(人教版)数学必修五:1.1《正弦定理和余弦定理(1)》ppt课件教学文案

合集下载

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx
12
跟踪训练1 如图,锐角△ABC的外接圆O半径为R,角A,B,C所对的 边分别为a,b,c.求证:sina A =2R. 证明
13
类型二 用正弦定理解三角形
例2 已知△ABC,根据下列条件,解三角形:a=20,A=30°,C= 45°. 解答 ∵A=30°,C=45°,∴B=180°-(A+C)=105°, 由正弦定理得 b=assiinnAB=20ssiinn3100°5°=40sin(45°+60°)=10( 6+ 2), c=assiinnAC=20sisnin3405°°=20 2, ∴B=105°,b=10( 6+ 2),c=20 2.
A.直角三角形 C.锐角三角形
√B.等腰三角形
D.钝角三角形
由sin A=sin C,知a=c,∴△ABC为等腰三角形.
1 2 3 247
3.在△ABC中,已知BC= 5 ,sin C=2sin A,则AB=_2__5___.
答案 解析
由正弦定理,得 AB=ssiinn CABC=2BC=2 5.
18
命题角度2 运算求解问题
例4
在△ABC中,A=
π 3
,BC=3,求△ABC的周长的最大值.
解答
19
反思与感悟
利用sina A=sinb B=sinc C=2R 或正弦定理的变形公式 a=ksin A,b= ksin B,c=ksin C(k>0)能够使三角形边与角的关系相互转化.
22
跟 踪 训 练 3 在 △ABC 中 , 角 A 、 B 、 C 的 对 边 分 别 是 a 、 b 、 c , 若 A∶B∶C=1∶2∶3,求a∶b∶c的值. 解答
23
当堂训练
25
1. 在△ABC中,一定成立的等式是 答案 解析

简约大气人教版高中数学必修5《正弦和余弦定理》教学PPT课件

简约大气人教版高中数学必修5《正弦和余弦定理》教学PPT课件

y=sinx
y=cosx
X
c2=a2+b2
Y O
余弦定理
结论
三角形中任何一边的平方等于其他两边的平
方的和减去这两边与它们的夹角的余弦的积 的两倍。即
a2=b2+c2-2cbcosA b2=a2+c2-2cacosB c2=a2+b2-2abcosC
y=sinx
y=cosx
X
c2=a2+b2
Y O
即a/sinA = b/sinB = c/sinC
y=sinx
y=cosx
叁 钝角
D
C
b
a
A
c
B
X
c2=a2+b2
Y O
正弦定理
结论
在一个三角形中,各边和它所对应的正弦 的比相等,即a/sinA = b/sinB = c/sinC;
正弦定理非常好地描述了任意三角形中边 和角的一种数量关系。
y=sinx
₪ 很明显,非直角三角形的特殊情况下,
正弦定理是不能求出第三条边c的。
联系已经学过的知识和方法, 应该从什么途径来解决这个问题呢?
y=sinx
y=cosx
X
C
b
a
A
c? B
c2=a2+b2
Y
证明
O
X
由于涉及边长的问题,
我们可以考虑用向量的数量积。
如图,设CB=a ,CA=b ,BA=c ,那么c=a-b
即a/sinA = b/sinB = c/sinC
y=sinx
y=cosx
X
贰 锐角
C
b
a
A cD
B

高中数学必修五1.1正弦定理和余弦定理 课件 (共34张PPT)

高中数学必修五1.1正弦定理和余弦定理 课件 (共34张PPT)

两种途径 根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角 转换.
双基自测 1.(人教A版教材习题改编)在△ABC中,A=60° ,B=75° ,a =10,则c等于( A.5 2 10 6 C. 3 ). B.10 2 D.5 6
a 解析 由A+B+C=180° ,知C=45° ,由正弦定理得: sin A = c 10 c 10 6 sin C,即 3= 2.∴c= 3 . 2 2 答案 C
sin A cos B 2.在△ABC 中,若 a = b ,则 B 的值为( A.30° 解析 B.45° C.60° D.90°
4. 已知两边和其中一边的对角, 解三角形时, 注意解的情况. 如 已知 a,b,A,则 A 为锐角 图形 A 为钝角或直角
关系 式 解的 个数
a<b sin A a=bsin A
bsin A<a< b 两解
a≥b a>b a≤b
无解
一解
一解 一解 无解
一条规律 在三角形中,大角对大边,大边对大角;大角的正弦值也较大, 正弦值较大的角也较大,即在△ABC 中,A>B⇔a>b⇔sin A >sin B. 两类问题 在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一 边,求其它边或角; (2) 已知两边及一边的对角,求其它边或 角.情况(2)中结果可能有一解、两解、无解,应注意区分.余 弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两 角;(2)已知三边,求各角.
正弦定理和余弦定理
基础梳理 a b c 1.正弦定理:sin A=sin B=sin C=2R,其中 R 是三角形外接 圆的半径.由正弦定理可以变形为: (1)a∶b∶c=sin A∶sin B∶sin C; (2)a= 2Rsin A ,b= 2Rsin B ,c= 2Rsin C ; a b c (3)sin A=2R,sin B=2R,sin C=2R等形式,以解决不同的三 角形问题.

人教版高中数学必修五正弦定理和余弦定理课件

人教版高中数学必修五正弦定理和余弦定理课件

解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是

人教版2017高中数学(必修五)第一章 §1.1 正弦定理和余弦定理 1.1.2(一)PPT课件

人教版2017高中数学(必修五)第一章 §1.1 正弦定理和余弦定理 1.1.2(一)PPT课件

a2+b2-c2 cos C = 2ab .
知识点三
适宜用余弦定理解决的两类基本的解三角形问题
思考1
观察知识点二第1条中的公式结构,其中等号右边涉及几个 量?你认为可用来解哪类三角形? 答案
每个公式右边都涉及三个量,两边及其夹角 . 故如果已知三
角形的两边及其夹角,可用余弦定理解三角形.
思考2
观察知识点二第2条中的公式结构,其中等号右边涉及几个
跟踪训练1
例1涉及线段长度,,以A为原点,边AB所在直线为x轴建立直角坐标系,
则A(0,0),B(c,0),C(bcos A,bsin A),
∴BC2=b2cos2A-2bccos A+c2+b2sin2A,
即a2=b2+c2-2bccos A.
跟踪训练2 在△ABC中,已知a=2,b= 2 2, C=15°,求A. 解答
由余弦定理,得 c =a +b -2abcos C=8-4 3,
2 2 2
所以 c= 6- 2.
asin C 1 由正弦定理,得 sin A= c =2,
因为b>a,所以B>A,所以A为锐角,所以A=30°.
命题角度2 已知三边 例3 在△ABC中,已知a=134.6 cm,b=87.8 cm,c=161.7 cm,解 三角形.(角度精确到1′) 解答
第一章 §1.1
正弦定理和余弦定理
1.1.2 余弦定理(一)
学习目标
1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.
2.会运用余弦定理解决两类基本的解三角形问题.
内容索引
问题导学
题型探究
当堂训练
问题导学
知识点一
余弦定理的推导
思考1
根据勾股定理,若△ABC 中, ∠C = 90°,则 c2 = a2 + b2 = a2 +b2-2abcos C.① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a=b=c时,∠C=60°,

正弦定理和余弦定理ppt课件

正弦定理和余弦定理ppt课件
总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。

人教A版高中数学必修五课件《1.1正弦定理和余弦定理》.pptx

人教A版高中数学必修五课件《1.1正弦定理和余弦定理》.pptx

B
思考2:将上述关系变式,边长c有哪几 种表示形式?由此可得什么结论?
C
b
a
A
c
B
a= b= c sin A sin B sinC
思考3:可a变形= 为b
sin A sin B
a,在si锐n角B △=AbBCs中in,A该等式是否成立?为
什么?
C
b
a
A
B D
思考4:
若∠C为钝角,a是si否n B成=立b?sin A 若∠A为钝角,a是sin否B成=立b s?in A 若∠B为钝角,a是sin否B成=立b s?in A
例2.在△ABC中,已知a=, b=,2 c3=,解三6角- 形.2
2+ 6
理论迁移 例3在△ABC中,已知a=,b=,3 B=30°7, 求边长c的值.
例4已知△ABC的周长为20,A=30°, a=7,求这个三角形的面积.
理论迁移
例5在△ABC中,角A、B、C的对边分
别为a、b、c,若AB∙AC=BA∙BC=1.
3.正弦定理不是万能的,如已知三角形 的三边长,利用正弦定理就不能求出三 个内角,因此我们还需要建立新的理论. 欲知后事如何,且听下回分解.
作业:
P10习题1.1A组:2. B组:2.
第一章解三角形
1.1正弦定理和余弦定理 1.1.2余弦定理 第一课时
问题提出 1.正弦定理的外在形式是什么?其数学 意义如何?
思考1:在△ABC中,向量Au,uCur,之AuuB间ur 有Bu什uCur 么关系?
C
b
a
A
B
思i,考使2i:⊥若,Au则uB∠ur向A为量锐i与角,,,的过Au夹uC点ur角A分A作uuBu别r单是位Buu什C向ur 么量?

人教A版必修五 1.1.1 正弦定理ppt课件

人教A版必修五 1.1.1 正弦定理ppt课件

栏 目 链 接
题型1
已知两角及一边解三角形
例1 在△ABC中,已知A=30°,B=45°,a=2,解 三角形.
a b 解析:由正弦定理可知: = ,即 sin A sin B 2 b = ,∴b=2 2. sin 30° sin 45° 又C=180° -30° -45° =105° ,由正弦定理有: 2 c = , sin 30° sin 105° 即c=4sin (60° +45° )= 6+ 2.
解析:由A+C=2B及A+B+C=180° 知,B=60° ,由 栏 目 链 1 3 1 正弦定理知, = ,即sin A= ,由a<b知,A< 接 sin A sin 60° 2 B=60° ,则A=30° ,C=180° -A-B=180° -30° -60° = 90° ,sin C=sin 90° =1. 答案:1
a b c 解析:设正弦定理 = = =k,又因 sin A sin B sin C a c sin A=sin C,故 = ,∴a=c. k k 答案:B
)
栏 目 链 接
自测 自评
2.△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 c= 2,b= 6,B=120° ,则 a 等于( ) A. 6 B.2 C. 3 D. 2
解析:设a=2k,因为a∶b∶c=2∶3∶4,所以a= 2k,b=3k,c=4k,所以(a+b)∶(b+c)∶(c+a)= 5k∶7k∶6k=5∶7∶6. 答案:5∶7∶6
6.(1)三角形中任意两边和______第三边. (2)三角形ABC中,三边长度分别为3、4、x,则x的范围是 __________. 答案:(1)大于 (2)解析:由3+4>x,4+x>3,x+3>4,可知1<x<7. 答案:1<x<7

正弦定理和余弦定理 PPT课件人教版

正弦定理和余弦定理 PPT课件人教版

6 2<
2.
∴∠A 有两解,∴A=60°或 120°.
当 A=60°时,C=180°-45°-60°=75°,
c=bssiinnBC=
s2isni4n57°5°=
6+ 2
2 .
当 A=120°时,C=180°-45°-120°=15°,
c=bssiinnBC=
s2isni4n51°5°=
6- 2
2 .
其他推导方法
(1)因为涉及边长问题,从而可以考虑用向量来研究 此问题.
提示:
作单位向量j⊥AC,j与AB夹角为锐角. j
由向量的加法可得AB = AC + CB, a
C b
则j·AB = j·(AC + CB),
B
A
所以j·AB = j·AC +j·CB,
j AB cos(90°- A)= 0 + j CB cos(90°- C),
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
C
sinA sinB
同理可得 b = cຫໍສະໝຸດ sinB sinCab
从而 a = b = c . B sinA sinB sinC
DA
(2)钝角三角形 如图,类比锐角三角形,请同学 们自己推导.

(人教版)数学必修五:1《正弦定理和余弦定理(1)》ppt课件 公开课精品课件

(人教版)数学必修五:1《正弦定理和余弦定理(1)》ppt课件  公开课精品课件

2
3+1 4.
根据正弦定理,得 a=cssiinnCA=2ssiinn7650°°
= 22×3+23 1= 6( 3-1), 4
b=cssiinnCB=2ssiinn7455°°= 22×3+221=2( 3-1). 4
[方法总结] (1)已知任意两角和一边,解三角形的步骤: ①由三角形内角和定理求出第三个角; ②由正弦定理公式的变形,求另外的两边. (2)注意事项: 已知内角不是特殊角时,往往先求出其正弦值,再根据以 上步骤求解.
1.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即
正弦定理的向量法证明: 证明:(向量法) 当△ABC 是锐角三角形时,如图(1)所示, 过点 A 作单位 向量 i 垂直于 AB,因为A→C=A→B+B→C,所以 i·A→C=i·A→B+i·B→C, 所以 b·cos(90°-A)=c·cos90°+a·cos(90°-B),即 bsinA=asinB, 得sianA=sibnB.同理可得sianA=sincC,所以sianA=sibnB=sincC.
1.任意三角形的内角和为________;三条边满足:两边之 和________第三边,两边之差________第三边,并且大边对 ________,小边对________.
2.直角三角形的三边长a,b,c(斜边)满足________定 理,即________.
[答案] 1.180° 大于 小于 大角 小角 2.勾股 a2 +b2=c2
运用正弦定理求有关三角形的面积问题
已知在△ABC 中,c=2 2,a>b,C=π4,tanA·tanB =6,试求三角形的面积.
[分析] 本题可先求 tanA,tanB 的值,由此求出 sinA 及 sinB, 再利用正弦定理求出 a,b 及三角形的面积.

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理课件新人教A版必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理课件新人教A版必修5

解 :(1)由正弦定理 ,得 三角形无解 . (2)由正弦定理 ,得
根据正弦定理 ,得
������sin������ 2sin60° a= = sin������ sin75°
=
2× 2
3
2( 3+1) 4
= 6( 3 -1)=3 2 − 6,
������sin������ b= sin������
=
2sin45° sin75°
=
2× 2
2
2( 3+1) 4
=2( 3-1)=2 3-2.
(1)由三角形的内角和定理求出第三个角;
(2)由正弦定理公式的变形,求另外的两条边.
典型例题1
在△ABC中,已知A=60°,B=45°,c=2,解三角形. 思路分析:由三角形的内角和为180°可求C,根据正弦定理可求a,b. 解:在△ABC中,C=180°-(A+B)=180°-(60°+45°)=75°. sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30° 2 3 2 1 2( 3+1) = × + × = . 2 2 2 2 4
3 A. 2 2 B. 3 sin������ =( sin������
)
2 C. 5
D.3 =
������ ������
������ 解析 :由正弦定理,得 sin������
=
������ sin������ ,故 sin������ sin������
=
2 . 3
答案 :B
2.解三角形 (1)一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素. 解三角形.

《正弦定理余弦定理》课件

《正弦定理余弦定理》课件

THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。

人教版必修五1.1.1正弦、余弦定理课件

人教版必修五1.1.1正弦、余弦定理课件

B. acos A bcos B
C. asin B bsin A
D. acos B bcos A
(2)若A,B,C是⊿ABC的三个内角,则
sinA+sinB__>__sinC.
(3)在ABC中,C 2B,则sin 3B 等于(B) sin B
A.b/a
B.a/b
C.a/c
D.c/a
正弦定理、余弦定理
正弦定理、余弦定理
例题讲授
例1,在ABC中,已知A 32.0, B 81.8, a 42.9cm,解三角形 解:根据三角形内角和定理, C 180 ( A B) 180 (32.0 81.8 ) 66.2 根据正弦定理,b asin B 42.9sin 81.8 80.1(cm)
c a sin C 20sin 24 13(cm). sin A sin 40
正弦定理、余弦定理
例题讲授
例3 在 ABC 中,B 45,C 60,a 2( 3 1) ,求
ABC的面积S.
解: A 180 (B C ) 75
A
∴由正弦定理得 b a sin B 2(
3
1)(
练习:
(1)在 ABC 中,一定成立的等式是( C )
A. asin A bsinB
B. acos A bcos B
C. asin B bsin A
D. acos B bcos A
(2)在 ABC中,若
a cos
A
b cos B
c cos C
,则 ABC 是(
D)
2
2
2
A.等腰三角形
B.等腰直角三角形
sin A sin 32.0 根据正弦定理,c asin C 42.9sin 66.2 74.1(cm)

人教A版高中数学必修5《一章 解三角形 1.1 正弦定理和余弦定理 1.1.2 余弦定理》示范课课件_5

人教A版高中数学必修5《一章 解三角形  1.1 正弦定理和余弦定理  1.1.2 余弦定理》示范课课件_5
(边角互化,求角,判别角)
问题一:三角形中的边角运算 问题二:三角形的形状判断 问题三:三角形的面积求解
例1 A,B两地之间隔着一个水塘,先选择另一点C,测得
,求A,B两地之间的距离(精确到1m). 解 由余弦定理,得
所以, . 答:A,B两地之间的距离约为168m.
例2 在长江某渡口处,江水以5的速度向东流.一渡船在江南岸的码头 出发,预定要在后到达江北岸码头.设为正北方向,已知码头在码头的 北偏东,并与码头相距.该渡船应按什么方向航行?速度是多少(角度 精确到,速度精确到)?
三角形的形状判断
(1)在△ABC中,acosA=bcosB,判断三角形的形状。
思路:转化成单一的角关系或边长的关系
(2)在△ABC中,a=5,b=6,c=8,△ABC的形状是( C )
A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 都有可能
cos C a2 b2 c2 25 36 64 1 0
2ab
256
20
三角形的面积求解
SABC

1 底高 2
SABC

1 2
absin C

1 bcsin 2
A

1 2
ac sin
B
SABC

1 2
(a
b

c)r(r是该三角形内切圆半径)
在ABC中,A 1200, AB 5, BC 7, 求ABC的面积。
1、在△ABC中,已知sinA:sinB:sinC=5:7:8,
则B=
2.长7m的梯子靠在斜壁上,梯脚与壁基相距 m,梯顶在沿着壁向上6m的地方,求壁面和 地面所成的角(精确到).
3.在中,已知,试判断此三角形的形状. 4.在中,设=a,=b,且|a|=2,|b|=,

正弦定理和余弦定理课件PPT

正弦定理和余弦定理课件PPT

在钝角三角形 ABC 中,a=1,b=2,c=t,且 C 是最大角,则 t 的取值范围是________.
[错解] ∵△ABC 是钝角三角形且 C 是最大角,∴C>90°, ∴cosC<0,∴cosC=a2+2ba2b-c2<0, ∴a2+b2-c2<0,即 1+4-t2<0. ∴t2>5.又 t>0,∴t> 5, 即 t 的取值范围为( 5,+∞).
sin A
3
y 4sin x 4sin( 2 x) 2 3 3
4 3 sin(x ) 2 3, 6
A ,0 B x 2 .
3
3
故 x ( , 5),sin(x ) (1 ,1],
6 66
62
∴y的取值范围为 (4 3,6 3].
正、余弦定理的综合应用 【名师指津】正、余弦定理的综合应用
(2)由于 a:b:c=1: 3:2, 可设 a=x,b= 3x,c=2x. 由余弦定理的推论,得 cosA=b2+2cb2c-a2 =32x×2+43xx2×-2xx2= 23,故 A=30°. 同理可求得 cosB=12,cosC=0,所以 B=60°,C=90°.
已知三角形的三边长分别为 x2+x+1,x2-1 和 2x+ 1(x>1),求这个三角形的最大角.
∵∠ADC=45°,DC=2x, ∴在△ADC 中,根据余弦定理,得 AC2=AD2+DC2-2AD×DC×cos45°, AC2=4x2-4x+2, 又 AC= 2AB, ∴AC2=2AB2, 即 x2-4x-1=0,解得 x=2± 5. ∵x>0,∴x=2+ 5,即 BD=2+ 5.
名师辨误做答
第一章
解三角形
第一章
1.1 正弦定理和余弦定理

人教版高二数学必修5课件1.1正弦定理和余弦定理-正弦定理精选ppt课件

人教版高二数学必修5课件1.1正弦定理和余弦定理-正弦定理精选ppt课件
求 a和 A,C
点评:正弦定理也可用于解决已知两边及一边的对角,求 其他边和角的问题.
1.1.1 正弦定理
小结:
• 正弦定理 • 主要应用
ab c sinA sinB sinC
(1) 已知两角及任意一边,可以求出其他两边 和另一角;
(2)已知两边和其中一边的对角,可以求出三 角形的其他的边和角。(此时可能有一解、二解、 无解)
• 两角和任意一边,求其他两边和一角
• 两边和其中一边对角,求另一边的对角,进而可求 其他的边和角
• 例1:已知在 ABC中, c1,A 04,5 C 3,0 求a,b 和B
点评:正弦定理可以用于解决已知两角和一边求另两边 和一角的问题.
n例2:已知在 ABC中, b 3,B60,c1,
过A作单位向量j垂直于AC 由ACCB AB 等式两边同取与向j量 的数量积运算
得j ACCB j AB
j AC cos90 j CB cos90 C j AB cos90 A
asinC csin A a c sin A sinC
直角三角形中:
siA na,siB nb,siC n1
A
c
c
即 c a ,c b ,c c
siA n siB n siC n b
c
a b c sinA sinB siC n
CaB
斜三角形中这一关系式是否仍成立呢?
(1)锐角三角形 B
j
A
C
(2)钝角三角形 B
ห้องสมุดไป่ตู้
j
A
B
A
C
j
C
j
两解 一解 两解 无解
小结:
通过本节学习,我们一起研究了正弦定 理的证明方法,同时了解了向量的工具性作 用,并且明确了利用正弦定理所能解决的两 类有关三角形问题:已知两角一边;已知两 边和其中一边的对角.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[分析] 由正弦定理,得 a=2RsinA,b=2RsinB,代入已 知等式,利用三角恒等变换,得出角之间的关系,进而判断△ ABC 的形状.
[方法总结] 利用正弦定理判断三角形形状的方法: (1)化边为角.将题目中的所有条件,利用正弦定理化边为 角,再根据三角函数的有关知识得到三个内角的关系,进而确 定三角形的形状. (2)化角为边.根据题目中的所有条件,利用正弦定理化角 为边,再利用代数恒等变换得到边的关系(如a=b,a2+b2= c2),进而确定三角形的形状.
(4)sianA=sibnB=sincC=sinA+a+sinbB++c sinC=2R.其中,R 为 △ABC 外接圆的半径.
(5)边化角公式:a=2RsinA,b=2RsinB,c=2RsinC.
(6)角化边公式:sinA=2aR,sinB=2bR,sinC=2cR.
在△ABC 中,B=30°,C=45°,c=1,求边 b 的长及△ABC
[方法总结] 已知三角形两边及一边对角解三角形时利用 正弦定理求解,但要注意判定解的情况.在利用定理过程中, 要注意灵活使用三角公式及正弦定理的变形,如:c=bssiinnBC= assiinnAC等.
已知△ABC 中,a=4,b=4 3,∠A=30°,则∠B 等于( )
A.30°
B.30°或 150°
(ⅱ)A为锐角时,解的情况如下:
②在△ABC中,已知a、b和A,以点C为圆心,以边长a为 半径画弧,此弧与除去顶点A的射线AB的公共点的个数即为三 角形的个数,解的个数见下表:
A 为钝角 A 为直角 A 为锐角
a>b 一解
一解
一解
a=b 无解
无解
一解
a>bsinA 两解
a<b 无解
无解 a=bsinA 一解
(2)利用正弦定理可以解决的两类解三角形问题: ①已知任意两角与一边,求其他两边和一角.
②已知任意两边与其中一边的对角,求其他的边和角.
(3)已知两边及其中一边对角,判断三角形解的个数的方 法:①应用三角形中大边对大角的性质以及正弦函数的值域判 断解的个数.
图示已知a、b、A,△ABC解的情况. (ⅰ)A为钝角或直角时解的情况如下:
a<bsinA 无解
不解三角形,判断下列三角形解的个数. (1)a=5,b=4,A=120°; (2)a=7,b=14,A=150°; (3)a=9,b=10,A=60°.
[解析]
(1)sinB=bsina120°=45×
3 2<
23,
∴△ABC 有一解.
(2)sinB=bsina150°=1,∴△ABC 无解.
有关正弦定理的叙述:
①正弦定理只适用于锐角三角形;
②正弦定理不适用于钝角三角形;
③在某一确定的三角形中,各边与它的对角的正弦的比是
定值;
④在△ABC 中,sinA B C=a b C.
其中正确的个数是( )
A.1
B.2
C.3
D.4
2.正弦定理的变形形式 (1)a=bssiinnBA=cssiinnCA, b=assiinnAB=cssiinnCB, c=assiinnAC=bssiinnBC. (2)sinA=asbinB=asicnC, sinB=bsainA=bsicnC, sinC=csianA=csibnB. (3)a:b:c=sinA:sinB:sinC.
1.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即
对正弦定理的理解: (1)适用范围:正弦定理对任意的三角形都成立. (2)结构形式:分子为三角形的边长,分母为相应边所对角 的正弦的连等式. (3)揭示规律:正弦定理指出的是三角形中三条边与对应角 的正弦之间的一个关系式,它描述了三角形中边与角的一种数 量关系. (4)主要功能:正弦定理的主要功能是实现三角形中边角关 系的转化.
(3)sinB=bsina60°=190×
23=5 9 3,而
35 2<
9
3<1,
∴当 B 为锐角时,满足 sinB=593的 B 的取值范围为
60°<B<90°.
∴对应的钝角 B 有 90°<B<120°,也满足 A+B<180°,所以
△ABC 有两解.
已知两角和一边解三角形
在△ABC 中,已知 A=60°,B=45°,c=2,解 三角形.
在△ABC 中,AB= 3,A=45°,C=75°,则 BC 等于( )
A.3- 3
B. 2
C.2
D.3+ 3
[答案] A
[解析] 由sAinBC=sBinCA得,BC=3- 3.
已知三角形的两边和其中一边的对角解三角形
已知在△ABC
[分析] 在△ABC 中,已知两边和其中一边的对角,可运 用正弦定理求解,但要注意解的个数的判定.
外接圆的半径 R.
[解析] 已知 B=30°,C=45°,c=1.
由正弦定理,得sibnB=sincC=2R,
所以 b=cssiinnCB=1×sinsi4n53°0°= 22,
2R=sincC=sin145°=
2,得
R=
2 2.
所以,b=
22,△ABC
外接圆的半径
R=
2 2.
3.解三角形
(1)定义:一般地,把三角形三个角 A、B、C 和它们的对边 a、b、c 叫做三角形的元素.已知三角形的几个元素求其他元 素的过程叫做解三角形.
1.1 正弦定理和余弦定理 第1课时 正弦定理
第一章
1.任意三角形的内角和为________;三条边满足:两边之 和________第三边,两边之差________第三边,并且大边对 ________,小边对________.
2.直角三角形的三边长a,b,c(斜边)满足________定 理,即________.
[分析] 已知两角,由三角形内角和定理第三角可求,已 知一边可由正弦定理求其它两边.
[方法总结] (1)已知任意两角和一边,解三角形的步骤: ①由三角形内角和定理求出第三个角; ②由正弦定理公式的变形,求另外的两边. (2)注意事项: 已知内角不是特殊角时,往往先求出其正弦值,再根据以 上步骤求解.
C.60°
D.60°或 120°
[答案] D [解析] 由正弦定理,得sianA=sibnB, ∴sinB=bsainA=4 3×4sin30°= 23, 又∵b>a,∴B>A,∴B=60°或 120°.
三角形形状的判断
的形状.
在△ABC 中,已知ac2osisnBB=bc2osisnAA,试判断△ABC
相关文档
最新文档