尺规作图基本作图方法

合集下载

尺规作图九种基本作图

尺规作图九种基本作图

a尺规做图之阳早格格创做【知识回瞅】1、尺规做图的定义:尺规做图是指用不刻度的曲尺战圆规做图.最基原,最时常使用的尺规做图,常常称基原做图.一些搀纯的尺规做图皆是由基原做图组成的.2、五种基原做图:1、做一条线段等于已知线段;2、做一个角等于已知角;3、做已知线段的笔曲仄分线;4、做已知角的角仄分线;5、过一面做已知曲线的垂线; (1)题目一:做一条线段等于已知线段.已知:如图,线段a .供做:线段AB ,使AB = a . 做法:(1) 做射线AP ;(2)正在射线AP 上截与AB=a .则线段AB 便是所供做的图形.(2)题目二:做已知线段的笔曲仄分线. 已知:如图,线段MN.供做:面O ,使MO=NO (即O 是MN 的中面). 做法:(1)分别以M 、N 为圆心,大于MN 21的相共线段为半径绘弧,二弧相接于P ,Q ;(2)对接PQ 接MN 于O .则面PQ 便是所供做的MN的笔曲仄分线. (3)题目三:做已知角的角仄分线. 已知:如图,∠AOB ,供做:射线OP, 使∠AOP =∠BOP (即OP 仄分∠AOB ). 做法:(1)以O 为圆心,任性少度为半径绘弧,分别接OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于MN 21的线段少为半径绘弧,二弧接∠AOB 内于P;(3)做射线OP.则射线OP 便是∠AOB 的角仄分线. (4)题目四:做一个角等于已知角. 已知:如图,∠AOB.供做:∠A’O’B’,使A’O’B’=∠AOB 做法:(1)做射线O’A’;(2)以O 为圆心,任性少度为半径绘弧,接OA 于M ,接OB 于N ;BAP(3)以O’为圆心,以OM 的少为半径绘弧,接O’A’于M’; (4)以M’为圆心,以MN 的少为半径绘弧,接前弧于N’; (5)对接O’N’并延少到B’. 则∠A’O’B’便是所供做的角.(5)题目五:通过曲线上一面干已知曲线的垂线. 已知:如图,P 是曲线AB 上一面.供做:曲线CD ,是CD 通过面P ,且CD ⊥AB. 做法:(1)以P 为圆心,任性少为半径绘弧,接AB 于M 、N ; (2)分别以M 、N 为圆心,大于MN 21的少为半径绘弧,二弧接于面Q ;(3)过D 、Q 做曲线CD. 则曲线CD 是供做的曲线. (6)题目六:通过曲线中一面做已知曲线的垂线已知:如图,曲线AB 及中一面P.供做:曲线CD ,使CD 通过面P ,且CD ⊥AB.做法:(1)以P 为圆心,任性少为半径绘弧,接AB 于M 、N ; (2)分别以M 、N 圆心,大于MN 21少度的一半为半径绘弧,二弧接于面Q ;c abmn (3)过P、Q做曲线CD.则曲线CD便是所供做的曲线.(7)题目七:已知三边做三角形.已知:如图,线段a,b,c.供做:△ABC,使AB = c,AC = b,BC = a. 做法:(1)做线段AB = c;(2)以A为圆心,以b为半径做弧,以B为圆心,以a为半径做弧与前弧相接于C;(3)对接AC,BC.则△ABC便是所供做的三角形.(8)题目八:已知二边及夹角做三角形.已知:如图,线段m,n,∠α.供做:△ABC,使∠A=∠α,AB=m,AC=n.做法:(1)做∠A=∠α;(2)正在AB上截与AB=m ,AC=n;(3)对接BC.则△ABC便是所供做的三角形.(9)题目九:已知二角及夹边做三角形.已知:如图,∠α,∠β,线段m .供做:△ABC,使∠A=∠α,∠B=∠β,AB=m.做法:(1)做线段AB=m;(2)正在AB的共旁做∠A=∠α,做∠B=∠β,∠A与∠B的另一边相接于C.则△ABC便是所供做的图形(三角形).。

第一节 尺规作图

第一节 尺规作图

图 示
5.过一点作已知直线的垂线
点O在直线上 点P在直线外
点 O 在 直 线 上
1.以点O为圆心,任意长为半 径作弧,交直线于A、B两点; 2.分别以点A、B为圆心,以 步 大于 1 AB长为半径向直线 骤 AB两侧作弧,交点分别为M、 2 N; 3.过点M、N作直线MN,直 线MN 即为所求作的垂线
第七章 图形的变化
第一节 尺规作图
考点精讲
五种基本尺规作图 尺规作图
其他作图(2011版课标新增内容)
1.作一条线段等于已知线段 2.作一个角等于已知角 五种基本尺规作图 3.作一个角的平分线 4.作一条线段的垂直平分线
5.过一点作已知直线的垂线
1. 作 一 条 线 段 等 于 已 知 线 段
图 示
3. 作 一 个 角 的 平 分 线
1.以O为圆心,适当长为半径作弧, 分别交OA、OB于点N、M; 步 2.分别以点M、N为圆心,以大于 1 骤 MN 长为半径作弧,相交于点P; 2 3.作射线OP,OP即为所求作的角 平分线
图 示
4. 作 一 条 线 段 的 垂 直 平 分 线
1.分别以点A、B为圆心,以大于 1 AB长为半径,在AB两侧作 2 步 骤 弧,两弧分别交于M、N点; 2.过点M、N 作直线MN,直线 MN即为所求作的垂直平分线
作图作三角形 (2)已知底边和底边上的高作等腰三角形 其 他 作 图 (3)已知一直角边和斜边作直角三角形
2.会利用基 (1)过不在同一直线上的三点作圆 本作图完成 (正六边形
重难点突破
尺规作图综合题 例(2016孝感)如图,在Rt△ ABC中,∠ACB=90°. (1)请用直尺和圆规按下列步骤作图,保留作图痕迹: ①作∠ACB的平分线,交斜边AB于点D; ②过点D作AC的垂线,垂足为点E.

中考数学基础复习第22课尺规作图课件

中考数学基础复习第22课尺规作图课件
2
解得,x=5或-3(舍弃),∴BE=5.
变式2.(202X·长沙)人教版初中数学教科书八年级上册第48页告知我们一种 作已知角的平分线的方法: 已知:∠AOB. 求作:∠AOB的平分线. 作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N; (2)分别以点M,N为圆心,大于 1 MN的长为半径画弧,两弧在∠AOB的内部相交
4.(202X·北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB. 求作:线段BP,使得点P在直线CD上,且∠ABP= ∠BAC. 作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP 就是所求作线段. (1)使用直尺和圆规,依作法补全图形.(保留作图痕迹)
2
∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值

(C)
A.无法确定
B. 1
2
C.1
D.2
5.(202X·河北)如图1,已知∠ABC,用尺规作它的角平分线.
如图2,步骤如下,
第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;
第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;
【解析】(1)则四边形ABCD就是所求作的四边形.
(2)∵AB∥CD,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴ AB . AP
【考点3】尺规作图拓展应用
例3.(202X·苏州)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画 弧,分别交OM,ON于点A,B,再分别以点A,B为圆心,大于 1 AB长为半径画弧,两
2
弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于

五种基本的尺规作图

五种基本的尺规作图
建筑学
在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。

尺规作图课件

尺规作图课件

作圆的直径与半径
总结词
利用直尺和圆规,可以轻松作出圆的直径和半径。
详细描述
首先确定圆心和任意一点在圆上,然后使用直尺和圆规,通过测量和画线,可以作出圆的直径或半径。直径是穿 过圆心且两端都在圆上的线段,而半径是从圆心到圆上任意一点的线段。
04
尺规作图的进阶技能
作已知直线的中垂线
总结词
通过给定直线上的一个点,使用尺规作已知直线的中垂线。
02
尺规作图的基本知识
尺规作图的工具与材料
工具
直尺、圆规、斜边尺
材料
白纸、铅笔、橡皮
尺规作图的规则与限制
规则
只能使用直尺和圆规,不能使用其他工具。
限制
不能折叠、剪切或黏贴图形。
尺规作图的步骤与方法
步骤一
确定作图目标,理解题 目要求。
步骤二
根据题目要求,使用直 尺和圆规绘制草图。
步骤三
仔细检查草图,确保符 合尺规作图的规则和限
制。
步骤四
修改和完善草图,直至 达到预期的作图目标。
03
尺规作图的基本技能
作平行线与垂直线
总结词
利用直尺和圆规,可以轻松作出 平行线和垂直线。
详细描述
首先确定一个点作为起点,然后 使用直尺和圆规,通过测量和画 线,可以作出与已知直线平行的 直线或与已知直线垂直的直线。
作角的平分线
总结词
利用直尺和圆规,可以将一个角平分 成两个相等的角。
何图形。
尺规作图的限制在于只能使用直 尺和圆规,不能使用其他工具来
辅助作图。
尺规作图的历史与发展
尺规作图的历史可以追溯到古希腊时期,当时数学家们开始研究如何使用直尺和圆 规来完成各种几何图形。

中考复习----五种基本尺规作图

中考复习----五种基本尺规作图
①.如图,点C在直线l上,试过点C画出直线l 的垂线.
D
A
C
B
l
②.如图,如果点C不在直线l上,应采取怎样的步骤,过 点C画出直线l的垂线?
图 24.4.10
A D
B
五种基本作图:
►做一条线段等于已知线段
►做一个角等于已知角
►做一条线段的垂直平分线
►做一个角的角平分线
►过一点做已知线段的垂线
构扒初中
魏利
做一条线段等于已知线段
做一个角等于已知角
五种 基本 作图
做一条线段的垂直平分线
做一个角的角平分线
过一点做已知线段的垂线
1.作一条线段等于已知线段
已知:线段AB. 求作:线段A′B′, 使A′B′=AB. 作法与示范:
A B
A′
B′
C′
2、作一个角等于已知角
已知: ∠AOB。
求作: ∠A`O`B`,使∠A`O`B`= ∠AOB。
B
D D`
B`
O
C
A
O`
C`
A`
3、画已知线段的垂直平分线
已知:线段AB。
求作:O.
C A B
D
4、平分已知角
►已知: ∠AOB。
►求作:射线OC,使

AOC= ∠ BOC。
B
E
C
O
D
A
5.过定点作已知直线的垂线

尺规作图一

尺规作图一

O
E
F
G
M
2、在射线OM上截取OE=AB,顺次截取 EF=CD,FG=CD。则线段OG即为所求线 段。
2.任意画出两个角∠1和∠2,使∠1 > ∠2,再作一 个角,使它等于∠1—∠2
• 作法:
• (1)作∠AOB=∠1; • (2)以OA为一边,在∠AOB的内部作 ∠COA=∠2, • ∠BOC就是所求作的角
• 图(1) 图(2) • • 正解 如图(2), • (1)作射线AM;(2)在射线AM上,顺次截取AB=BC=a; • (3)在线段CA上截取CD=b,则线段AD就是所求作的线段.
4.已知∠α与∠β,求作一个角, 使它等于∠α+∠β
• 作法:
• (1)作∠AOC=∠α; • (2)以OC为一边,在∠AOC的外部作 ∠COB=∠β, • ∠AOB就是所求作的角
B
D D`
B`
O
C
A
O`
C`
A`
• 1、作射线O`A`。 • 2、以点O为圆心,以任意长为半径作弧,交OA于 C,交OB于D。 • 3、以点O`为圆心,以OC长为半径作弧,交O`A`于 C`。 • 4、以点C`为圆心,以CD长为半径作弧,交前弧于D`。 • 5、经过点D`作射线O`B`,∠A`O`B`就是所求的角。
3,如下图,已知线段a和b,求作一条线段AD使它的 长度等于2a-b
• 错解 如图(1), • (1)作射线AM;(2)在射线AM上截取AB=BC=a,CD=b, 则线段AD即为所求. • 错解分析 主要是作图语言不严密,当在射线上两次截取时,要写清 是否顺次,而在求线段差时,要交待截取的方向. •
角是轴对称图形, 角平分线所在的直线是它的对称轴
3、平分已知角

初二尺规作图五个方法

初二尺规作图五个方法

初二尺规作图五个方法
尺规作图,是一种利用尺规来绘制图形的一种方法。

它包括五种方法:
一、直线图法:用尺规将两个点之间的直线绘制出来,即可构成图形。

可以用来绘制简单的几何图形,如矩形、梯形、三角形等。

二、折线图法:用尺规将多个点之间的折线绘制出来,即可构成图形。

可以用来绘制复杂的曲线图形,如抛物线、椭圆等。

三、圆弧图法:用尺规将一个圆或一些圆弧绘制出来,即可构成图形。

可以用来绘制圆形的几何图形,如圆、圆环等。

四、线环图法:用尺规将一个线环绘制出来,即可构成图形。

可以用来绘制复杂的几何图形,如圆环、环形等。

五、投影法:用尺规将投影绘制出来,即可构成图形。

可以用来绘制立体图形,如体积图、投影图等。

以上就是尺规作图的五种方法。

尺规作图是一种简单实用的绘图方法,可以用来绘制各种几何图形和立体图形。

它的最大优势在于可以准确控制作图的尺寸和准确性,从而获得精确的图形。

由于尺规作图的优点,在日常工作中,它被广泛应用于设计图纸、绘制图形等方面。

尺规作图的五种方法都是绘图中必不可少的工具,因此,在绘制图形时,应该根据自身的需求充分考虑这五种方法,以求最佳的作图效果。

尺规作图.精选

尺规作图.精选

第9讲尺规作图1.尺规作图定义:只用没有刻度的直尺和圆规作图称为尺规作图2.五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线;过一点作一条直线与已知直线垂直。

3.五种基本作图步骤:(1)作一条线段等于已知线段求作:线段AB等于线段a作法:如图,①先画射线AC.②然后用圆规在射线AC上截取AB=a.线段AB就是所要作的线段.(2)作一个角等于已知角求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:如图,①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作已知角的平分线求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于12DE的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC。

OC就是所求的射线.(4)作线段的垂直平分线求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.(5)经过已知点作这条直线的垂线情况a:经过已知直线上的一点作这条直线的垂线,如图已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线情况b:经过已知直线外一点作这条直线的垂线.如图已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于12DE的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.★注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.4.三角形的外接圆、三角形的内切圆的作法。

【中考数学考点复习】第一节 尺规作图 课件(23张PPT)

【中考数学考点复习】第一节  尺规作图 课件(23张PPT)
段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线

第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;

4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.

中考数学知识点复习:尺规作图全面版

中考数学知识点复习:尺规作图全面版

如何利用尺规作图解决最值问题?
最值问题的求解
最值问题是一类求解最优解的问题,可以利用尺规作图来解决。例如,在几何、代数等领域中,经常需要使用尺规作 图来求解最值问题。
作图方法
利用尺规作图求解最值问题,需要先了解问题的具体内容,然后根据问题内容进行尺规作图。在作图过程中,需要注 意图形绘制的准确性和规范性,以保证求解的准确性。
03
多边形的尺规作图
作已知线段的垂线
01
总结词:通过一个已知点,作 已知线段的垂线,是尺规作图
的基础。
02
详细描述
03
04
1. 分别以线段的两个端点为 圆心,以大于线段的一半为半 径画圆弧,得到两个交点。
2. 连接两个交点,得到的直 线即为已知线段的垂线。
已知二线段平行的垂线段的中垂线
总结词:找到一个已知的平行线段的中垂线,是尺规作 图的进阶技能。
1. 以平行线段的一个端点为圆心,以适当长度为半径画 圆弧,与平行线段相交于两点。
详细描述
2. 连接这两个交点得到的直线即为已知平行线段的中垂 线。
作已知直线的平行线
01
总结词:通过一个已知点,作已知直线的平行线,是尺规作图的基本 技能之一。
02
详细描述
03
1. 以已知点为圆心,以适当长度为半径画圆弧,与直线相交于两点。
04
2. 连接这两个交点得到的直线即为已知直线的平行线。
作已知二线段的中垂线
01 总结词:通过两个已知点,作已知二线段 的中垂线,是尺规作图的高级技能。
02
详细描述
Hale Waihona Puke 031. 以两个已知点为圆心,以适当长度为半 径画圆弧,得到两个交点。
04

尺规作图专题

尺规作图专题

尺规作图专题知识精讲1.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图,最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2.五种基本作图:①作一条线段于已知线段②作一个角等于已知角③作已知线段的垂直平分线④作已知角的角平分线⑤过一点作已知直线的垂线1.作一条线段等于已知线段;已知线段a,在AP上作一条以A点端点的线段AB。

作法步骤1:作射线AP;步骤2:在射线AP上截取AB=a,也即以A点为圆心,以a为半径画弧,交AP于点B则线段AB就是所作的图形。

2.作一个角等于已知角;已知:如图,∠AOB.求作:∠A’O’B’=∠AOB作法步骤1:作射线O’A’;步骤2:以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;步骤3:以O’为圆心,以OM的长为半径画弧,交O’A’于M’步骤4:以M’为圆心,以MN的长为半径画弧,交前弧于N’;步骤5:连接O’N’并延长到B’则∠A’O’B’就是所求作的角。

原理:△NOM≌△N’O’M’对应角相等3.作已知线段的垂直平分线的;已知线段AB ,求作线段AB 的垂直平分线作法步骤1.分别以A 、B 为圆心,以大于12AB 的统一长度为半径作弧 步骤2.作过点D 、E 直线DE直线DE 就是所作的垂直平分线原理:利用的是三角形全等4.作已知角的角平分线;步骤1:在OA 射线和OB 射线上分别截取OD 、OE,使得OD=OE;步骤2:分别以D 、E 为圆心,以大于 的统一长度为半径作弧 两弧交于∠AOB 内一点C步骤3:作射线OC 。

OC 就是所作的角平分线原理:利用的是三角形△OEC ≌△ODC 对应角相等12DE5.过一点作已知直线的垂线;如图,过点C作直线AB的垂线。

作法步骤1:以C点为圆心,任意长为半径画弧,交AB于M、N;步骤2:分别以M、N为圆心,大于12MN长度为半径画弧,两弧交于点D;步骤3:过点C、D作直线PQ;则直线PQ就是所做的直线。

用尺规作图的方法

用尺规作图的方法

用尺规作图的方法
使用尺规作图的方法通常是指使用直尺和圆规来绘制几何图形。

下面是一些常见的尺规作图方法:
1. 画直线:使用直尺将两点连接起来,得到直线段。

2. 作等分线段:给定一条线段AB,使用直尺从A点和B点分别向外画出等长的线段AC和BD,然后使用圆规以AC为半径或以BD为半径在A点或B点上作圆弧,两个圆弧的交点C即为原线段AB的中点。

3. 作平行线:给定一条直线AB和一点C,使用尺规方法如下:
a. 以C为中心,任意取一条长度大于AC的线段CD;
b. 使用圆规以C为中心,以线段CD的长度作圆弧,在直线AB上作出EF 两个交点;
c. 使用直尺连接线段EF,得到平行于直线AB的直线。

4. 作垂直线:给定一条直线AB和一点C,使用尺规方法如下:
a. 使用直尺连接点C与直线AB上的任意一点D;
b. 以点D为中心,调整圆规的宽度,绘制一个圆弧,与直线AB相交于E 和F两个点;
c. 使用直尺连接点C和点E或F,得到垂直于直线AB的直线。

5. 作角的平分线:给定一个角ACB,使用尺规方法如下:
a. 以点C为中心,绘制一个圆弧,与直线CA和CB分别相交于D和E两个点;
b. 以点D和E为中心,调整圆规的宽度,分别绘制两个圆弧,使得两个圆弧相交于F;
c. 使用尺子连接点C和F,得到角ACB的平分线。

需要注意的是,尺规作图方法不能解决所有的几何问题,只能在一些特定的条件下使用。

同时,尺规作图的精度也受到直尺和圆规的限制,因此绘制出的图形可能会有一定的误差。

在实际应用中,还需要结合其他几何工具和方法来进行精确的绘图。

八年级数学上人教版《 尺规作图》课堂笔记

八年级数学上人教版《 尺规作图》课堂笔记

《尺规作图》课堂笔记
一、基本概念和定义
1.尺规作图:只使用圆规和无刻度直尺进行的作图方法。

2.基本作图:通过尺规可以完成的基本图形绘制。

二、尺规作图的基本步骤和要求
1.明确题目要求,确定需要绘制的图形。

2.选择合适的圆心和半径,用圆规进行作图。

3.使用无刻度直尺进行连线,完成图形。

4.标记必要的角度和长度信息。

5.检查图形是否符合题目要求,进行调整。

三、常见图形的尺规作图方法
1.等分线段:利用圆规和无刻度直尺将线段等分为指定份数。

2.作一个角等于已知角:利用圆规截取已知角两边等长线段,再在无刻度直尺上
画出等长线段,连接两端点得到所求角。

3.作已知线段的垂直平分线:分别以线段两端点为圆心,以大于线段长度一半为
半径画弧,两弧交于两点,连接这两点即为所求垂直平分线。

4.作一个角大于、小于或等于已知角:通过截取和比较已知角两边等长线段来得
到所求角。

四、注意事项
1.圆规使用时要固定好圆心,保持半径不变。

2.无刻度直尺只能用来进行连线和画直线,不能进行度量。

3.作图过程中要保持图形清晰、整洁,避免混淆。

4.完成作图后要进行检查,确保符合题目要求。

尺规作图九种基本作图

尺规作图九种基本作图

aM 尺规作图【知识回顾】1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB ,使AB = a . 作法:(1) 作射线AP ;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的垂直平分线。

已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点). 作法:(1)分别以M 、N 为圆心,大于MN 21的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .则点PQ 就是所求作的MN的垂直平分线。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:(1)以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M ,N ; (2)分别以M 、N为圆心,大于MN 21的线段长为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

③②①PBBA P (4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB作法:(1)作射线O ’A ’;(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就是所求作的角。

初中尺规作图基本方法

初中尺规作图基本方法

初中尺规作图基本方法
尺规作图是绘制平面几何图形的一种重要方法,初中阶段主要涉及到以下四种基本作图:
1. 线段作图:给出一条直线段AB,要求在这个线段上取一点P,使AP:PB=2:3。

(具体方法:先作出线段AB,然后以A 为圆心,以AB 为半径画一个圆,再以B 为圆心,以BA 为半径画一个圆,两圆交点记为P,连接AP、PB即可)
2. 直角三角形作图:给定一个直角三角形,要求在某一边上取一点,使该点到此边的距离为另一条直角边的一半。

(具体方法:先作出直角三角形ABC,然后以AB 为直径画一个半圆,半圆上一点记为D,连接BD,把BD 延长至E,使BE=BD,连接CE,设置长为BE 的尺子,从点C 开始,把尺子逐步向E 滑动,途中记录一点F,使CF=BE,连接AF,即为所求点)
3. 等边三角形作图:给定一条直线段AB,要求在这个线段上取一点P,使三角形PAB 为等边三角形。

(具体方法:先作出线段AB,然后以A 为圆心,以AB 为半径画一个圆,再以B 为圆心,以BA 为半径画一个圆,两圆交点分别记为P、Q,连接PQ,以PQ 为边取一等边三角形PQR,PQ 与AB 的交点即为所求点)
4. 正方形作图:给定一条直线段AB,要求在这个线段上取一点P,使PABQ 为
正方形。

(具体方法:先作出线段AB,然后以A 为圆心,以AB 为半径画一个圆,再以B 为圆心,以BA 为半径画一个圆,两圆交点分别记为P、Q,连接PQ,将PQ 延长至R,使PR=AB,连接AR、BR,即可得到正方形PABQ)。

尺规作图的步骤(制图课件)

尺规作图的步骤(制图课件)

1.4 尺规绘图的作图步骤
(3)画图形的主要轮廓线,再由大到小,由整体到局部,直至画出所有轮廓 线。 (4)画尺寸界限、尺寸线以及其它符号等。 (5)最后进行仔细的检查,擦去多余的底稿线。 3.用铅笔加深 (1)当直线与曲线相连时,先画曲线后画直线。加深后的同类图线,其粗细 和深浅要保持一致。加深同类线型时,要按照水平线从上到下,垂直线从左到 右的顺序一次完成。 (2)各类线型的加深顺序是:中心线、粗实线、虚线、细实线。 (3)加深图框线、标题栏及表格,并填写其内的画法
4.尺规作图的步骤
1.4 尺规绘图的作图步骤
一幅完整图样的绘制步骤具体如下:
1.准备工作 (1)收集阅读有关的文件资料,对所绘图样的内容及要求进行了解,在学 习过程中,对作业的内容、目的、要求,要了解清楚,在绘图之前做到心中 有数。 (2)准备好必要的制图仪器、工具和用品。 (3)将图纸用胶带纸固定在图板上,位置要适当。一般将图纸粘贴在图板的 左下方,图纸左边至图板边缘3~5cm,图纸下边至图板边缘的距离略大于丁 字尺的宽度。 2.画底稿 (1)按制图标准的要求,先把图框线及标题栏的位置画好。 (2)根据图样的数量、大小及复杂程度选择比例,安排图位,定好图形的中 心线。
1.4 尺规绘图的作图步骤
4.描图 描图的步骤与铅笔加深基本相同。 5.注意事项 (1)画底稿的铅笔用H至2H,线条要轻而细。 (2)加深粗实线的铅笔用HB或2B,加深细实线的铅笔用H 或2H。写字 的铅笔用H或HB。加深圆弧时所用的铅芯,应比加深同类型直线所用的铅 芯软一号。 (3)加深或描绘粗实线时,要以底稿线为中心线,以保证图形的准确性。
总目录
项目一 制图基本知识与技能 项目二 投影法的基本知识 项目三 点、直线 面的投影 项目四 基本体的投影 项目五 截交线和相贯线 项目六 组合体 项目七 轴测投影 项目八 机件的常用表达法 项目九 建筑图的识读 项目十 识图综合训练 项目十一 计算机绘图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
M 初中尺规作图基本方法
1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。

已知:如图,线段a .
求作:线段AB ,使AB = a . 作法:
(1) 作射线AP ;
(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的垂直平分线。

已知:如图,线段MN.
求作:点O ,使MO=NO (即O 是MN 的中点). 作法:
(1)分别以M 、N 为圆心,大于MN 2
1
的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .
则点PQ 就是所求作的MN的垂直平分线。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,
求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:
(1)以O 为圆心,任意长度为半径画弧,
分别交OA ,OB 于M ,N ; (2)分别以M 、N为圆心,大于MN 2
1的线段长
为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。





P
B
A P 已知:如图,∠AO
B 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB
作法:
(1)作射线O ’A ’;
(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就是所求作的角。

(5)题目五:经过直线上一点做已知直线的垂线。

已知:如图,P 是直线AB 上一点。

求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。

作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 为圆心,大于MN 2
1的长为半径画弧,两弧交于点Q ; (3)过D 、Q 作直线CD 。

则直线CD 是求作的直线。

(6)题目六:经过直线外一点作已知直线的垂线
已知:如图,直线AB 及外一点P 。

求作:直线CD ,使CD 经过点P ,
且CD ⊥AB 。

作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 圆心,大于MN 2
1
长度的一半为半径画弧,两弧交于点Q ;
(3)过P 、Q 作直线CD 。

则直线CD 就是所求作的直线。


a b
m
n
m
(7)题目七:已知三边作三角形。

已知:如图,线段a ,b ,c.
求作:△ABC ,使AB = c ,AC = b ,BC = a. 作法:
(1) 作线段AB = c ;
(2) 以A 为圆心,以b 为半径作弧,
以B 为圆心,以a 为半径作弧与 前弧相交于C ; (3) 连接AC ,BC 。

则△ABC 就是所求作的三角形。

(8)题目八:已知两边及夹角作三角形。

已知:如图,线段m ,n, ∠α.
求作:△ABC ,使∠A=∠α,AB=m ,AC=n. 作法:
(1) 作∠A=∠α;
(2) 在AB 上截取AB=m ,AC=n ; (3) 连接BC 。

则△ABC 就是所求作的三角形。

(9)题目九:已知两角及夹边作三角形。

已知:如图,∠α,∠β,线段m .
求作:△ABC ,使∠A=∠α,∠B=∠β,AB=m. 作法:
(1) 作线段AB=m ; (2) 在AB 的同旁
作∠A=∠α,作∠B=∠β, ∠A 与∠B 的另一边相交于C 。

则△ABC 就是所求作的图形(三角形)。

相关文档
最新文档