二次根式加减法练习题

合集下载

九年级数学二次根式的加减法

九年级数学二次根式的加减法

1 4
3 5 3 ___; 2 4 3 5 3 7 3 ___
3 3
2 6 2 9 2 ____; 4 2 3 5 2 7 3 ______
合并同类二次根式
1.化为最简二次根式 2.系数相加减 3.二次根式不变
计算
1 4
2 4(1)把各个二次根式化成最简二次根式 (2)把各个同类二次根式合并.
如何合并同类二次根式
与合并同类项类似,把同类二次根式的系 数相加减,做为结果的系数,根号及根号内部 都不变
阅读P10~P11例3
上海自动化仪表股份有限公司,由原上海自动化仪表公司于1993年末改制设立,首家向国内发行A股,向国外发行B股的从事仪器仪表经 营生产的上市股份制公司。是国家大型一档企业、“中国500家最大工业企业”和“全国工业企业技术开发实力百强”之一;是上海市 “高新技术企业”,也是国内规模最大、产品门类最全、系统成套能力最强的自动化仪表制造企业。 上海自动化仪表股份有限公司http://www.shsaic.ne上海自动化仪表股份有限公司 有员工1万余人,下设技术中心、销 售公司、进出口部以及4家系统工程公司、9家工厂(制造部)、12家中外合资企业。主要产品有工业生产过程控制系统、成套装置和仪表、 可编程序控制器(PLC)、不间断电(UPS)及仪表控制柜、低压电器柜等。在工业生产过程控制方面的产品有20个大类、150个系列、计3000 多个品种,拥有现代工业过程控制所必须的、适应不同层次需要的分散控制系统、分散控制、调节、测量、显示、记录仪表以及执行机 构、调节阀等产品。为提高用户满意度,公司各个环节建立了完整的ISO9001质量管理体系,自动化仪表及控制系统是上海市推荐的名牌 产品。 上海自动化仪表股份有限公司将矢志不渝地推进市场开拓能力的建设、科技开发能力的建设和集团化的建设。旨在以一流的技术、一流 的产品、一流的服务搏击市场、奉献用户。上海自动化仪表股份有限公司于1993年9月经批准改制为中外合资股份有限公司。 公司的人 民币普通股(A股)及境内上市外资股(B股)分别于1994年3月和4月在上海证券交易所上市。 八回 月圆夜里共话别|(耿老爹坦言明心志,三兄妹年少不知难;共“拜月”分吃大“团月”,何年何月再团圆?)还是耿老爹打破了 这几乎窒息的沉闷。只见他环顾一圈在场的每一个人,轻轻地叹了一口气,这才说:“唉,其实哇,带娃娃们出去闯荡,也不全是因为 今年这旱灾。当然啦,暑日里又看到人们在祈雨,也更坚定了俺一定要带娃娃们出去闯荡的决心。这人哪,没有文化知识就是不行呢! 咱是小老百姓,管不了国家的那些个大事儿,可咱们还是有能力想一些办法,让周围的乡亲们过得有意义一些啊!”见大家伙儿都在看 着自己,他接着说:“所以啊,就俺说过的那样,等俺父子们赚发了回来之后,首先做的就是在咱们镇上建一个小学堂!如果可能,最 好还能再盖一座戏台。让咱镇上的娃娃们都能上得起学,也愿意学习文化知识。然后啊,俺再把咱们镇上的那些个爱热闹,有说唱天赋 的人们组织起来,编排一些有意思的土戏。这到时候哇,逢年过节的,咱就多多地来他几场,平时逢集什么的也可以安排一些。想想看 哇,这辛勤劳作一天儿的乡亲们,吃了晚饭后如果能看上咱们的这些个土戏,那肯定是不但解乏乐呵,而且还修身养性呢!”说到这里, 耿老爹自个儿的脸上露出了欣喜的笑容,好像这些好事儿真成了似的!但董家成听了,却重重地叹了一口气,说:“唉,兄弟你这个想 法固然是很好哩,只是这,这也太不容易了哇!你们父子四个这以后指不定要吃多大的苦呢!”耿老爹收敛笑容后,又轻轻地笑了。他 倔强地说:“想做事嘛,就得付出辛苦哇!”耿憨挨着个儿看看耿正、耿英和耿直后,也叹了一口气说:“唉,你一个大男人吃点儿苦 也就罢了,可娃娃们还小哩,这,这真还让人有些个不放心呢!”看到三家的女人都已经在撩起衣襟擦眼泪了,耿老爹赶快说:“娃娃 们从小吃点儿苦不是坏事儿,能锻炼人儿哇!这要学到了真本事,那可是让他们受益一辈子的好事儿呢!再说啦,有俺这个还算不错的 爹带着他们呢,他们苦不到哪里去的,倒是有机会增长很多见识呢!”听了爹爹的这些话,即将离家南下的耿正、耿英和耿直甚至有些 兴奋起来了。耿正大声说:“你们都放心哇,俺们才不怕吃苦哪!有机会学本事,增长见识多好哇!俺们跟着爹呢,怕什么啊!再说了, 俺也这么大了,能帮着俺爹照顾俺妹和俺兄弟呢!”秀儿悄悄地问坐在身旁的耿英:“英妹妹,你真愿意去吗?真不怕吃苦?”耿英坚 定地说:“吃苦算什么啊!俺爹和俺娘经常和俺们说,不吃苦中苦,难为人上人!俺很愿意跟着俺爹和俺哥南下去学本事的!”“那你 就不怕时间长了想家吗?”“没事儿,过几年就回来了!”耿直则兴奋得脸都红了。他依偎在爹的身边骄傲地对青山、青海和二壮说: “俺爹

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)
21.计算:(1) (1)2012 5 ( 1 )1 3 27 ( 2 1)0 2
(2) 3 12 3 1 1 48 27 32
【答案】(1)0;(2) 4 3 .
【解析】
试题分析:(1)原式=1 5 2 3 1 0 ;
(2)原式= 6 3 3 2 3 3 3 4 3 .
试题解析:原式=1 3 3 2 1 3 2 2 3
考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:

8
2



1 2
0

6 3 2
1 3
48
12

3a2 3
a 2


1 2
2a 3
【答案】① 2 1;② 14 ;③ a .
考点:二次根式化简.
14.计算 (3 2 24 8) 12 3
【答案】 -
2+
6
.
23
试卷第 4 页,总 10 页
【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:
(3 2 - 24 + 8) ¸ 12 = ( 6 - 2 6 +2 2) ¸ 2 3 = (2 2 - 6) ¸ 2 3 3
5
3
3 2 1;
(2) (6 x 2x 1 ) 3 x
4xBiblioteka (6 x 2x x ) 3 x 2x
(3 x 2 x ) 3 x
x 3 x
试卷第 1 页,总 10 页
1. 3
考点: 二次根式的混合运算.
3.计算: 3 12 2

二次根式计算专题-30题(教师版含答案解析)

二次根式计算专题-30题(教师版含答案解析)

完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。

初中数学二次根式练习题及答案

初中数学二次根式练习题及答案

一、选择题1.下列计算正确的是( )A .()222a b a b -=-B .()322x x 8x ÷=+C .1a a a a ÷⋅=D .()244-=-2.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .(8﹣3cm 2B .(4﹣3cm 2C .(16﹣3cm 2D .(﹣3)cm 2 3.()555=( ) A .55+B .55+C .525+D .1054.下列式子一定是二次根式的是 ( )A 2aB aC 3aD a 5.当4x =22232343124312x x x x x x -+--+++的值为( ) A .1 B 3 C .2 D .3 6.若化简2816x x -+的结果为2x ﹣5,则x 的取值范围是( )A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤4 7.下列运算正确的是( ) A x 2x 3x B .2﹣2=1 C .55D .x ﹣x (a ﹣b x 8.a ab 有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等10.下列根式中是最简二次根式的是( )A B C D 二、填空题11.)30m -≤,若整数a 满足m a +=a =__________.12.把根号外的因式移入根号内,得________13.若2x ﹣x 2﹣x=_____.14.若a 、b 、c 均为实数,且a 、b 、c 均不为0=___________15..16.计算:2015·2016=________. 17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.18.已知x =12,y =12,则x 2+xy +y 2的值为______.19.观察分析下列数据:0,,-3,的规律得到第10个数据应是__________.20.已知2x =243x x --的值为_______.三、解答题21.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】 分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+-- = 42(2)(2)(2)(2)x x x x x +-+-+- =2(2)(2)x x x -+- =12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.22.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1 1 20(2)1n−1n1+=1+()1n n1+ (n为正整数).a=,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.23.计算下列各式:(1;(2【答案】(12;(2)【分析】先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2=;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a aaa a≥⎧==⎨-<⎩,)0,0a b=≥≥=(a≥0,b>0).24.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2).考点:二次根式的应用25.计算:(1 ;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.26.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.27.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断.【详解】解: A .()222a b a 2ab b -=-+,选项错误;B .()3322x x 8x x 8x ÷=÷=,选项正确;C .111a a 1a a a ÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .2.D解析:D【分析】根据正方形的面积求出边长AB =4cm ,BC =()cm ,利用四边形ABCD 的面积减去两个阴影的面积即可列式求出答案.【详解】∵两张正方形纸片的面积分别为16cm 2和12cm 2,4cm =cm ,∴AB =4cm ,BC =(+4)cm ,∴空白部分的面积=()×4﹣12﹣16,=﹣12﹣16,=(﹣)cm 2,故选:D .【点睛】此题考查正方形的性质,二次根式的化简,二次根式的混合计算,正确理解图形中空白面积的计算方法是解题的关键.3.B解析:B【分析】根据乘法分配律可以解答本题. 【详解】)5=5+故选:B .本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】AA 正确;B 、0a <B 错误;C是三次根式,故C 错误;D 、0a <D 错误;故选:A .【点睛】0a ≥)是二次根式,注意二次根式的被开方数是非负数.5.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x 将4x =代入得, 原式11423423 22111313113113 133131131=.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.6.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.7.D解析:D【解析】利用二次根式的加减法计算,可知:A、B、﹣C、D、﹣(a﹣b,此选项正确.故选:D.8.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A9.C解析:C【解析】因为1a b ⨯==,故选C. 10.B解析:B【分析】根据最简二次根式的条件:①根号下不含能开得尽方的因数或因式;②根号下不含分母,据此逐项判断即可.【详解】解:A 、被开方数含分母,故A 不符合题意;B 、被开方数不含分母;被开方数不含能开得尽方的因数或因式.,故B 符合题意;C 被开方数含能开得尽方的因数或因式,故C 不符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意;故选:B .【点睛】本题考查了最简二次根式,解题的关键是掌握最简二次根式的两个条件.二、填空题11.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.12.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:. 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】解:∵310a -≥, ∴0a <,∴a ===.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.13.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.14.【解析】根据题意,由二次根式的性质,可知a的值与计算没影响,c≥0,b≠0,因此可分为:当b>0时,=;当b<0时,=.故答案为:.解析:220202a b b a b b 当时当时⎧>⎪⎪⎨⎪-<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:220202a b b a b b ⎧>⎪⎪⎨⎪-<⎪⎩当时当时. 15.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.16.【解析】原式=.故答案为.原式=20152015=17.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.18.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=21515151)2222=5-1=4. 19.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题 解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

二次根式计算专题-30题(教师版含答案解析)

二次根式计算专题-30题(教师版含答案解析)

完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。

二次根式加减综合题目

二次根式加减综合题目

二次根式加减综合题目When it comes to solving math problems involving square roots, it can often feel challenging and daunting. 说到解决涉及二次根式的数学问题,往往会让人感觉困难和令人畏惧。

One common type of problem is adding or subtracting square roots with different radicands. For example, when adding √12 and √27, it's important to simplify the radicals first by factoring out any perfect squares. 一个常见的问题是添加或减去具有不同根指数的平方根。

例如,当添加√12 和√27 时,重要的是首先通过因式分解任何完全平方来简化根式。

Another strategy is to rationalize the denominators when dealing with square roots in fractions. This involves multiplying the numerator and denominator by the conjugate of the denominator to eliminate the radical from the denominator. 另一个策略是在分数中处理平方根时对分母进行有理化。

这涉及将分子和分母乘以分母的共轭以消除分母中的根号。

It's important to practice these types of problems regularly to become more comfortable with them. By working through variousexamples and understanding the underlying principles, you can build confidence in your ability to solve square root problems effectively. 通过定期练习这些类型的问题,可以更加熟练地解决它们。

初三数学二次根式试题

初三数学二次根式试题

初三数学二次根式试题1.计算:(-1)2 012-(-3)++.【答案】5【解析】解:原式=1+3-2+3=52.当a 时,有意义。

【答案】a≤2.【解析】根据二次根式的性质,被开方数大于等于0,解不等式即可.试题解析:依题意有2-a≥0,解得a≤2,即a≤2时,二次根式有意义。

考点: 二次根式有意义的条件.3.已知a,b,c为三角形的三边,则= .【答案】【解析】根据三角形的三边关系,可知,,,从而化简二次根式可得结果.4.在根式中,最简二次根式有()A.4个B.3个C.2个D.1个【答案】C.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.因此,∵,∴根式中,最简二次根式有2个.故选C.【考点】最简二次根式.5.下列计算正确的是A.B.C.D.【答案】D.【解析】实质上是求的值,由此可得,所以A错误;二次根式的加减实质上就是把被开方数相同的二次根式进行合并,由此可得,所以B错误;根据积的乘方等于积中的每个因式分别乘方,再把所得的积相乘可得:,所以C错误;根据两个二次根式相除,就是把两个被开方数相除,再求商的算数平方根,即,所以D正确.故选D.【考点】二次根式的运算.6.,则=【答案】12.【解析】根据题意得:且,解得,∴.【考点】非负数的性质.7.若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3【答案】A.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 故选A.【考点】二次根式有意义的条件.8.当时,是二次根式.【答案】x≥2【解析】根据二次根式中的被开方数必须是非负数,可得x-2≥0,所以x≥2,故填x≥2.【考点】二次根式的意义.9.下列变形中,正确的是().A.(2)2=2×3=6B.=-C.=D.=.【答案】D【解析】由二次根式的运算性质可得.,,,,故选D.【考点】二次根式的运算.10.下列计算正确的是【】A.B.C.D.【答案】C。

初二数学下册知识点《二次根式的加减150题含解析》

初二数学下册知识点《二次根式的加减150题含解析》

初二数学下册知识点《二次根式的加减150题含解析》副标题一、选择题(本大题共45小题,共135.0分)1.化简+-的结果为()A. 0B. 2C. -2D. 2【答案】D【解析】解:+-=3+-2=2,故选:D.根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.本题考查了二次根式的加减,先化简,再加减运算.2.下列运算中错误的是()A. +=B. ×=C. ÷=2D. =3【答案】A【解析】解:A、+无法计算,故此选项正确;B、×=,正确,不合题意;C、÷=2,正确,不合题意;D、=3,正确,不合题意.故选:A.利用二次根式乘除运算法则以及加减运算法则分别判断得出即可.此题主要考查了二次根式的加减乘除运算,熟练掌握运算法则是解题关键.3.下列计算正确的是()A. B.C. D.【答案】C【解析】解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、-=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选:C.根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D 进行判断.本题考查了二次根式的加减运算:先把各二次根式化为最简二次根式,然后合并同类二次根式.也考查了二次根式的乘除法.4.下列计算,正确的是()A. (-2)-2=4B.C. 46÷(-2)6=64D.【答案】C【解析】解:A、(-2)-2=,所以A错误,B、=2,所以B错误,C、46÷(-2)6=212÷26=26=64,所以C正确;D、-=2-=,所以D错误,故选C依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.5.下列运算正确的是( )A. B.C. D.【答案】C【解析】【分析】本题主要考查二次根式加减的法则,二次根式乘除的法则.根据相关法则一一计算,即可解答.【解答】解:A.;错误,不能合并;B.;则B错误;C.;则C正确;D.;则D错误;故选C.6.下列计算正确的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了二次根式的加减,按照二次根式的加减法则进行判断即可.【解答】解:A.,故本选项错误;B.3与不能合并,故本选项错误;C.与不能合并,故本选项错误;D.,故本选项正确.故选D.7.下列计算正确的是()A. 4B.C. 2=D. 3【答案】C【解析】解:A、4-3=,原式计算错误,故本选项错误;B、与不是同类二次根式,不能直接合并,故本选项错误;C、2=,计算正确,故本选项正确;D、3+2≠5,原式计算错误,故本选项错误;故选:C.根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.本题考查了二次根式的加减,解答本题的关键掌握二次根式的化简及同类二次根式的合并.8.下列运算正确的是()A. -=B. =-3C. a•a2=a2D. (2a3)2=4a6【答案】D【解析】解:A、-无法计算,故此选项错误;B、=3,故此选项错误;C、a•a2=a3,故此选项错误;D、(2a3)2=4a6,正确.故选:D.直接利用二次根式加减运算法则以及积的乘方运算法则和幂的乘方运算法则、同底数幂的乘法运算法则、二次根式的性质分别化简判断即可.此题主要考查了二次根式加减运算以及积的乘方运算和幂的乘方运算、同底数幂的乘法运算、二次根式的性质等知识,正确掌握相关运算法则是解题关键.9.下列式子运算正确的是()A. B.C. D.【答案】D【解析】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2-+2+=4,故D正确.故选:D.根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.10.若的小数部分为a,的小数部分为b,则a+b的值为()A. 0B. 1C. -1D. 2【答案】B【解析】【分析】本题考查了估算无理数的大小,解题的关键是用有理数逼近无理数,求无理数的近似值.运用有理数逼近无理数,求无理数的近似值求解.【解答】解:∵2<<3,∴5<<6,0<<1∴a=3+-5=-2.b=3-,∴a+b=-2+3-=1,故选B.11.下列计算正确的是()A. B. •=C. D.【答案】B【解析】【分析】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A.与不能合并,所以A选项错误;B.原式==,所以B选项正确;C.原式,所以C选项错误;D.原式=|-3|=3,所以D选项错误.故选B.12.下列计算中正确的是()A. B. C. D.【答案】D【解析】解:A.与不是同类二次根式,不能合并,故本选项错误;B.与不是同类二次根式,不能合并,故本选项错误;C.3与不是同类二次根式,不能合并,故本选项错误;D.==,故本选项正确.故选D.根据二次根式的加减法则对各选项进行逐一计算即可.本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类二次根式即可.13.下列计算错误的是()A. B.C. D.【答案】D【解析】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.根据二次根式的运算法则分别计算,再作判断.同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.14. 下列各式计算正确的是( )A. 8-2=6B. 5+5=10C. 4÷2=2D. 4×2=8【答案】D【解析】【分析】本题考查了二次根式的加减及乘除运算,属于基础题,解答本题的关键是掌握各部分的运算法则.根据同类二次根式的合并,及二次根式的乘除法则,分别进行各选项的判断即可. 【解答】解:A 、8-2=6,原式计算错误,故A 选项错误;B 、5与5不是同类二次根式,不能直接合并,故B 选项错误;C 、4÷2=2,原式计算错误,故C 选项错误;D 、4×2=8,原式计算正确,故D 选项正确; 故选D .15. 下列计算结果正确的是( )A. +=B. =a -bC.-=-D.=+2【答案】C【解析】解:A 、被开方数不能相加减,故A 错误; B 、=|a -b |,故B 错误;C 、-=2-3=-,故C 正确;D 、分子分母除以不同的数,故D 错误; 故选:C .根据二次根式的加减,可得答案.本题考查了二次根式的加减,熟记法则并根据法则计算是解题关键.16. 下列各式中,运算正确的是( )A.B.C.D.【答案】B【解析】解:A 、3-=2≠3,故本选项错误; B 、=2,故本选项正确;C 、2与不是同类项,不能合并,故本选项错误;D 、=2≠-2,故本选项错误.故选B .分别根据合并同类项的法则、二次根式的化简法则对各选项进行逐一分析即可.本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.17. 下列计算正确的是( )A.2×3=6 B. +=C. 5-2=3D. ÷=【答案】D【解析】解:A、2=2×=18,故A错误;B、被开方数不能相加,故B错误;C、被开方数不能相减,故C错误;D、==,故D正确;故选:D.根据二次根式的乘除,可判断A、D,根据二次根式的加减,可判断B、C.本题考查了二次根式的加减,注意被开方数不能相加减.属于基础题。

八年级下册数学同步练习题库:二次根式的加减(计算题:一般)

八年级下册数学同步练习题库:二次根式的加减(计算题:一般)

二次根式的加减(计算题:一般)1、计算(1)(2)(3)(4)(5)(6)2、计算(1) (2)(3)3、(1)× (2)4、(1)(-)(2)| | + || +5、计算:.6、先化简,再求值:(),其中x=﹣2.7、观察下面计算:①②;③④.求:(1)直接写出(n为正整数)的值;(2)利用上面所揭示的规律计算:.8、已知x= (+),y= (-),求下列各式的值:(1)x2-xy+y2;(2)+.9、(1)(2)(3)(4)÷10、化简:(1) (2)11、计算:.12、计算:(1)(2).13、14、先化简,再求值:,其中,.15、16、计算: +(﹣1)+()0.17、计算:.18、化简:(4﹣6)÷﹣(+)(﹣)19、计算﹣(﹣2)0﹣|﹣|+2﹣1.20、已知x=3+2,y=3﹣2,求下列各式的值:(1)x2y+xy2;(2).21、计算:.22、计算:.23、计算:(1);(2);(3).24、先化简,后计算:,其中,.25、(1)计算:(2)先化简,再求值:,其中.26、阅读下面计算过程:试求:(1)=__________;(2)(为正整数)=_______________;(3)的值.27、计算:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2.28、计算:()﹣2﹣()0+2sin30°+|﹣3|.29、计算:()﹣1+16÷(﹣2)3+(2016﹣)0﹣tan60°.30、计算:31、计算:32、计算题(1)(2)(3)2022+202×196+982(4)33、计算(1)(2)34、计算(1)+(﹣1)2016﹣(2)(a4)3•(a2)3÷(a4)2(3)(2x2y﹣x3y2﹣xy3)÷(﹣xy)(4)9(x+2)(x﹣2)﹣(3x﹣1)2(5)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x.35、计算:.36、计算:37、计算:38、计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.39、(2016•海南模拟)计算:(1)9×+﹣;(2).40、计算:(1﹣)0+(﹣1)2016﹣tan30°+()﹣2.41、计算:(﹣3)2+()0﹣+2﹣1+•tan30°.42、计算:|﹣|﹣2cos45°+(2016﹣π)0﹣.43、计算:.44、计算: +(﹣)﹣1+(2016﹣π)0+|﹣2|45、计算:|﹣2|+(π﹣1)0×(﹣1)2012+()﹣3.46、计算:47、计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.48、计算:.49、计算(1)(2)50、计算:﹣12+(﹣2)3×﹣×|﹣|+2÷()2.51、(1)计算:(2)化简:.52、求下列各式的值:(1) (2)-+53、计算:54、计算(1)(2)(-3a3)2·a3+(-a)2·a7-(5a3)3(3)(3x+2)2-(3x-2)2+(3x+2)(3x-2)55、计算:56、阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==;(一)=(二)==(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:=(四)(1)请用不同的方法化简.①参照(三)式得= = = ;②参照(四)式得= = = ;(2)化简:.57、计算①+3—5②58、(1)计算:+-;(2)化简:59、60、61、计算:(π﹣3)0+|﹣2|﹣÷+(﹣1)﹣1.62、计算:3+(﹣2)3﹣(π﹣3)0.63、(1)计算:()﹣1﹣﹣()0+|﹣1|(2)先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.64、(1)计算:;(2)化简:2a(2a﹣3b)﹣(2a﹣3b)2.65、计算(1)(2)66、计算:(1);(2)。

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。

人教版数学八年级下 16.3 二次根式的加减

人教版数学八年级下 16.3  二次根式的加减
=7.
更多同类练习见《教材帮》
数学RJ八下16.3节作业帮
2.计算:(1)( 12 + 5 8) × 3 .(2)(5 3 + 2 5)2 .
解:(1)原式= 2 3 + 10 2 × 3
=2 3 × 3+10 2 × 3
=6+10 6.
(2)原式= (5 3)2 +2 × 5 3 × 2 5 + (2 5)2
16.3 二次根式的加减
课时1
初中数学
八年级下册 RJ
知识回顾
最简二次根式:满足以下两个条件的二次根式,叫做
最简二次根式.
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式 .
二次根式化成最简二次根式的
1.分:利用分解因数或分解因式的方法把被开方
数的分子、分母都化成质因数(或最简因式)的
B选项 63 2 = ab 6.
C选项
2
3
=
2× 3
3× 3
=
6
.
3
C. 3
D.
2
3
将下列二次根式化成最简二次根式:
0.5 =
1
1
= =
2
2
2
2
= .
2× 2
2
当小数无法开方时,
将它转化为分数.
83 = 42 ⋅ 2= 42 · 2= 2a 2.
44 =
8dm2 和 18dm2 的正方形木板?
7.5dm
面 积 为 8dm2 和
18dm2的正方形的
5dm
边 长 分别 是 多少 ?
8dm2
18dm2
解:因为 8 = 2 2 , 18 = 3 2 ,

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)

(2)(两2 ( 73)0V27 |73 21 332 ,34.3考点:实数的混合运算• V20W1-1 ; (2)-32 •计算(1)【答案】(1) 【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案试题解析:(1).20 .5 .5,6 ; x(一 2x x) x3.x二次根式计算专题1计算:⑴3J6 4J2 3J6 4/2⑵(J3)2( J3)° J 27 |^3 2【答案】(1)22; (2) 6 4,3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案 试题解析:(1) 3.. 6 4.2 3 6 4.2(3 6)2(4 . 2)2=54 — 32 =22.(3 x 2 -x) 3、x x 3. x[X 丨二 (2)14~34 .计算:..3 6、643试题解析:.324 4.2 亠2 2 .2 鼻2 2 21 3.考点:二次根式的混合运算 3•计算:3、,12 2,1.48 2.3 •14【答案】3【解析】试题分析:先将二次根式化成最简二次根式 ,再算括号里面的,最后算除法. 试题解析. 1 _________ _ _ 2 _ — — 28 —3>/i22V48 2-J3=(6^/3 — V 3 4V3)2/3 —y/3 2J 3考点:二次根式运算.【答案】2,2. 【解析】试题分析:先算乘除、去绝对值符号 ,再算加减.试题解析:原式=3 2,3 ,3 2=2 •. 2考点:二次根式运算 5.计算: 、2 ,18 3(.3 2)【答案】3.3 .【解析】试题分析: 先将二次根式化成最简二次根式,再化简.试题解析: ,2 ,18 3(、一 3 2)=2 3、2 3.3 6 3、3考点:二次根式化简.6.计算:国€令【答案】【解析】试题分析:根据二次根式的运算法则计算即可考点:二次根式的计算(2) 12014 1820147 •计算:,12 ...6 ,2 (,31)(.3 1).【答案】,3 2 .【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用 公式简化计算过程. 试题解析:、一歪 (、、3 1)(、.3 1) = 2.3 ...3 3 1 = ...3 2 .考点:二次根式的化简. 8•计算:12.2 出 32N2【答案】0. 【解析】试题分析:根据二次根式运算法则计算即可•试题解析:12 232.6 3、6 1;6 0. 2V 22考点:二次根式计算• 9 .计算:+1屁 73 .【答案】1 .3.【解析】试题分析:任何非零数的零次方都为 1,负数的绝对值等于它的相反数,再对二次根式进行化简即可. 试题解析: +1712丽1 2用1.考点:二次根式的化简.10 .计算:..8 3»'3,0.53 4【答案】 3显\3,22【解析】试题分析: 先化成最简二次根式 ,再进行运算.试题解析: 原式=2、23 2空=3,23」2 2 2 2考点:二次根式的化简. 11 .计算:12 .计算:( ..3 '..2)( .3 . 2) (1,3)0【答案】(1) 1 .15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可 ;(2)针对有理数的乘方,零指数幕,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果 •试题解析:( 1 )27 ,7245 ■1 332J3 3逅1曲3,3 3.5 \頁1 届.3(2)1201418201422 31 3.21 2 233 .2 .考点: 1.实数的运算; 2.有理数的乘方;3.零指数幕;4. 二次根式化简;5.绝对值.【答案】、、2 . 【解析】试题分析:本题主要考查了二次根式的混合运算•熟练化简二次根式后,在加减的过程 中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再 化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及 零指数幕的意义,去掉括号后,计算加减法. 试题解析: 解:原式=3 2 12=.2考点:二次根式的混合运算.13 .计算:-27: ( 2013)0 | 2.3|.【答案】4 3 1 . 【解析】试题分析:解:.27 - ( 2013)0| 2 33 3 3 1 2.34.3 1 .考点:二次根式化简、.8) ,12 【答案】(2) ( ..62.15) -.3 6 【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案 试题解析(3、2 -、.24+、、8) ? .. 12 (、.6 - 2 6 +2.. 2) ? 2、、3 (2 ..2 - , 6) ? 2.3 ,2 .6 —__ + _ -2 3考点:二次根式的混合运算【答案】辽-232【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案 试题解析:卫-」J 1—2、.3-二-空—口-空V 2 V 32 3 3 2考点:二次根式的运算• 16 •化简:(1)50 32J8【答案】(1) 9; (2)6、、5 .【解析】 试题分析: 2(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:⑴原式汽严2 ;考点:二次根式的混合运算; 17 •计算(1) 27 .3、3 2(2)•、、12 . 3 2【答案】(1) 3 3; (2) 3.【解析】试题分析:(1)根据运算顺序计算即可(2)原式-,3 2. 15.3 3&32 6.5 32①',82|3a 233个考点分别进行计算,然后根据实数③根据二次根式运算法(2)将括号内化为最简二次根式后合并再平方运算即可 试题解析:(1) • 27,3 3 2 3.3 3 2 3 3 ,3 .____ 2 2 2(2)1232 33 3 3.考点:二次根式化简• 18 •计算:、1 (3 . 2 1)(1 3.2) f【答案】17. 【解析】 试题分析:先化简1和一8,运用平方差公式计算(3. 2 1)(1 3 2),再进行计算求丫24解•试题解析:原式=_1 18 1丄22 2=17考点:实数的运算•19 .计算:(3)0,27 |1213 2【答案】2, 3 .【解析】试题分析: 本题涉及零指数幕、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:原式=1 3..3、、2 1 .3 , 2 2、、3考点:1 •实数的运算;2 •零指数幕;3 •分母有理化.20 .计算:14②14:③3【解析】试题分析:①针对算术平方根,绝对值,零指数的运算法则求得计算结果;②根据二次根式运算法则计算即可; 则计算即可•试题解析:①罷问2曲血1血1.2 .二次根式的加减法.• 3 ° (2) (3 . 5)2 (4 . 7)(4 V7)0指数幕定义计算,再合并同试题解析:(1) 273、、3八3 1 2-31(2) 3.5 2 4,74.79 6.5 516 76.5 5.0次幕运算.根据运算法则先算乘除②6乔 2^1 448 尿6応 |>/3 4/3 2爲害宾2/3③37 32 2 \23=6芒2;:= 6右i 2ai .考点:1.二次根式计算;2.绝对值;3.0指数幕. 21•计算:(1) ( 1)2012| 5(1)1湎 (罷 1)°(2) 3.12 3 11.48 .27V 3 2【答案】(1) 0; (2) 4、、3 . 【解析】试题分析:(1)原式=1 5 2 3 10 ;(2)原式=6 .一3 ,3 2、、3 3 3 4^ 3 . 考点:1.实数的运算; 22 .计算与化简(1).27 -3_【答案】(1) 2.3 1 ; (2) 6.5 5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可考点:1.二次根式化简;2.0指数幕;3.完全平方公式和平方差公式23. (1) 2 .8 2 .18(3)2蔦 3(1.3)0(4) (2.3 3、.2)(2、3 3 一2)【答案】(1) 3、2 ; (2);(3) 6 ; (4)69【解析】试题分析:本题主要考查根式的根式的混合运算和6乜2二2 2七1法,是分式应该先将分式转化为整式,再按运算法则计算。

二次根式计算专题——30题教师版含答案

二次根式计算专题——30题教师版含答案

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π+【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+-6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0+=⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==+(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|-+-.【答案】1.【解析】0(2013)|+-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.22=-=- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷== ⎝⎝.1a 2a 63⎛---⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675+--=+--=. 考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。

初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)

初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)

《二次根式》常考练习题及参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+43.(2019春•徐州期末)下列计算正确的是()A.B.C.D.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3 5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±46.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.37.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4 10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.211.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4 12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣515.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.025.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣227.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣128.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=330.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±1131.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.2033.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.234.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.1535.(2019春•许昌期末)已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10 B.8 C.6 D.436.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A.a B.2a C.a D.237.(2012秋•富顺县校级月考)若实数x、y满足x2+y2﹣4x﹣2y+5=0,则的值是()A.1 B.+C.3+2D.3﹣238.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3 B.C.2 D.39.(2019春•西湖区校级月考)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+40.(2019秋•天心区校级期末)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二、填空题(共30小题)41.(2019春•曲靖期末)若是一个正整数,则正整数m的最小值是.42.(2018秋•杨浦区期中)计算:=.43.(2019•聊城二模)计算﹣的结果是.44.(2019春•东至县期末)与最简二次根式是同类二次根式,则m=.45.(2017秋•南开区期末)二次根式与的和是一个二次根式,则正整数a的最小值为;其和为.46.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a =.47.(2013秋•罗平县校级期中)等式=成立的条件是.48.(2012•山西模拟)若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.49.(2015秋•达州校级月考)设的整数部分为a,小数部分为b,则的值等于.50.(2015•鄂州)若使二次根式有意义,则x的取值范围是.51.(2019•岳池县模拟)要使代数式有意义,x的取值范围是.52.(2018秋•松桃县期末)若代数式有意义,则实数x的取值范围是.53.(2018•陇南)使得代数式有意义的x的取值范围是.54.(2019春•西湖区校级月考)已知y=+8x,则的算术平方根为.55.(2014•吴江市模拟)设a=,b=2+,c=,则a、b、c从小到大的顺序是.56.(2013秋•南通月考)在下列二次根式,中,最简二次根式的个数有个.57.(2013春•阳谷县期末)若和都是最简二次根式,则m=,n=.58.(2012秋•集贤县期中)若两个最简二次根式与可以合并,则x=.59.(2018•皇姑区二模)化简的结果是.60.(2014秋•慈利县校级期末)若m<0,化简2n=.61.(2015春•崆峒区期末)已知a,b,c为三角形的三边,则=.62.(2018春•襄城区期中)化简的结果为.63.(2019春•睢县期中)已知a,b,c为三个整数,若,,,则a,b,c的大小关系是.64.(2013•江都市一模)若二次根式=4﹣x,则x.65.(2018秋•牡丹区期末)若的整数部分是a,小数部分是b,则a2+(1+)ab=.66.(2019春•江汉区期末)已知xy=2,x+y=4,则+=.67.(2019秋•兰考县期中)当a<﹣b<1时,化简÷的结果为.68.(2013•沙市区一模)已知m=1+,n=1﹣,则代数式的值为.69.(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是.70.(2019春•成武县期末)如图,在矩形ABCD中,不重叠地放上两张面积分别是5cm2和3cm2的正方形纸片BCHE和AEFG.矩形ABCD没被这两个正方形盖住的面积是.三、解答题(共30小题)71.(2019春•伊通县期末)计算:×﹣(+)(﹣)72.(2016•夏津县自主招生)计算:.73.(2015春•赵县期末)化简:(1);(2).74.(2018春•新泰市期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.75.(2019秋•浦东新区校级月考)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.76.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?77.(2014秋•石鼓区校级期中)若3,m,5为三角形三边,化简:﹣.78.(2012秋•罗田县期中)化简求值:已知:x=,求x2﹣x+1的值.79.(2013秋•崇阳县期末)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.80.(2018秋•新华区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.81.(2019秋•长宁区期中)计算:2÷•.82.(2014春•巢湖市月考)已知x为奇数,且,求的值.83.(2013秋•婺城区校级月考)若代数式有意义,则x的取值范围是什么?84.(2019秋•景县期末)已知y=+﹣4,计算x﹣y2的值.85.(2018春•黄冈期中)若a,b为实数,a=+3,求.86.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.87.(2019秋•兰考县期中)若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.88.(2018春•罗平县期末)已知实数a,b,c在数轴上的位置如图所示,化简|a|﹣+﹣.89.(2019春•黄石期中)已知a,b,c为实数且c=,求代数式c2﹣ab的值.90.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.91.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.92.(2014春•陕县校级月考)已知:x=,求x2+的值.93.(2017春•江津区期中)已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.94.(2019春•潮南区期末)已知a=,求的值.95.(2019春•鞍山期末)已知:,,求代数式x2﹣xy+y2值.96.(2015春•饶平县期末)先化简,再求值:•,其中.97.(2017春•黄冈期中)化简求值:,求的值.98.(2014春•霸州市期末)先化简,后求值:,其中.99.(2019春•襄州区期末)先化简,再求值:(+b),其中a+b=2.100.(2015春•重庆校级期末)先化简,再求值.,其中.参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.【知识考点】二次根式的定义.【思路分析】根据二次根式的定义作出选择:式子(a≥0)叫做二次根式.【解答过程】解:A、是三次根式;故本选项符合题意;B、被开方数﹣10<0,不是二次根式;故本选项不符合题意;C、被开方数a2+1>0,符合二次根式的定义;故本选项符合题意;D、被开方数a<0时,不是二次根式;故本选项不符合题意;故选:C.【总结归纳】本题主要考查了二次根式的定义.式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+4【知识考点】二次根式的定义.【思路分析】直接利用二次根式的定义分别分析得出答案.【解答过程】解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.【总结归纳】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.3.(2019春•徐州期末)下列计算正确的是()A.B.C.D.【知识考点】二次根式的加减法.【思路分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答过程】解:A、﹣=2﹣=,故本选项符合题意;B、+≠,故本选项不符合题意;C、3﹣=2≠3,故本选项不符合题意;D、3+2≠5,故本选项不符合题意.故选:A.【总结归纳】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3【知识考点】二次根式的加减法.【思路分析】原式各项合并得到结果,即可做出判断.【解答过程】解:A、2+不能合并,故本选项不符合题意;B、5﹣=4,故本选项不符合题意;C、5+=6,故本选项符合题意;D、+2不能合并,故本选项不符合题意,故选:C.【总结归纳】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±4【知识考点】二次根式的加减法.【思路分析】方程左边化成最简二次根式,再解方程.【解答过程】解:原方程化为:=10,合并得:=10∴=2,即2x=4,∴x=2.故选:C.【总结归纳】本题考查了二次根式的加减法.掌握二次根式的加减运算法则是解题的关键,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解无理方程,需要方程两边平方,注意检验算术平方根的结果为非负数.6.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【知识考点】二次根式的加减法.【思路分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答过程】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.【总结归纳】关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.【知识考点】二次根式的性质与化简.【思路分析】根据被开方数是非负数,可得a的取值范围,根据二次根式的性质,可得答案.【解答过程】解:由被开方数是非负数,得﹣a≥0.﹣a=×=,故选:B.【总结归纳】本题考查了二次根式的性质与化简,利用被开方数是非负数得出a的取值范围是解题关键.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质1和性质2逐一判断即可得.【解答过程】解:A.=2,故本选项不符合题意;B.()2=2,故本选项符合题意;C.﹣=﹣2,故本选项不符合题意;D.(﹣)2=2,故本选项不符合题意;故选:B.【总结归纳】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质1与性质2.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质列出不等式,解不等式即可.【解答过程】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【总结归纳】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的意义化简.【解答过程】解:若x<0,则=﹣x,∴===2,故选:D.【总结归纳】本题考查了二次根式的性质与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.11.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4【知识考点】二次根式的性质与化简;二次根式的乘除法.【思路分析】直接利用二次根式的性质分别分析得出答案.【解答过程】解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.【总结归纳】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的性质及二次根式成立的条件解答.【解答过程】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.【总结归纳】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣【知识考点】二次根式的乘除法.【思路分析】直接进行分母有理化即可求解.【解答过程】解:原式===﹣.故选:C.【总结归纳】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣5【知识考点】分母有理化.【思路分析】根据平方差公式,可分母有理化,根据实数的大小比较,可得答案.【解答过程】解:b===+,a=+,故选:A.【总结归纳】本题考查了分母有理化,利用平方差公式将分母有理化是解题关键.15.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【知识考点】实数的性质;分母有理化.【思路分析】求出ab的乘积是多少,即可判断出a与b的关系.【解答过程】解:∵ab=×==1,∴a与b互为倒数.故选:C.【总结归纳】此题主要考查了分母有理化的方法,以及实数的性质和应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【知识考点】最简二次根式.【思路分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答过程】解:A、﹣=﹣,被开方数含分母,故本选项不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故本选项符合题意;C、=4,被开方数含能开得尽方的因数或因式,故本选项不符合题意;D、=2,被开方数含能开得尽方的因数或因式,故本选项不符合题意;故选:B.【总结归纳】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】最简二次根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数2.【解答过程】解:A、不符合上述条件②,即=2,不是最简二次根式,故本选项不符合题意;B、符合上述条件,是最简二次根式,故本选项符合题意;C、不符合上述条件①,即=,不是最简二次根式,故本选项不符合题意;D、不符合上述条件②,即=|x|,不是最简二次根式,故本选项不符合题意.故选:B.【总结归纳】此题考查了最简二次根式应满足的条件.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.【知识考点】最简二次根式.【思路分析】根据二次根式的性质化简,根据最简二次根式的概念判断.【解答过程】解:A、=,不是最简二次根式,故本选项不符合题意;B、,是最简二次根式,故本选项符合题意;C、=|2a+1|,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查的是最简二次根式的概念、二次根式的性质,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行判断,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答过程】解:A、=|a|,可化简,不是最简二次根式,故本选项不符合题意;B、==,可化简,不是最简二次根式,故本选项不符合题意;C、==3,可化简,不是最简二次根式,故本选项不符合题意;D、=,不能开方,符合最简二次根式的条件,故本选项符合题意.故选:D.【总结归纳】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】先化简二次根式,再根据被开方数相同进行解答即可.【解答过程】解:A、不能与合并,故本选项不符合题意;B、=3,可以与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=2,不能与合并,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式【知识考点】同类二次根式.【思路分析】根据同类二次根式的概念判断.【解答过程】解:A、被开方数不同的二次根式可以是同类二次根式,故本选项不符合题意;B、化简后被开方数完全相同的二次根式才是同类二次根式,故本选项不符合题意;C、同类二次根式不一定都是最简二次根式,故本选项不符合题意;D、两个最简二次根式不一定是同类二次根式,故本选项符合题意;故选:D.【总结归纳】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义逐个判断即可.【解答过程】解:=2,A、不能和合并为一个二次根式,故本选项不符合题意;B、能和合并为一个二次根式,故本选项符合题意;C、不能和合并为一个二次根式,故本选项不符合题意;D、=5不能和合并为一个二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,能熟记同类二次根式的定义是解此题的关键.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定【知识考点】二次根式有意义的条件;二次根式的性质与化简.【思路分析】首先求出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.【解答过程】解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.【总结归纳】本题主要考查了二次根式与绝对值的性质,正确化简二次根式是解题关键.24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答过程】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.25.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.【知识考点】数轴;二次根式有意义的条件.【思路分析】根据二次根式中的被开方数必须是非负数,否则二次根式无意义.【解答过程】解:在数轴上,右边的数总大于左边的数,∴a>b,即a﹣b>0,根据二次根式的性质,被开方数大于等于0,可知二次根式有意义.故选:B.【总结归纳】本题主要考查了二次根式的意义和性质,掌握和理解二次根式的概念和性质是解题的关键.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣2【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:代数式有意义,故x+2>0,解得:x>﹣2.故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.27.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1【知识考点】二次根式有意义的条件.【思路分析】依据二次根式有意义的条件即可求得k的范围.【解答过程】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤﹣≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选:C.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.28.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.【知识考点】二次根式有意义的条件.【思路分析】根据有理数的性质以及平方数非负数对各选项分析判断后利用排除法求解.【解答过程】解:A、x≤0时,﹣6x≥0,有意义,故本选项不符合题意;B、x=0时,﹣x2=0,有意义,故本选项不符合题意;C、x为任何数,﹣x2﹣1≤﹣1,无意义,故本选项符合题意;D、﹣x2≥﹣1时,﹣x2+1≥0,有意义,故本选项不符合题意.故选:C.【总结归纳】本题考查了二次根式有意义的条件,判断出各选项中被开方数的正负情况是解题的关键.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=3【知识考点】二次根式的混合运算.【思路分析】根据二次根式的运算法则对每一项分别进行判断,即可得出正确答案.【解答过程】解:A、﹣=2﹣=,故本选项不符合题意;B、2+3=5,故本选项不符合题意;C、÷=,故本选项符合题意;D、(+1)(﹣1)=2﹣1=1,故本选项不符合题意;故选:C.【总结归纳】本题考查了二次根式的运算,关键是熟练掌握二次根式的运算法则,注意把二次根式进行化简.30.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±11【知识考点】二次根式的混合运算.【思路分析】根据二次根式混合运算法则,一一判断即可.【解答过程】解:A、2﹣=,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、==,故本选项不符合题意;D、=11,故本选项不符合题意;故选:B.【总结归纳】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型.31.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+【知识考点】二次根式的混合运算.【思路分析】先利用积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后根据平方差公式计算.【解答过程】解:(2﹣)2018(2+)2019=[(﹣2)(+2)]2018(+2)=(5﹣4)2018(+2)=1×(+2)=2+.故选:D.【总结归纳】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.20【知识考点】二次根式的混合运算.【思路分析】根据题目所给的运算法则进行求解.【解答过程】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.【总结归纳】本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.33.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.2【知识考点】二次根式的化简求值.【思路分析】首先把原式变为,再进一步代入求得答案即可.【解答过程】解:∵a=3+,b=3﹣,∴a+b=6,ab=4,∴===2.故选:C.【总结归纳】此题考查二次根式的化简求值,抓住式子的特点,灵活利用完全平方公式变形,使计算简便.34.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【知识考点】二次根式的化简求值.。

二次根式练习题附答案

二次根式练习题附答案

二次根式练习题附答案之樊仲川亿创作一、选择题1.计算÷=()A.B.5C.D.2.下列二次根式中,不克不及与合并的是()A.B.C.D.3.计算:﹣的结果是()A.B.2C.24.下列运算正确的是()A.2+=2B.5﹣=5C.5+=6D. +2=35.计算|2﹣|+|4﹣|的值是()A.﹣2B.2C.2﹣6D.6﹣26.小明的作业本上有以下四题:① =4a2;②•=5a;③a==;④÷=4.做错的题是()A.①B.②C.③D.④7.下列四个命题,正确的有()个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A.1B.2C.3D.48.若最简二次根式和能合并,则x的值可能为()A.B.C.2D.59.已知等腰三角形的两边长为2和5,则此等腰三角形的周长为()A.4+5B.2+10C.4+10D.4+5或2+10二、填空题10.×=; =.11.计算:( +1)(﹣1)=.12.(+2)2=.13.若一个长方体的长为,宽为,高为,则它的体积为cm3.14.化简: =.15.计算(+1)2015(﹣1)2014=.16.已知x1=+,x2=﹣,则x12+x22=.三、解答题17.计算:(1)(﹣)2;(2)(+)(﹣).(3)(+3)2.18.化简:(1);(2)19.计算:(1)×+3;(2)(﹣)×;(3).20.(6分)计算:(3+)(3﹣)﹣(﹣1)2.21.计算:(1)(﹣)+;(2).(用两种方法解)22.计算:(1)9﹣7+5;(2)÷﹣×+.23.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.《2.7 二次根式(一)》参考答案与试题解析一、选择题1.计算÷=()A.B.5C.D.【考点】二次根式的乘除法.【专题】计算题.【分析】根据÷=(a≥0,b>0)计算即可.【解答】解:原式==,故选A.【点评】本题考查了二次根式的乘除法,解题的关键是掌握二次根式除法计算公式.2.下列二次根式中,不克不及与合并的是()A.B.C.D.【考点】同类二次根式.【专题】计算题.【分析】原式各项化简,找出与不是同类项的即可.【解答】解:A、原式=,分歧题意;B、原式=2,分歧题意;C、原式=2,符合题意;D、原式=3,分歧题意,故选C【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.3.计算:﹣的结果是()A.B.2C.2【考点】二次根式的加减法.【专题】计算题.【分析】原式各项化简后,合并即可得到结果.【解答】解:原式=4﹣2=2,故选C【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.4.下列运算正确的是()A.2+=2B.5﹣=5C.5+=6D. +2=3【考点】二次根式的加减法.【专题】计算题.【分析】原式各项合并得到结果,即可做出判断.【解答】解:A、原式不克不及合并,错误;B、原式=4,错误;C、原式=6,正确;D、原式不克不及合并,错误,故选C【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.计算|2﹣|+|4﹣|的值是()A.﹣2B.2C.2﹣6D.6﹣2【考点】二次根式的加减法.【分析】先进行绝对值的化简,然后合并同类二次根式求解.【解答】解:原式=﹣2+4﹣=2.故选B.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握绝对值的化简.6.小明的作业本上有以下四题:① =4a2;②•=5a;③a==;④÷=4.做错的题是()A.①B.②C.③D.④【考点】二次根式的乘除法.【分析】利用二次根式的性质进而化简求出即可.【解答】解:① =4a2,正确;②•=5a,正确;③a==,正确;④÷==2,故此选项错误.故选:D.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.7.下列四个命题,正确的有()个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A.1B.2C.3D.4【考点】实数的运算.【专题】探究型.【分析】根据无理数、有理数的定义及实数的混合运算进行解答即可.【解答】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如﹣+=0,0是有理数,故本小题错误;④例如(﹣)×=﹣2,﹣2是有理数,故本小题错误.故选A.【点评】本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.8.若最简二次根式和能合并,则x的值可能为()A.B.C.2D.5【考点】同类二次根式.【分析】根据能合并的最简二次根式是同类二次根式列出方程求解即可.【解答】解:∵最简二次根式和能合并,∴2x+1=4x﹣3,解得x=2.故选C.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.9.已知等腰三角形的两边长为2和5,则此等腰三角形的周长为()A.4+5B.2+10C.4+10D.4+5或2+10【考点】二次根式的应用;等腰三角形的性质.【专题】计算题.【分析】先由三角形的三边关系确定出第三边的长,再求周长.【解答】解:∵2×2<5∴只能是腰长为5∴等腰三角形的周长=2×5+2=10+2.故选B.【点评】本题考查了等腰三角形的性质:两腰相等,注意要用三角形的三边关系确定出第三边.二、填空题10.×= 2 ; =.【考点】二次根式的乘除法.【分析】直接利用二次根式的性质化简求出即可.【解答】解:×==2,==.故答案为:2,.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.11.计算:( +1)(﹣1)= 1 .【考点】二次根式的乘除法;平方差公式.【专题】计算题.【分析】两个二项式相乘,而且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:( +1)(﹣1)=.故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.(+2)2= 9+4.【考点】二次根式的混合运算.【专题】计算题.【分析】利用完全平方公式计算.【解答】解:原式=5+4+4=9+4.故答案为9+4.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.13.若一个长方体的长为,宽为,高为,则它的体积为12 cm3.【考点】二次根式的乘除法.【分析】首先根据正方体的体积列出计算式,然后利用二次根式的乘除法法则计算即可求解.【解答】解:依题意得,正方体的体积为:2××=12cm3.故答案为:12.【点评】此题主要考查了二次根式的乘法,同时也利用了正方体的体积公式,正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.14.化简: =.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并即可.【解答】解:原式=3+2+=.【点评】本题考查了二次根式的加减法,属于基础题,关键是掌握二次根式的化简.15.计算(+1)2015(﹣1)2014=+1 .【考点】二次根式的混合运算.【专题】计算题.【分析】先根据积的乘方得到原式=[(+1)•(﹣1)]2014•(+1),然后利用平方差公式计算.【解答】解:原式=[(+1)•(﹣1)]2014•(+1)=(2﹣1)2014•(+1)=+1.故答案为+1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.16.已知x1=+,x2=﹣,则x12+x22= 10 .【考点】二次根式的混合运算.【分析】首先把x12+x22=(x1+x2)2﹣2x1x2,再进一步代入求得数值即可.【解答】解:∵x1=+,x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=(++﹣)2﹣2(+)×(﹣)=12﹣2=10.故答案为:10.【点评】此题考查二次根式的混合运算,把代数式利用完全平方公式化简是解决问题的关键.三、解答题17.计算:(1)(﹣)2;(2)(+)(﹣).(3)(+3)2.【考点】二次根式的混合运算.【分析】(1)(3)利用完全平方公式计算即可;(2)利用平方差公式计算即可.【解答】解:(1)原式=2﹣2+=;(2)原式=2﹣3=﹣1;(3)原式=5+6+18=23+6.【点评】此题考查二次根式的混合运算,掌握完全平方公式和平方差公式是解决问题的关键.18.化简:(1);(2)【考点】二次根式的乘除法.【分析】(1)根据二次根式的乘法法则计算;(2)可以直接进行分母有理化.【解答】解:(1)=4×2=8;(2)=.【点评】此题考查了乘法法则、分母有理化和二次根式的性质:=|a|.19.计算:(1)×+3;(2)(﹣)×;(3).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)利用二次根式的乘法法则运算;(2)先利用二次根式的乘法法则运算,然后合并即可;(3)先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【解答】解:(1)原式=+3=4+3=7;(2)原式=﹣=﹣3=﹣2;(3)原式===2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20.计算:(3+)(3﹣)﹣(﹣1)2.【考点】二次根式的混合运算.【分析】利用完全平方公式和平方差公式计算,再进一步合并即可.【解答】解:原式=9﹣5﹣4+2=2.【点评】本题考查的是二次根式的混合运算,掌握完全平方公式和平方差公式是解决问题的关键.21.计算:(1)(﹣)+;(2).(用两种方法解)【考点】二次根式的混合运算.【分析】(1)先算乘法,再算加减;(2)先化简,再算除法或利用二次根式的除法计算.【解答】解:(1)原式=2﹣+=2;(2)方法一:原式=﹣=﹣1;方法二:原式==﹣1.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.22.计算:(1)9﹣7+5;(2)÷﹣×+.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的除法和乘法法则运算,然后合并即可.【解答】解:(1)原式=9﹣14+20=15;(2)原式=﹣+2=4﹣+2=4+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.23.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.【考点】二次根式的化简求值;因式分解的应用.【专题】计算题.【分析】根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.【解答】解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)﹣(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.【点评】本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.。

二次根式的加减法专题训练

二次根式的加减法专题训练

I n n a t u r e t h e r e a r e n o r e w a r ds o r p u n i s h me n t s ; t h e r e a r e c 。 n 8 e q u 曲c e ・
( 答 案在参 考答 案第 1页)
、 、

、 ・ — — — — - — — — ・ — - — - - - — - — - — ・ — — — - — - — - — — — ・ — — - — - — - — - … 、 — — … ・ — … — — — - — — — — — - — - — - — - … — - — - ・ ・ — - — — — - — - — ・ — - — — — - — - … — ・ — - — - — - … … … 一
) .
住 2 x X / -  ̄ + 詈
1 4 . 已知 、 / 1 . 4 1 4 ,

1 . 7 3 2 求 下 列

B. a > c > b
D. b >c > a
5 , 若口 , b分 别 是 6 一 、 / 百 的 整 数 部分 和 小 数
部分 , 那么 2 6的值是 ( ) .
( +
) _ l ( 悸一 ) .
7 . 估算、 / + 3的值 (
A . 在 5和 6之 间 C 、 . 在 7和 8之 间
) .
B . 在 6和 7之 间 D . 在 8和 9之 间 1 5 . 已知 0 = — . 求 2 o - 3的值 . 、 / 了一 1
B. a =l , 6 : 一 1
D. a =l , b =l
二、 填 空题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式加减法练习题
一、选择题
1.下列根式,不能与48合并的是( )A.0.12 B.18 C.1
13 D.75-
2.计算|2﹣
|+|4﹣
|的值是( )A .﹣2 B .2
C .2﹣6
D .6﹣2
3.小明的作业本上有以下四题:① =4a 2;②

=5
a ;③a
=
=
;④
÷
=4.做错的题是( )A .① B .② C .③ D .④ 4.若最简二次根式和
能合并,则x 的值可能为( )
A .
B .
C .2
D .5
5.已知等腰三角形的两边长为2和5,则此等腰三角形的周长为( ) A .4+5 B .2+10 C .4+10 D .4+5或2+10 6.已知231a b -=-,3ab =,则(1)(1)a b +-的值为( ) A .3-
B .33
C .322-
D .31-
7.计算2(21)(21)-+的结果是( )A.21+ B.3(21)- C.1 D.1- 8. 下列计算中正确的有( )A.0个 B.1个 C.2个 D.3个
(1)347+=
(2)23555+=
(3)32a b a b -=- (4)
1275
4252573
+=+=+= 9. 计算32394y x x xy x y y x x
y ⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,结果等于( ) A.2xy - B.0 C.
y
xy x
D.3xy
10. 已知1003997100199921001a b c =+=+=,,,则a b c ,,的大小关系为( ) A.a b c >> B.a c b >> C.b a c >> D.c b a >> 11. 满足等式2003200320032003=+--+xy y x xy y x 的正整数对),(y x 的个数是( ). A .1 B .2 C .3 D .4 12.b a 、为有理数,且满足等式b a b a +++•=+则,324163的值( ). A .2 B .4 C .6 D .8
13. 已知)0,0(02>>=+-y x y xy x ,则
y
xy x y
xy x 4353-++-的值为( )
A .3
1 B .2
1 C .3
2 D .4
3 二、填空题 14.化简:
= .
15.计算(+1)2018(﹣1)2017= .
16.已知x 1=+,x 2=﹣,则x 12+x 22= . 17.如果最简根式5a -+与
29a b
b --能够进行合并,则a b -= .
18.计算:2(325)+= ,2(3623)-= . 19.若310a =-,则代数式262a a --的值为 . 20.已知3xy =,那么y x
x
y
x y
+的值是 . 21. 已知x ,y 为实数,且满足y y x ---+1)1(1=0,那么x 2011﹣y 2011= 22. 如图,以1为直角边长作直角三角形,以它的斜边长和1为直角边作
第二个直角三角形,再以它的斜边和1为直角边作第三个直角三角形, 以此类推,所得第n 个直角三角形的斜边长为 .
23. 比较大小:20042003- 20022001-.
24. 方程2(x -1)=x +1的解是____________. 25. 已知a 、b 、c 为正数,d 为负数,化简
2
2
22d
c ab
d c ab +-=______.
26. 已知a 是34-的小数部分,那么代数式⎪⎭⎫
⎝⎛-•⎪⎪⎭⎫ ⎝⎛++++-+a a a a a a a a a 42442222的值为________________.
27. 计算2001)13(2)13(2)13(199920002001++-+-+= . 三、解答题
28.计算: ①1254551520+-- ② 24a 9a 339
+ ③3538154a a a a a -+.
1
1
1
1 1 1
④ ⑤2a -3a 2b +54a -2b
a
2
b
⑥2127–2
318–(43–41
2
) ⑦(235+-)(235--) ⑧11
45--
7114--7
32+ ⑨(a 2m n -
m ab
mn +
m n
n m )÷a 2b 2m
n
⑩(a +b
a ab
b +-)÷(b ab a ++a ab b --ab b a +)(a ≠b )
29.已知a b 、为有理数,m n 、分别表示57的整数部分和小数部分,且
21amn bn +=,求2a+b 的值
30..已知2
323,2
323-+=
+-=y x 求代数式22353y xy x +-的值
31.观察下列各式及其化简过程:
22322(2)2211+=+⨯+2(21)21=+=+; 22526(3)232(2)-=-⨯+3
2=-.
(1)按照上述两个根式的化简过程的基本思想,将10221-化简; (2)针对上述各式反映的规律,请你写出2()
a b
m n m n ±=±>中a b ,与
m n ,之间的关系.
32. 有这样一道题,计算
222224
44
4x x x x x x x x x -++--+
---+的值,其中1005=x ,某
同学把“1005=x ”错钞成“1050=x ”,但他的计算结果是正确的.请你回答这是怎么回事?试说明理由.
33.先化简,再求值. [

,其中a=3,b=4.
34. 细心观察图,认真分析各式,然后解答各个问题.
2
1222
311)12222)132
33)14S S S +==+==+==,,,
(1)请用含n 的(n 为正整数)的等式表示上述变化规律. (2)推算出10OA 的长度.
(3)求出22
22
12
310S S S S ++++的值.
5
A 4
A 3A 2A 1
A 1S 2S 3S 4S 1
1 1。

相关文档
最新文档