体几何中求角的大小、判定直线与直线或直线 与平面的位置关系时,可以约定一些基本的长度.⑵空间直角坐标些建立,可以选取任意一 点和一个单位正交基底, 但具体设置时仍应注意几何体中的点、线、面的特征,把它们放在 恰当的位置,才能方便计算和证明.2.例:证:如果两条直线同垂直于一个平面,则这两条直线平行.改写为:已知:直线 OA 丄平面a,直线BD 丄平面a, O 、B 为垂足.求证: 证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系 O-xyz , i ,j ,k 为沿x 轴,y 轴,z 轴的坐标向量,且设 BD = (x, y,z).•/ BD 丄 a, • BD 丄 i , BD 丄 j ,• BD • i = (x,y,z) •(1,0,0) = x = 0, , BD • j = (x, y, z) • (0,1,0) = y = 0, • BD = (0,0,z). • BD = z k .即BD //k .由已知 O 、B 为两个不同的点,•3. 法向量定义:如果表示向量a 的有向线段所在直线垂直于平面a,则称这个向量垂直于平面a,记作a 丄a.如果a 丄a,那么向量a 叫做平面a 的法向量.4. 小结:向量法解题“三步曲” :(1)化为向量问题 7( 2)进行向量运算 7( 3)回到图形问题.A E = (0,1,-),2AD^AE =A ,• AED 1F = (0,1,1)21(0, ,-1)= 0,2说明:⑴“不妨设”是我们在解题中常用的小技巧,通常可用于设定某些与题目要求无关OA//BD .OA//BD .第三课时立体几何中的向量方法(3)教学要求:向量运算在几何证明与计算中的应用. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用. 教学难点:向量运算在几何证明与计算中的应用. 教学过程: 一、复习引入呻 呻1.法向量定义:如果直线I _平面:•,取直线I 的方向向量为a ,则向量a 叫作平面a 的法 向量(normal vectors ).利用法向量,可以巧妙的解决空间角度和距离2.讨论:如何利用法向量求线面角?T 面面角?直线AB 与平面a 所成的角日,可看成是向量 AB 所在直线与平面a 的法向量n 所在直 线夹角的余角,从而求线面角转化为求直线所在的向量与平面的法向量的所成的线线角,根a b据两个向量所成角的余弦公式 cosf a, b),我们可以得到如下向量法的2.变式:用向量法求:二面角A -DE -O 余弦;OF 与DE 的距离;O 点到平面DEF 的距公式:3. 讨论:如何利用向量求空间距离?两异面直线的距离,转化为与两异面直线都相交的线段在公垂向量上的投影长 点到平面的距离,转化为过这点的平面的斜线在平面的法向量上的投影长 二、例题讲解:1.出示例 1:长方体 ABCD - ARGD ,中,AD= AA ,=2, AB=4, E 、 点,0是BC 1与EC 的交点.求直线OF 与平面DEF 所成角的正弦•解:以点D 为空间直角坐标系的原点, DA 、DC 、DD 1为坐标轴,建立如图所示的空间直角坐标系.则D(2,2,0), E(1,0,2), F(2,2,0), 0(1,4,1), C(0,4,0).4设平面DEF 的法向量为 n =(x,y,z), 而 DE =(1,0,2) , DF =(2,2,0). 片 —* n _DE 则n _ DFnLDE =0 • ^=0■/ n *OF =| n ||OF J cos :, n *OF. • cos 2 2 22-|n"OF 丨(-2)2 - 22 - t.J 2 - (一2)2 • (-1)所以,直线OF 与平面DEF 所成角的正弦为 乙6 .18,即 •OF 丄x 2z = 0仏+2^0‘ 解得心:—2:2:1,而 OF =(1,-2,-1). -2 1 2 (-2) 1 (-1) 2•• n =(-2,2,1).7 618sin 日=cos (AB‘, n。

选修2-1第三章空间向量与立体几何教案

选修2-1第三章空间向量与立体几何教案

第三章空间向量与立体几何空间向量及其运算(一)教学目标:㈠知识目标:1•空间向量;2•相等的向量;3•空间向量的加减与数乘运算及运算律;㈡能力目标:1•理解空间向量的概念,掌握其表示方法;2•会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3•能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:I .复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量向量是怎样表示的呢[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB .[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量[师]学习了向有关概念以后,我们了向量的加减以及数平行四边形法则量学乘量运算:1.向量的加法:2.向量的减法:3•实数与向量的积:实数入与向量a的积是一个向量,记作入a,其长度和方向规定如下:(1) 1 入a| 二| 入|| a|(2) 当入〉0时,入a与a同向;当入v0时,入a与a反向;当入=0时,入a = 0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢[生]向量加法和数乘向量满足以下运算律加法交换律:a+ b= b+ a加法结合律:(a+ b) + c= a+( b+ c)数乘分配律:入(a+ b)=入a+入b[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用•请同学们阅读课本氐〜F27.n.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量. 例如空间的一个平移就是一个向量. 那么我们怎样表示空间向量呢相等的向量又是怎样表示的呢[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量•[师]由以上知识可知,向量在空间中是可以平移的. 空间任意两个向量都可以用同一平面内的两条有向线段表示•因此我们说空间任意两个向量是共面的•[师]空间向量的加法、减法、数乘向量各是怎样定义的呢空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体 ABCD A'B'C'D'(如图),化简下列向量 表达式,并标出化简结果的向量:1 -⑴ AB BC ;⑵ AB AD AA';⑶ AB AD - CC21 ■ ■ ■ ⑷—(AB AD AA').3说明:平行四边形ABCD 平移向量a 到A' B' C D'的轨迹所形成 的几何体,叫做 平行六面体.记作ABC —A B' C D[生] OB OA ABOBOP[师] 空间向量的加法与数乘向量有哪些运算律呢请大家验证这些运算律. [生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:( a + b ) + c =a + ( b + c );(课件验证) ⑶数乘分配律:入(a + b ) = Xa +入b.[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:AA 2 A 2A 3 A 3A 4 A n l A n AA n因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量•即:AA A 2A 3 A 3A 4A n 1 A n A n AlB平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本%)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.川.巩固练习课本P92 练习IV.教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.V.课后作业1. 课本P l06 1、2、2. 预习课本F92〜P6,预习提纲:⑴怎样的向量叫做共线向量⑵两个向量共线的充要条件是什么⑶空间中点在直线上的充要条件是什么⑷什么叫做空间直线的向量参数表示式⑸怎样的向量叫做共面向量⑹向量p与不共线向量a、b共面的充要条件是什么⑺空间一点P在平面MA罰的充要条件是什么板书设计:2.加减与数乘运算2.加减与数乘向量小结3•运算律3•运算律空间向量及其运算(2)教学后记:二、教学目标: 1 •理解共线向量定理和共面向量定理及它们的推论;2 •掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.、课题:空间向量及其运算(2)三、教学重、难点:共线、共面定理及其应用.四、教学过程:一)复习:空间向量的概念及表示;(二)新课讲解:1共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,r r平行向量。

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1高品质版

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1高品质版

( a b ) c a ( b c )
(a b) c a (b c)
作业:课本 P92 练习 3 5 平面向量加减法 空间向量加减法
平面向量的加法、减法运算图示意义:
b
a
向量加法行四边形法则
减向量终点指向
b
被减向量终点
a
向量减法的三角形法则
概念 加法 减法 运算
空间向量的加减法运算
平面向量
空间向量
定义:具有大小、方向的量,表示法、相等向量.
加法:三角形法则或 平行四边形法则 减法:三角形法则
加法:三角形法则或 平行四边形法则
减法:三角形法则
运 加法交换律 算 abba
加法交换律 ab 成立b 吗a?
加法结合律
律 加法结合律:
常用 a 、b 、c ……等小写字母来表示.
b
1.向量 a 的大小叫做向量的长度或模,记为 a .
2.可用一条有向线段 AB 来表示向量,向量 AB
的模又记为 AB 就是线段 AB 的长度.
B 终点
A 类似于平面向量,为了研究的
我们规定:
起点方便起见,
零向量、单位向量、相等向量、相反向量、平行
向量、共面向量等概念。(你认为应该怎样规定?) 4
2
问题 2:课本 P90 问题……
F3
已知F1=2000N,
F2
F1
F2=2000N, F3=2000N,
这三个力两两之间
的夹角都为60度, 它们的合力的大小
为多少N?
这需要进一步来认识空间中的向量 ……
3
空间量的概念
空间向量及其运算(一)
一、空间向量的有关概念:
c

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(13)精选教学PPT课件

选修2-1第三章空间向量与立体几何教案(精品资料)1[1][1].part1(13)精选教学PPT课件
2 ∴E(1,1,1), ∴存在 E 点且 E 为 PB 的中点时 PC⊥平面 ADE.
注:这类探索问题用向量法来分析容易发现结论.
13
练习 1: 如图,已知正方体 ABCD-A1B1C1D1 的棱长为 2, M、N 分别为 AA1、BB1 的中点,求: ⑴CM 与 D1N 所成角的余弦值; ⑵异面直线 CM 与 D1N 的距离.
∵ PC (0, 2, 2), PO (1,1, 2),
∴ cos PC, PO PC PO 3 .∴PC 与平面 PBD 所成的角为 30°.
| PC || PO | 2
⑵过 D 做 DF⊥平面 PAC 于点 F,设平面 PAC 的法向量为 n ( x, y, z)
∴ CM =(2,-2,1), D1M =(2, 2,-1),设 CM 与 D1N 所成的角为θ ,
则 cosθ = |CM D1N | | 2 2 (2) 2 1 (1) | = 1
|CM | | D1N |
33
9
⑵设 CM , D1N 的法向量为 n =(x,y,z)

2x 2x
练习 2.如图,四面体 ABCD 中,O、E 分别是 BD、BC 的中点,
CA CB CD BD 2 , AB AD 2.
⑴求证: AO 平面 BCD; ⑵求异面直线 AB 与 CD 所成角余弦的大小;
⑶求点 E 到平面 ACD 的距离.
P 作业:课本 128B 组第 3 题
C(0, 3, 0), A(0, 0,1), E(1 , 3 , 0), BA (1, 0,1), CD (1, 3, 0). 22
cos BA,CD BACD 2 ,∴ 异面直线 AB 与 CD 所成角余弦的大小为 2 .

选修2-1第三章 空间向量与立体几何全章教案

选修2-1第三章 空间向量与立体几何全章教案

§3.1 空间向量及其运算§3.1.1空间向量及其加减运算【学情分析】:向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。

在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。

【教学目标】:(1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法(2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法(3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。

【教学重点】:空间向量的概念和加减运算【教学难点】:空间向量的应用【课前准备】:Powerpoint课件【教学过程设计】:练习1-3.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:GC BD AB ++;练习与测试:(基础题)1.举出一些实例,表示三个不在同一平面的向量。

2.说明数字0与空间向量0的区别与联系。

答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。

3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。

4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA +; (2)121AA CB AC ++; (3)AA --1解:(1)11CA BA CB =+ (2)AM AA CB AC =++121(3)11BA AA =--(中等题)5.如图,在长方体///B D CA OADB -中,3,4,2,OA i OB j OC k ===,点E,F 分别是//,B D DB 的中点,试用向量,,表示和解:j i OE 423+=2423++=。

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN空间向量及其运算课时分配:第一课空间向量及其加减运算 1个课时第二课空间向量的数乘运算 1个课时第三课空间向量的数量积运算 1个课时第四课空间向量运算的坐标表示1个课时3. 1.1 空间向量及其加减运算【教学目标】1.了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;2.理解共面向量定理及其推论;掌握点在已知平面内的充要条件;3.会用上述知识解决立体几何中有关的简单问题。

【教学重点】点在已知平面内的充要条件。

共线、共面定理及其应用。

【教学难点】对点在已知平面内的充要条件的理解与运用。

b a AB OA OB+=+=;b a OB OA BA-=-=;)(R a OP ∈=λλ3.平行六面体:平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A ''''它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。

4.平面向量共线定理方向相同或者相反的非零向量叫做平行向量。

由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量。

向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa 。

这个定理称为平面向量共线定理,要注意其中对向量a 的非零要求。

条有向线段来表示。

思考:运算律:(1)加法交换律:a b b a+=+ (2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(C BAOb bb aa a C'B'A'D'DABC数t 满足等式t OA OP +=a。

其中向量a 叫做直线l 的方向向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-1第三章空间向量与立体几何教案课题:平面向量知识复习教学目标:复习平面向量的基础知识,为学习空间向量作准备教学重点:平面向量的基础知识教学难点:运用向量知识解决具体问题教学过程:一、基本概念向量、向量的模、零向量、单位向量、平行向量、相等向量、共线向量、相反向量、向量的加法、向量的减法、实数与向量的积、向量的坐标表示、向量的夹角、向量的数量积。

二、基本运算1、向量的运算及其性质2、平面向量基本定理:如果21,e e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数21,λλ,使a =; 注意)(21OB OA OP +=,OA OA OP )1(λλ-+=的几何意义3、两个向量平行的充要条件:⑴ //a b的充要条件是: ;(向量表示)⑵ 若),(),,(2211y x b y x a ==,则//a b 的充要条件是: ;(坐标表示)4、两个非零向量垂直的充要条件:⑴ a b ⊥的充要条件是: ;(向量表示)⑵ 若),(),,(2211y x b y x a ==,则a b ⊥ 的充要条件是: ;(坐标表示)三、课堂练习1.O 为平面上的定点,A 、B 、C 是平面上不共线的三点,若( OB -OC )·(OB +OC -2OA )=0,则∆ABC 是( )A .以AB 为底边的等腰三角形 B .以BC 为底边的等腰三角形 C .以AB 为斜边的直角三角形D .以BC 为斜边的直角三角形2.P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的( ) A .外心 B .内心 C .重心 D .垂心3.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )A . 矩形B . 菱形C .直角梯形D .等腰梯形4.已知||p = ||3q = ,p 、q 的夹角为45︒,则以52a p q =+ ,3b p q =-为邻边的平行四边形的一条对角线长为( )A .15B .C . 14D .165.O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足OA OP =++λ,),0[+∞∈λ则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心6.设平面向量a =(-2,1),b =(λ,-1),若a 与b 的夹角为钝角,则λ的取值范围是( )A .),2()2,21(+∞-B .),2(+∞C .),21(+∞-D .)21,(--∞7.若()(),0,7,4,3,2=+-==c a b a 方向在则b c 上的投影为 。

8.向量(,1),(4,5),(,10)O A k O B O C k ===-,且A ,B ,C 三点共线,则k = .9.在直角坐标系xoy 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上且|OC |=2,则OC = 10.在ABC ∆中,O 为中线AM 上一个动点,若AM =2,则)(OC OB OA +∙的最小值是__________。

课 题:空间向量及其线性运算 教学目标:1.运用类比方法,经历向量及其运算由平面向空间推广的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件教学难点:空间向量的线性运算及其性质。

教学过程: 一、创设情景1、平面向量的概念及其运算法则;2、物体的受力情况分析 二、建构数学 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+= b a OB OA BA-=-= )(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)( 3.平行六面体:平行四边形ABCD 平移向量a到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''',它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。

4.共线向量与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a、b 的有向线段所在的直线可能是同一直线,也可能是平行直线. 5.共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式 t OA OP +=a .其中向量a叫做直线l 的方向向量.三、数学运用 1、例1 如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)121AA CB AC ++;(3)CB AC AA --1解:(1)11CA BA CB =+ (2)AM AA CB AC =++121(3)11BA CB AC AA =--A / B2、如图,在长方体///B D CA OADB -中,1,2,4,3======OK OJ OI OC OB OA ,点E,F 分别是//,B D DB 的中点,设k OK j OJ i OI ===,,,试用向量k j i ,,表示OE 和OF解:j i OE 423+=k j i OF 2423++=3、课堂练习已知空间四边形A B C D ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量:(1)AB BC CD ++;(2)1()2A B B D B C ++;(3)1()2A G AB AC -+ . 四、回顾总结空间向量的定义与运算法则 五、布置作业课 题:共面向量定理 教学目标:1.了解共面向量的含义,理解共面向量定理;2.利用共面向量定理证明有关线面平行和点共面的简单问题; 教学重点:共面向量的含义,理解共面向量定理教学难点:利用共面向量定理证明有关线面平行和点共面的简单问题 教学过程:BCDMGABCD 一、创设情景1、关于空间向量线性运算的理解平面向量加法的三角形法则可以推广到空间向量,只要图形封闭,其中的一个向量即可以用其它向量线性表示。

从平面几何到立体几何,类比是常用的推理方法。

二、建构数学 1、 共面向量的定义一般地,能平移到同一个平面内的向量叫共面向量;理解:若b a ,为不共线且同在平面α内,则p 与b a ,共面的意义是p 在α内或α//p 2、共面向量的判定平面向量中,向量b 与非零向量a 共线的充要条件是a b λ=,类比到空间向量,即有共面向量定理 如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y x p +=α这就是说,向量p 可以由不共线的两个向量b a ,线性表示。

三、数学运用1,例1 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M,N 分别在对角线BD,AE 上,且AE AN BD BM 31,31==.求证:MN//平面CDE证明:AN BA MB MN ++==DE CD 3132+又CD 与DE 不共线根据共面向量定理,可知DE CD MN ,,共面。

由于MN 不在平面CDE 中,所以MN//平面CDE.2、例2 设空间任意一点O 和不共线的三点A 、B 、C ,若点P 满足向量关系OC z OB y OA x OP ++=(其中x+y+z=1)试问:P 、A 、B 、C 四点是否共面? 解:由OC z OB y OA x OP ++=可以得到AC z AB y AP +=由A,B,C 三点不共线,可知AB 与AC 不共线,所以AP ,AB ,AC 共面且具有公共起点A. 从而P,A,B,C 四点共面。

解题总结:推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x ,y 使得:MB y MA x MP +=,或对空间任意一点O 有:MB y MA x OM OP ++=。

3、 课堂练习(1)已知非零向量21e ,e 不共线,如果2121213382e e AD ,e e AC ,e e AB -=+=+=,求证:A 、B 、C 、D 共面。

(2)已知平行四边形ABCD ,从平面AC 外一点O 引向量OC k OG ,OB k OF ,OA k OE ===,OD k OH =。

求证:(1)四点E 、F 、G 、H 共面;(2)平面AC//平面EG 。

(3)课本74页练习1-4 四、回顾总结 1、共面向量定理;12、类比方法的运用。

五、布置作业课 题:空间向量的基本定理 教学目标:1.掌握及其推论,理解空间任意一个向量可以用不共面的三个已知向量线性表示,而且这种表示是唯一的;2.在简单问题中,会选择适当的基底来表示任一空间向量。

教学重点:空间向量的基本定理及其推论 教学难点:空间向量的基本定理唯一性的理解 教学过程: 一、创设情景平面向量基本定理的内容及其理解如果21,e e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数21,λλ,使a =2211e e λλ+ 二、建构数学1、空间向量的基本定理如果三个向量321,,e e e 不共面,那么对空间任一向量p, 存在一个唯一的有序实数组),,(z y x ,使321e z e y e x p ++=证明:(存在性)设321,,e e e 不共面, 过点O 作p OP e OC e OB e OA ====,,,321过点P 作直线P P '平行于O C ,交平面O A B 于点P ';在平面O A B 内,过点P '作直线//,//P A OB P B OA '''',分别与直线,OA OB 相交于点,A B '',于是,存在三个实数,,x y z ,使/3/2/1/,,e z OC OCe y OB OBe x OA OA ======∴OP OA OB OC xOA yOB zOC '''=++=++所以321e z e y e x p ++=(唯一性)假设还存在,,x y z '''使3/2/1/e z e y e x p ++= ∴321e z e y e x ++3/2/1/e z e y e x ++= ∴0)()()(3/2/1/=-+-+-e z z e y y e x x 不妨设x x '≠即0x x '-≠ ∴3//2//1e xx z z e xx y y e ------=∴321,,e e e 共面此与已知矛盾 ∴该表达式唯一 综上两方面,原命题成立由此定理, 若三向量321,,e e e 不共面,那么空间的任一向量都可由321,,e e e 线性表示,我们把{321,,e e e }叫做空间的一个基底,321,,e e e 叫做基向量。

相关文档
最新文档