高考数列大题综合_(含详细答案)部分

合集下载

高考文科数学数列经典大题训练(附答案)

高考文科数学数列经典大题训练(附答案)

1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。

有条件9可知a>0,故1q。

311a。

故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。

〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

数列高考题汇编(分模块整理,含答案)

数列高考题汇编(分模块整理,含答案)

(一)数列1.求通项公式(1)求等差数列通项公式(2012.湖北理18)已知等差数列{an}前三项的和为-3,前三项的积为8。

(1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和解:(1)设等差数列的公差为d,则a2=a1+d,a3=a1+2d由题意可得,解得或由等差数列的通项公式可得,a n =2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7。

(2)当an =-3n+5时,a2,a3,a1分别为-1,-4,2不成等比当an =3n-7时,a2,a3,a1分别为-1,2,-4成等比数列,满足条件故|an|=|3n-7|=设数列{|an |}的前n项和为Sn当n=1时,S1=4,当n=2时,S2=5当n≥3时,Sn =|a1|+|a2|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n-7)=5+=,当n=2时,满足此式综上可得。

(2018课标全国2,文17)记Sn 为等差数列{an丨的前n项和,己知a1=-7 S3=-15.(1)求{an}的通项公式;⑵求5…,并求5…的最小值.解:(1)设{an}的公差为4由题意得3an +3d=15.由a1=-7得d=2.∴{an}的通项公式为an=2n-9.(2)由(1)得Sn=n2-8n=(n-4)2-16.所以当n=4时Sn取得最小值,最小值为-16.(2010全国文17)设等差数列{an }满足a3=5 a10=-9(1)求数列{an}的通项公式;(2)求Sn的最大值及其相应的n的值.解;(1)在等差数列{an }中,a3=5,a10= -9,∴公差d=(a10-a3)/7= -2,通项公式an =a3+(n-3)d=5-2(n-3)= -2n+11,n∈N*.(2)由(1)可得a1=9,故Sn=9n+n(n-1)/2×(-2)=10n-n2=-(n-5)2+25.所以n=5时,Sn取得最大值(2)求等比数列通项公式(2011全国文17)已知等比数列{an }中,a1=1/3,公比q=1/3(1)Sn 为{an}的前n项和,证明Sn=(1-an)/2(2)设bn =log3a1+log3a2+…+log3an,求数列{bn}的通项.解;(1)a1=1/3,公比q=1/3,∴an=1/(3n)S n =a1(1-q n)/(1-q) =(1/3)(1-1/3n)/(2/3)= (1-1/3n)/2 =(1-an)/2(2)bn =log3a1+log3a2+…+log3an=log3[a1×a2×…×an]=-(1+2+…+n) =-n(1+n) /2(2014全国2,理17)已知数列{an }满足a1=1,an+1=3an+1.解:(3)求其他数列通项公式(2019天津理19)设{an }是等差数列,{bn}是等比数列,已知a 1=4,b1=6.b2=2a2-2,b3=2a3+4.解:(Ⅰ)设等差数列{an }的公差为d,等比数列{bn}的公比为q,依题意有:∴an =4+(n﹣1)×3=3n+1,bn=6×2n﹣1=3×2n(2018北京文15)设{an }是等差数列,且a1=ln2,a2+a3=5ln2.(Ⅰ)求{an}的通项公式;(Ⅱ)求e a1+e a2+…+e an.解:(Ⅰ)设等差数列{an}的公差为d,∵a2+a3=5ln2,∴2a1+3d=5ln2,又a1=ln2,∴d=ln2,∴{an }的通项公式;an=a1+(n-1)d=nln2,(Ⅱ)由(1)知an=nln2∵e an =e nln2=2n,∴{e an}是以2为首项,2为公比的等比数列.∴e a1+e a2+…+e an=21+22+23+…+2n=2n+1-2.(2019浙江20)设等差数列{an }的前n项和为Sn,a3=4,a4=S3,数列{bn}满足:对每个n∈N*,Sn+b n,S n+1+b n,S n+2+b n,成等比数列(1)求数列{a n},{b n}的通项公式;(2)记n∈N*,证明c1+c2+……+c n<,n∈N*解:2.数列求和(1)公式法与分组转化法求和(2016全国2,理17)Sn 为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{bn}的前1000项和.解:(Ⅰ)设等差数列{an }公差为d,S7=7a1+×d=28,则d=1,∴an=n,∴b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2;(Ⅱ)由题意可知:bn=∴数列{bn}的前1000项和1×90+2×900+3×1=1893.数列{bn}的前1000项和1893.(2016浙江文17)设数列{an }的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.(Ⅰ)求通项公式an;(Ⅱ)求数列{|an-n-2|}的前n项和.解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,当n≥2时,an+1=2Sn+1,an=2Sn-1+1,两式相减得an+1-an=2(Sn-Sn-1)=2an,即an+1=3an,当n=1时,a1=1,a2=3,满足an+1=3an,∴=3,则数列{an}是公比q=3的等比数列,则通项公式an=3n-1.(Ⅱ)an-n-2=3n-1-n-2,设bn =|an-n-2|=|3n-1-n-2|,则b1=|30-1-2|=2,b2=|3-2-2|=1,当n≥3时,3n-1-n-2>0,则bn =|an-n-2|=3n-1-n-2,此时数列{|an-n-2|}的前n项和Tn=3+(2014•湖南文16)已知数列{an}的前n项和Sn=,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =2an+(-1)nan,求数列{bn}的前2n项和.解;(Ⅰ)当n=1时,a1=s1=1,当n≥2时,an=sn-sn-1==n,∴数列{an }的通项公式是an=n.(Ⅱ)由(Ⅰ)知,bn =2n+(-1)n n,记数列{bn}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n)=+n=22n+1+n-2.∴数列{bn}的前2n项和为22n+1+n-2.(2)错位相减法求和(2017天津理18)已知{an }为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(Ⅰ)求{an }和{bn}的通项公式;(Ⅱ)求数列{a2n bn}的前n项和(n∈N*).解:(Ⅰ)设等差数列{an }的公差为d,等比数列{bn}的公比为q.∵b2+b3=12,∴b1(q+q2)=12,又b1=2,∴q2+q-6=0.又∵q>0,解得q=2.∴bn=2n.∵b3=a4-2a1,∴3d-a1=8.∵S11=11b4,∴a1+5d=16,联立①②,解得a1=1,d=3,∴an=3n-2.∴{an }的通项公式为an=3n-2,{bn}的通项公式为bn=2n.(Ⅱ)设数列{a2n bn}的前n项和为Tn,由a2n=6n-2,有Tn=4×2+10×22+16×23+…+(6n-2)×2n,2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得-Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16.得Tn=(3n-4)2n+2+16.所以,数列{a2n bn}的前n项和为(3n-4)2n+2+16.(2010全国理17)设数列{an }满足a1=2,an+1-an=-3·22n-1,(1)求数列{an}的通项公式;(2)令bn =nan,求数列的前n项和Sn.解:(1)由已知,当n≥1时,而a1=2,∴数列{an}的通项公式为a n=22n-1.(2)由,知,①从而,②①-②,得,即。

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。

)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。

高考数学必考点专项第19练 数列综合习题(A)(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第19练 数列综合习题(A)(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第19练 数列综合习题精选(A )一、单选题1. 若数列的前4项分别是12-,13,14-,15,则此数列一个通项公式为( )A. (1)1nn -+B. (1)n n-C. 1(1)1n n +-+D. 1(1)n n--2. 在数列{}n a 中,1=2a ,+11=+ln(1+)+1n n a a n n n,则=n a ( ) A. 2+ln n nB. 2+(1)ln n n n -C. 2+ln n n nD. 1++ln n n n3. 数列的前n 项和2*23()n S n n n N =+∈,若5,(,*)p q p q N -=∈,则p q a a -=( ) A. 5B. 20C. 20-D. 5-4. 已知数列{}n a 中,12a =,1(1)1n n n a n a +⋅-+⋅=,*.n N ∈若对于任意的*n N ∈,不等式11n a a n +<+恒成立,则实数a 的取值范围为( ) A. (3,)+∞ B. (,3)-∞ C. [3,)+∞ D. (,3]-∞5. 已知数列{}n a 的通项公式21021n a n n =-+-,前n 项和为n S ,若m n >,则m n S S -的最大值是( )A. 5B. 10C. 15D. 206. 设a ,b ∈R ,数列{}n a 中1a a =,21n na ab +=+,n ∈*N ,则 ( ) A. 当12b =时,1010a > B. 当14b =时,1010a > C. 当2b =-时,1010a > D. 当4b =-时,1010a >{}n a7. 已知正项数列{}n a 满足11a =,2211(2)(1)0n n n n n a n a a a +++-++=,则它的通项公式为( )A. 11n a n =+ B. 21n a n =+ C. 12n n a +=D. n a n =8. 已知数列的前n 项和n S ,且2(1)n n S a n -=-,22n a n nb S =,则数列的最小项为( )A. 第3项B. 第4项C. 第5项D. 第6项二、多选题9. 已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A. 2-B.23C.32D. 310. 若数列满足:对任意正整数n ,为递减数列,则称数列为“差递减数列”.给出下列数列,其中是“差递减数列”的有( )A. 3n a n =B. 21n a n =+C. n aD. ln1n na n =+ 11. 已知数列的前n 项和为,且满足-111+4=0(2),=4n n n a S S n a ,则下列说法正确的是( )A. 数列的前n 项和为1=4n S nB. 数列的通项公式为1=4(+1)n a n nC. 数列为递增数列D. 数列1{}nS 为递增数列 12. 在数列{}n a 中,若存在非零整数T ,使得m T m a a +=对于任意的正整数m 均成立,那么称数列{}n a 为周期数列,其中T 叫做数列{}n a 的一个周期.已知数列{}n a 满足{}n a {}n b {}n a {}n a {}n a {}n a12a =,23a =,120(n n n a a a n ++-+=∈N *),数列{}n b 满足11b =,23b =,110(2,n n n b b b n n -+⋅-=∈N *),则( )A. 6是数列{}n a 的一个周期B. 12是数列{}n b 的一个周期C. 123a a a +++…20204a +=D. 12b b ⋅⋅…20203b ⋅=13. 已知数列{}n a 满足111a =-,且13(213)(211)n n n a n a +-=-,则下列结论正确的是( )A. 数列{}n a 的前10项都是负数B. 数列{}n a 先增后减C. 数列{}n a 的最大项为第九项D. 数列{}n a 最大项的值为1729三、填空题14. 设数列{}n a 的前n 项和为n S ,若24S =,121n n a S +=+,*n N ∈,则1a =__________,5S =__________.15. 已知数列{}n a 和{}n b ,其中2n a n =,*n N ∈,{}n b 的项是互不相等的正整数,若对于任意*n N ∈,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =__________.16. 已知数列{}n a 满足若对任意*n N ∈,都有1n n a a +>,则实数a 的取值范围是__________。

高考数学《数列》大题训练50题含答案解析

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2.(2011•重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.3.(2011•重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤a k≤.4.(2011•浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n 与B n的大小.5.(2011•上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,…(1)写出c1,c2,c3,c4;(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…;(3)求数列{c n}的通项公式.6.(2011•辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10(I)求数列{a n}的通项公式;(II)求数列{}的前n项和.7.(2011•江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值;(2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列?若存在,求{a n},{b n}的通项公式;若不存在,说明理由.8.(2011•湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式;(II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.9.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(4)证明:对于一切正整数n,2a n≤b n+1+1.10.(2011•安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.(I)求数列{a n}的通项公式;(Ⅱ)设b n=tana n•tana n+1,求数列{b n}的前n项和S n.11.(2010•浙江)设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范围.12.(2010•四川)已知等差数列{a n}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.13.(2010•四川)已知数列{a n}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2a m+n﹣1+2(m﹣n)2(1)求a3,a5;(2)设b n=a2n+1﹣a2n﹣1(n∈N*),证明:{b n}是等差数列;(3)设c n=(a n+1﹣a n)q n﹣1(q≠0,n∈N*),求数列{c n}的前n项和S n.14.(2010•陕西)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.15.(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列的前n项和S n.16.(2010•江西)正实数数列{a n}中,a1=1,a2=5,且{a n2}成等差数列.(1)证明数列{a n}中有无穷多项为无理数;(2)当n为何值时,a n为整数,并求出使a n<200的所有整数项的和.17.(2009•陕西)已知数列{a n}满足,,n∈N×.(1)令b n=a n+1﹣a n,证明:{b n}是等比数列;(2)求{a n}的通项公式.18.(2009•山东)等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n),均在函数y=b x+r(b>0)且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=n∈N*求数列{b n}的前n项和T n.19.(2009•江西)数列{a n}的通项,其前n项和为S n,(1)求S n;(2),求数列{b n}的前n项和T n.20.(2009•辽宁)等比数列{a n}的前n项和为s n,已知S1,S3,S2成等差数列,(1)求{a n}的公比q;(2)求a1﹣a3=3,求s n.21.(2009•湖北)已知数列{a n}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.22.(2009•福建)等比数列{a n}中,已知a1=2,a4=16(I)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.23.(2009•安徽)已知数列{a n}的前n项和S n=2n2+2n,数列{b n}的前n项和Tn=2﹣b n(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)设c n=a n2•b n,证明:当且仅当n≥3时,c n+1<c n.24.(2009•北京)设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=3m+2(m∈N*)?如果存在,求p和q 的取值范围;如果不存在,请说明理由.25.(2008•浙江)已知数列{x n}的首项x1=3,通项x n=2n p+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.26.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.27.(2008•四川)在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;(Ⅲ)求数列{a n}的前n项和T n.28.(2008•陕西)已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和S n.29.(2008•辽宁)在数列{a n},{b n}是各项均为正数的等比数列,设.(Ⅰ)数列{c n}是否为等比数列?证明你的结论;(Ⅱ)设数列{lna n},{lnb n}的前n项和分别为S n,T n.若a1=2,,求数列{c n}的前n项和.30.(2008•辽宁)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.答案与评分标准一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.考点:数列递推式;数列的函数特性。

最新届高考数学经典例题集锦:数列(含答案)

最新届高考数学经典例题集锦:数列(含答案)

数列题目精选精编【典型例题】(一)研究等差等比数列的有关性质 1. 研究通项的性质例题1. 已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥. (1)求32,a a ;(2)证明:312n n a -=. 解:(1)21231,314,3413a a a =∴=+==+=Q .(2)证明:由已知113--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ1213133312n n n a ---+=++++=L , 所以证得312n n a -=.例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥(Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥,两式相减得:112,3(2)n n n n n a a a a a n ++-==≥,又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列∴13n n a -=(Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===,由题意可得2(51)(59)(53)d d -+++=+,解得122,10d d ==∵等差数列{}n b 的各项为正,∴0d > ∴2d =∴2(1)3222n n n T n n n -=+⨯=+例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++128n n a n -+=对任意的*N n ∈都成立,数列{}n n b b -+1是等差数列.⑴求数列{}n a 与{}n b 的通项公式;⑵是否存在N k *∈,使得(0,1)k k b a -∈,请说明理由.点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求na 的方法,当2n ≥时,1n n n S S a --=.(2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.解:(1)已知212322a a a +++ (1)2n n a -+8n =(n ∈*N )①2n ≥时,212322a a a +++ (2)128(1)n n a n --+=-(n ∈*N )②①-②得,128n n a -=,求得42n n a -=,在①中令1n =,可得得41182a -==,所以42nn a -=(n ∈N*). 由题意18b =,24b =,32b =,所以214b b -=-,322b b -=-,∴数列}{1n n b b -+的公差为2)4(2=---, ∴1n nb b +-=2)1(4⨯-+-n 26n =-,121321()()()n n n b b b b b b b b -=+-+-++-L(4)(2)(28)n =-+-++-L 2714n n =-+(n ∈*N ).(2)k k b a -=2714k k -+-42k-,当4k ≥时,277()()24f k k =-+-42k-单调递增,且(4)1f =, 所以4k ≥时,2()714f k k k =-+-421k-≥, 又(1)(2)(3)0f f f ===,所以,不存在k ∈*N ,使得(0,1)k k b a -∈.例题4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解: 依题意得:2b n+1 = a n+1 + a n+2 ① a 2n+1 = b n b n+1 ②∵ a n 、b n 为正数, 由②得21211,+++++==n n n n n n b b a b b a , 代入①并同除以1+n b 得:212+++=n n n b b b , ∴}{n b 为等差数列∵ b 1 = 2 , a 2 = 3 ,29,22122==b b b a 则 ,∴ 2)1(),1(22)229)(1(22+=∴+=--+=n b n n b n n ,∴当n ≥2时,2)1(1+==-n n b b a n n n , 又a 1 = 1,当n = 1时成立, ∴2)1(+=n n a n2. 研究前n 项和的性质例题5. 已知等比数列}{n a 的前n 项和为2nn S a b =⋅+,且13a =. (1)求a 、b 的值及数列}{n a 的通项公式;(2)设n n nb a =,求数列}{n b 的前n 项和n T .解:(1)2≥n 时,a S S a n n n n ⋅=-=--112.而}{n a 为等比数列,得a a a =⋅=-1112, 又31=a ,得3=a ,从而123-⋅=n n a .又123,3a a b b =+=∴=-Q .(2)132n n n n n b a -==⋅, 21123(1)3222n n n T -=++++L231111231(2322222n n n n n T --=+++++L ) ,得2111111(1)232222n n n nT -=++++-L , 111(1)2412[](1)13232212n n n n n n n T +⋅-=-=---.例题6. 数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k =+++L*()N k ∈, (1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '. 解:(1)由题意:410nn a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-L ,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==.(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,∴当7n ≤时,212731132()244n n n S b b b n n n -+'=+++==-+L当7n >时,12789n n S b b b b b b '=+++----L L 27121132()2144n S b b b n n =-+++=-+L∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例题7. 已知递增的等比数列{n a }满足23428a a a ++=,且32a +是2a ,4a 的等差中项. (1)求{n a }的通项公式n a ;(2)若12log n n nb a a =,12n n S b b b =+++L 求使1230n n S n ++⋅>成立的n 的最小值.解:(1)设等比数列的公比为q (q >1),由a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2或a 1=32,q =12(舍)∴a n =2·2(n -1)=2n(2) ∵12log 2nn n n b a a n ==-⋅,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2,若S n +n ·2n +1>30成立,则2n +1>32,故n >4,∴n 的最小值为5.例题8. 已知数列}{n a 的前n 项和为S n ,且11,,n n S a +-成等差数列,*1,1N n a ∈=. 函数3()log f x x =.(I )求数列}{n a 的通项公式; (II )设数列{}n b 满足1(3)[()2]n n b n f a =++,记数列{}n b 的前n 项和为T n ,试比较52512312n n T +-与的大小. 解:(I )11,,n n S a +-Q 成等差数列,121n n S a +∴=-① 当2n ≥时,121n n S a -=-②. ①-②得:112()n n n n S S a a -+-=-,13+=∴n n a a ,13.n na a +∴=当n =1时,由①得112221S a a ∴==-, 又11,a =2213,3,a a a ∴=∴={}n a ∴是以1为首项3为公比的等比数列,13.n n a -∴=(II )∵()x log x f 3=,133()log log 31n n n f a a n -∴===-,11111()(3)[()2](1)(3)213n n b n f a n n n n ===-++++++,1111111111111()224354657213n T n n n n ∴=-+-+-+-++-+-+++L11111()22323n n =+--++525,122(2)(3)n n n +=-++比较52512312n n T +-与的大小,只需比较2(2)(3)n n ++与312 的大小即可. 222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-∵*,N n ∈∴当*19N n n ≤≤∈且时,5252(2)(3)312,;12312n n n n T +++<<-即 当10n =时,5252(2)(3)312,;12312n n n n T +++==-即 当*10N n n >∈且时,5252(2)(3)312,12312n n n n T +++>>-即.3. 研究生成数列的性质例题9. (I ) 已知数列{}n c ,其中nn n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;(II ) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],整理得61(2-p )(3-p )·2n ·3n =0,解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n .为证{c n }不是等比数列只需证22c ≠c 1·c 3.事实上,22c =(a 1p +b 1q )2=21a p 2+21b q 2+2a 1b 1pq ,c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)= 21a p 2+21b q 2+a 1b 1(p 2+q 2).由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列.例题10. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a 24=1,163,814342==a a 求S=a 11 + a 22 + a 33 + … + a nn解: 设数列{1k a }的公差为d , 数列{ik a }(i=1,2,3,…,n )的公比为q则1k a = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -1依题意得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+==+=163)2(81)(1)3(31143311421124q d a a q d a a q d a a ,解得:a 11 = d = q = ±21 又n 2个数都是正数,∴a 11 = d = q = 21 , ∴a kk = kk2n n S 212132122132⨯++⨯+⨯+=Λ,1432212132122121+⨯++⨯+⨯+=n n S Λ,两式相减得:n n nS 22121--=-例题11. 已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n n a n N =∈ (1)求数列}{n a 的通项公式;(2)设n n n nn b b b T a b +++==Λ21,2,若)(Z m m T n∈<,求m 的最小值; (3)求使不等式12)11()11)(11(21+≥+++n p a a a nΛ对一切*N n ∈均成立的最大实数p .解:(1)由题意得⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ,解得⎩⎨⎧-==12b a ,)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==-(2)由(1)得n n n b 212-=, nn n n n T 2122322523211321-+-++++=∴-Λ ① 1132212232252232121+--+-+-+++=n n n n n n n T Λ ② ①-②得)21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++=ΛΛ1n 1n 1n 21n 2212321n 2+-+---=--.n n 2n n 23n 2321n 2213T +-=---=∴-, 设*,232)(N n n n f n ∈+=,则由 1512132121)32(252232252)()1(1<+≤++=++=++=++n n n n n n f n f n n 得*,232)(Nn n n f n ∈+=随n 的增大而减小+∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m(3)由题意得*21)11()11)(11(121N n a a a n p n ∈++++≤对Λ恒成立记)11()11)(11(121)(21n a a a n n F ++++=Λ,则 ()()11n 21n 2)1n ()1n (4)1n (2)3n 2)(1n 2(2n 2)a 11()a 11)(a 11(1n 21)a 11)(a 11()a 11)(a 11(3n 21)n (F )1n (F 2n 211n n 21=++>+-++=+++=+++++++++=++ΛΛ)(),()1(,0)(n F n F n F n F 即>+∴>Θ是随n 的增大而增大)(n F 的最小值为332)1(=F ,332≤∴p ,即332max =p .(二)证明等差与等比数列 1. 转化为等差等比数列.例题12. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122,*N n ∈.⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;⑶设n b =1(12)n n a -**12(),()N N n n n T b b b n ∈=+++∈L ,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d ,由题意得2832d d =+⇒=-,82(1)102n a n n ∴=--=-. (2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤Λ时21281029,2n na a a n n n +-=+++=⨯=-L6n ≥时,n n a a a a a a S ---+++=ΛΛ765212555()2940n n S S S S S n n =--=-=-+故⎪⎩⎪⎨⎧+--=40n 9n n n 9S 22n 56n n ≤≥ (3)11111()(12)2(1)21n n b n a n n n n ===--++Q , ∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+L .2(1)n n =+ 若32n m T >对任意*N n ∈成立,即116n m n >+对任意*N n ∈成立, *()1N n n n ∈+Q 的最小值是21,1,162m ∴<m ∴的最大整数值是7.即存在最大整数,7=m 使对任意*N n ∈,均有.32n m T >例题13. 已知等比数列{}n b 与数列{}n a 满足3,n an b n =∈N *. (1)判断{}n a 是何种数列,并给出证明; (2)若8131220,a a m b b b +=L 求.解:(1)设{}n b 的公比为q ,∵3n an b =,∴()q log 1n a a 3q 331n a 1n a n 1-+=⇒=⋅-。

高考数学《数列》专题好题集锦(100道)含详细解答

高考数学《数列》专题好题集锦(100道)含详细解答

全国各地数学模拟试卷《数列》题集锦1.已知数列{n a }中,111,22n n a n a a +=-,点()在直线y=x 上,其中n=1,2,3…. (1)令11n n n b a a ,+=--求证数列{}n b 是等比数列; (2)求数列{}的通项;n a⑶ 设分别为数列、n n T S {}、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?若存在,试求出λ.若不存在,则说明理由。

解:(I )由已知得 111,2,2n n a a a n +==+2213313,11,4424a a a =--=--=- 又11,n n n b a a +=--1211,n n n b a a +++=--11112111(1)111222.1112n n n n n n n n n n n n n n a n a n a a b a a b a a a a a a +++++++++++-----∴====------ {}n b ∴是以34-为首项,以12为公比的等比数列.(II)由(I)知,13131(),4222n n n b -=-⨯=-⨯1311,22n n n a a +∴--=-⨯21311,22a a ∴--=-⨯ 322311,22a a --=-⨯⋅⋅⋅⋅⋅⋅11311,22n n n a a --∴--=-⨯将以上各式相加得:1213111(1)(),2222n n a a n -∴---=-++⋅⋅⋅+11111(1)31313221(1)(1) 2.12222212n n n n a a n n n ---∴=+--⨯=+---=+--32.2n n a n ∴=+-(III )解法一:存在2λ=,使数列{}n nS T nλ+是等差数列. 12121113()(12)2222n n n S a a a n n =++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅+-11(1)(1)22321212n n n n -+=⨯+--2213333(1) 3.2222n n n n n n --=-+=-++ 12131(1)313342(1).1222212n n n n n T b b b +--=++⋅⋅⋅+==--=-+- 数列{}n n S T n λ+是等差数列的充要条件是,(n nS T An B A n λ+=+、B 是常数)即2,n n S T An Bn λ+=+又2133333()2222n n n n n n S T λλ+-+=-+++-+2313(1)(1)222n n n λ-=+--∴当且仅当102λ-=,即2λ=时,数列{}n nS T nλ+为等差数列. 解法二:存在2λ=,使数列{}n nS T nλ+是等差数列. 由(I )、(II )知,22n n a b n +=-(1)222n n n S T n +∴+=- (1)222n nn n n n n T T S T n nλλ+--++=322n n T n λ--=+ 又12131(1)313342(1)1222212n n n n n T b b b +--=++⋅⋅⋅+==--=-+- 13233()222n n n S T n n n λλ++--=+-+∴当且仅当2λ=时,数列{}nn S T n λ+是等差数列. 2.已知等比数列{}n a 的各项均为正数,且公比不等于1,数列{}n b 对任意正整数n ,均有:1221223125()log ()log ()log 0n n n n n n b b a b b a b b a ++++-⋅+-+-=成立,又171,13b b ==。

全国通用2020_2022三年高考数学真题分项汇编专题12数列(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题12数列(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:12 数列1.【2022年全国乙卷】已知等比数列{a n }的前3项和为168,a 2−a 5=42,则a 6=( ) A .14 B .12 C .6 D .3【答案】D 【解析】 【分析】设等比数列{a n }的公比为q,q ≠0,易得q ≠1,根据题意求出首项与公比,再根据等比数列的通项即可得解. 【详解】解:设等比数列{a n }的公比为q,q ≠0, 若q =1,则a 2−a 5=0,与题意矛盾, 所以q ≠1,则{a 1+a 2+a 3=a 1(1−q 3)1−q =168a 2−a 5=a 1q −a 1q 4=42,解得{a 1=96q =12 , 所以a 6=a 1q 5=3. 故选:D.2.【2022年全国乙卷】嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1α1,b 2=1+1α1+1α2,b 3=1+1α1+1α2+1α3,…,依此类推,其中αk ∈N ∗(k =1,2,⋯).则( ) A .b 1<b 5 B .b 3<b 8 C .b 6<b 2 D .b 4<b 7【答案】D 【解析】 【分析】根据αk ∈N ∗(k =1,2,…),再利用数列{b n }与αk 的关系判断{b n }中各项的大小,即可求解. 【详解】解:因为αk ∈N ∗(k =1,2,⋯),所以α1<α1+1α2,1α1>1α1+1α2,得到b 1>b 2,同理α1+1α2>α1+1α2+1α3,可得b 2<b 3,b 1>b 3又因为1α2>1α2+1α3+1α4, α1+1α2+1α3<α1+1α2+1α3+1α4,故b 2<b 4,b 3>b 4;以此类推,可得b 1>b 3>b 5>b 7>⋯,b 7>b 8,故A 错误; b 1>b 7>b 8,故B 错误;1α2>1α2+1α3+⋯1α6,得b 2<b 6,故C 错误;α1+1α2+1α3+1α4>α1+1α2+⋯1α6+1α7,得b 4<b 7,故D 正确.故选:D.3.【2022年新高考2卷】中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,DD 1,CC 1,BB 1,AA 1是举, OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA1BA 1=k 3,若k 1,k 2,k 3是公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=( )A .0.75B .0.8C .0.85D .0.9【答案】D 【解析】 【分析】设OD 1=DC 1=CB 1=BA 1=1,则可得关于k 3的方程,求出其解后可得正确的选项. 【详解】设OD 1=DC 1=CB 1=BA 1=1,则CC 1=k 1,BB 1=k 2,AA 1=k 3, 依题意,有k 3−0.2=k 1,k 3−0.1=k 2,且DD 1+CC 1+BB 1+AA 1OD 1+DC 1+CB 1+BA 1=0.725,所以0.5+3k 3−0.34=0.725,故k 3=0.9,故选:D4.【2021年甲卷文科】记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .10【答案】A 【解析】 【分析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案. 【详解】∵n S 为等比数列{}n a 的前n 项和, ∴2S ,42S S -,64S S -成等比数列 ∴24S =,42642S S -=-= ∴641S S -=, ∴641167S S =+=+=. 故选:A.5.【2021年甲卷理科】等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B 【解析】 【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【详解】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B . 【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.6.【2020年新课标1卷文科】设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( )A .12B .24C .30D .32【答案】D 【解析】 【分析】根据已知条件求得q 的值,再由()5678123a a a q a a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q ++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q ++=++=++==.故选:D. 【点睛】本题主要考查等比数列基本量的计算,属于基础题.7.【2020年新课标2卷理科】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块【答案】C 【解析】 【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列, 设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C 【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.8.【2020年新课标2卷理科】数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=-,则 k =( )A .2B .3C .4D .5【答案】C 【解析】 【分析】取1m =,可得出数列{}n a 是等比数列,求得数列{}n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k *∈N 可求得k 的值. 【详解】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=, 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n nn a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++⋅-⋅-∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C. 【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.9.【2020年新课标2卷理科】0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010 B .11011 C .10001D .11001【答案】C 【解析】 【分析】根据新定义,逐一检验即可 【详解】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =, 511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C 【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.10.【2020年新课标2卷文科】记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( ) A .2n –1 B .2–21–n C .2–2n –1 D .21–n –1【答案】B 【解析】 【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可. 【详解】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n nn n n S a ---==-.故选:B. 【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.11.【2022年全国乙卷】记S n 为等差数列{a n }的前n 项和.若2S 3=3S 2+6,则公差d =_______. 【答案】2 【解析】 【分析】转化条件为2(a 1+2d)=2a 1+d +6,即可得解. 【详解】由2S 3=3S 2+6可得2(a 1+a 2+a 3)=3(a 1+a 2)+6,化简得2a 3=a 1+a 2+6, 即2(a 1+2d)=2a 1+d +6,解得d =2. 故答案为:2.12.【2021年新高考1卷】某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nk k S ==∑______2dm .【答案】 5 ()41537202n n -+-【解析】 【分析】(1)按对折列举即可;(2)根据规律可得n S ,再根据错位相减法得结果.【详解】(1)由对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,所以对着三次的结果有:5312561032022⨯⨯⨯⨯,,;,共4种不同规格(单位2dm ); 故对折4次可得到如下规格:5124⨯,562⨯,53⨯,3102⨯,3204⨯,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120()2dm ,第n 次对折后的图形面积为111202n -⎛⎫⨯ ⎪⎝⎭,对于第n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为1n +种(证明从略),故得猜想1120(1)2n n n S -+=, 设()0121112011202120312042222nk n k n S S -=+⨯⨯⨯==++++∑,则121112021203120120(1)22222n nn n S -⨯⨯+=++++, 两式作差得: ()211201111124012022222n nn S -+⎛⎫=++++-⎪⎝⎭ ()11601120122401212n n n -⎛⎫- ⎪+⎝⎭=+-- ()()112011203120360360222n n nn n -++=--=-, 因此,()()4240315372072022n n n n S -++=-=-. 故答案为:5;()41537202n n -+-. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}n n a b +结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}na 是等差数列,公差为()0d d ≠,则111111n n nn a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.13.【2020年新课标1卷文科】数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a =______________. 【答案】7 【解析】 【分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论. 【详解】2(1)31n n n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S , 16123416S a a a a a =+++++13515241416()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++118392928484540a a =++=+=, 17a ∴=.故答案为:7. 【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.14.【2020年新课标2卷文科】记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________. 【答案】25 【解析】 【分析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案. 【详解】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-=可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d = 解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+= ∴1025S =.故答案为:25. 【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题.15.【2020年新高考1卷(山东卷)】将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为________. 【答案】232n n - 【解析】 【分析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目.16.【2022年全国甲卷】记S n 为数列{a n }的前n 项和.已知2S n n+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值. 【答案】(1)证明见解析;(2)−78. 【解析】 【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n ={S 1,n =1S n −S n−1,n ≥2 ,作差即可得到a n −a n−1=1,从而得证;(2)由(1)及等比中项的性质求出a 1,即可得到{a n }的通项公式与前n 项和,再根据二次函数的性质计算可得. (1) 解:因为2S n n+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n−1+(n −1)2=2(n −1)a n−1+(n −1)②,①−②得,2S n +n 2−2S n−1−(n −1)2=2na n +n −2(n −1)a n−1−(n −1), 即2a n +2n −1=2na n −2(n −1)a n−1+1,即2(n −1)a n −2(n −1)a n−1=2(n −1),所以a n −a n−1=1,n ≥2且n ∈N ∗, 所以{a n }是以1为公差的等差数列. (2)解:由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8, 又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即(a 1+6)2=(a 1+3)⋅(a 1+8),解得a 1=−12, 所以a n =n −13,所以S n =−12n +n(n−1)2=12n 2−252n =12(n −252)2−6258,所以,当n =12或n =13时(S n )min =−78.17.【2022年新高考1卷】记S n 为数列{a n }的前n 项和,已知a 1=1,{Sna n}是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n (n+1)2(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得S na n=1+13(n −1)=n+23,得到S n =(n+2)a n3,利用和与项的关系得到当n ≥2时,a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,进而得:a nan−1=n+1n−1,利用累乘法求得a n =n (n+1)2,检验对于n =1也成立,得到{a n }的通项公式a n =n (n+1)2;(2)由(1)的结论,利用裂项求和法得到1a1+1a2+⋯+1a n=2(1−1n+1),进而证得.(1)∵a1=1,∴S1=a1=1,∴S1a1=1,又∵{S na n }是公差为13的等差数列,∴S na n =1+13(n−1)=n+23,∴S n=(n+2)a n3,∴当n≥2时,S n−1=(n+1)a n−13,∴a n=S n−S n−1=(n+2)a n3−(n+1)a n−13,整理得:(n−1)a n=(n+1)a n−1,即a na n−1=n+1n−1,∴a n=a1×a2a1×a3a2×…×a n−1a n−2×a na n−1=1×32×43×…×nn−2×n+1n−1=n(n+1)2,显然对于n=1也成立,∴{a n}的通项公式a n=n(n+1)2;(2)1 a n =2n(n+1)=2(1n−1n+1),∴1a1+1a2+⋯+1a n=2[(1−12)+(12−13)+⋯(1n−1n+1)]=2(1−1n+1)<218.【2022年新高考2卷】已知{a n}为等差数列,{b n}是公比为2的等比数列,且a2−b2= a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素个数.【答案】(1)证明见解析;(2)9.【解析】【分析】(1)设数列{a n}的公差为d,根据题意列出方程组即可证出;(2)根据题意化简可得m=2k−2,即可解出.(1)设数列{a n}的公差为d,所以,{a1+d−2b1=a1+2d−4b1a1+d−2b1=8b1−(a1+3d),即可解得,b1=a1=d2,所以原命题得证.(2)由(1)知,b 1=a 1=d2,所以b k =a m +a 1⇔b 1×2k−1=a 1+(m −1)d +a 1,即2k−1=2m ,亦即m =2k−2∈[1,500],解得2≤k ≤10,所以满足等式的解k =2,3,4,⋯,10,故集合{k |b k =a m +a 1,1≤m ≤500}中的元素个数为10−2+1=9.19.【2021年甲卷文科】记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析. 【解析】 【分析】的公差d ,进一步写出的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列是等差数列,设公差为d(n -()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列. 【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.20.【2021年甲卷理科】已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选②③作条件证明①时,an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d -,将1(1)2n n n S na d -=+1(1)n d =-,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+==,)1n =+=所以是等差数列. 选②③作条件证明①: [方法一]:定义法(0)an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列; 当43a b =-4=3an b an a +-03a-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =,因为也为等差数列,所以公差1d()11n d -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n的一次函数,直接设出(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进行证明;选②③时,法一:利用等差数列的通项公式是关于n的一次函数,直接设出(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数1d的通项公式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.21.【2021年乙卷文科】设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n nn nT --=++++, 012111111223333-⎛⎫=++++⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯nn n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n n T . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.22.【2021年乙卷理科】记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【解析】 【分析】(1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b bb b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【详解】 (1)[方法一]: 由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积, 所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb b b b +++=-,由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈ 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; [方法二]【最优解】: 由已知条件知1231-⋅=⋅⋅⋅⋅n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥n n b S S S S n . ②由①②得1nn n b S b -=. ③又212n nS b +=, ④ 由③④得112n n b b --=. 令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]: 由212n n S b +=,得22=-nn n S b S ,且0n S ≠,0n b ≠,1n S ≠. 又因为111--=⋅⋅=⋅n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S . 故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法 由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+. 下面用数学归纳法证明. 当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++. 综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b nS b n+==-+, 当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【整体点评】(1)方法一从212n n S b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论; 方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论. (2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;23.【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】 【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.24.【2021年新高考2卷】记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式; (2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.25.【2020年新课标1卷理科】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9n n n S -+-=.【解析】 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论;(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论. 【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.26.【2020年新课标3卷理科】设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】 (1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n n n na a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n nS a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n n n a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n n x x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.27.【2020年新课标3卷文科】设等比数列{an }满足124a a +=,318a a -=. (1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】 【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-, 所以(01)(1)22n n n n n S +--==, 根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =, 【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.28.【2020年新高考1卷(山东卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S . 【答案】(1)2n n a =;(2)100480S =. 【解析】 【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S . 【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍), 所以2n n a =,所以数列{}n a 的通项公式为2n n a =. (2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以 1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2; 8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15],则89153b b b ====,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31],则1617314b b b ====,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63],则3233635b b b ====,即有52个5; 6465100,,,b b b 对应的区间分别为(0,64],(0,65],,(0,100],则64651006b b b ====,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++。

2024年高考数学大题突破:数列综合大题归类(解析版)

2024年高考数学大题突破:数列综合大题归类(解析版)

数列综合大题归类目录【题型一】“函数型”裂项求和:基础型【题型二】“函数型”裂项求和:指数函数型【题型三】“函数型”裂项求和:等差裂和型【题型四】“函数型”裂项求和:指数型裂和【题型五】“函数型”裂项求和:同构仿写型【题型六】“函数型”裂项求和:三角函数裂项型【题型七】递推公式:分式型不动点【题型八】插入数型【题型九】数列跳项型【题型十】证明数列不等式【题型十一】新结构第19题型:差分密码型【题型一】“函数型”裂项求和:基础型基础原理:m pq =m q -p 1p -1q,如:12×4=14-212-14;基本题型:①1n n +1 =1n -1n +1;②12n -1 2n +1=1212n -1-12n +1 ;注意(避免掉坑)①分母分解因式:1n 2+3n=1n n +3 =131n -1n +3 ;②系数不相同就提系数:1n 2n +4=12⋅1n n +2 =12⋅121n -1n +2 ;③求和化简时,要写到“前三后二”,并且一定要强调每项加括号,这样容易观察剩余的时首尾项(或正负项)对应.(1)1n n +k=1k 1n -1n +k ;(2)1n +k +n=1k n +k -n ;(3)12n -1 2n +1=1212n -1-12n +1;(4)1n n +1 n +2 =121n n +1 -1n +1 n +2;分式型分子裂差法形如f n a n ⋅a n +1型,如果f n =λa n +1-a n ,则可以分子裂差:f n a n ⋅a n +1=λa n +1-a n a n ⋅a n +1=λ1a n -1a n +11(22·23·龙岩·二模)已知等差数列a n 的首项为1,公差d ≠0,前n 项和为S n ,且S nS 2n为常数.(1)求数列a n 的通项公式;(2)令b n =n a n a n +1-n +1a n +1a n +2,证明:b 1+b 2+b 3+⋯+b n <13.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)由S nS 2n为常数,则n [1+1+(n -1)d ]22n [1+1+(2n -1)d ]2=2-d +nd4-2d +4nd为常数,即d =2,然后结合等差数列的通项公式求解即可;(2)由(1)可得b n =n a n a n +1-n +1a n +1a n +2=n (2n -1)(2n +1)-n +1(2n +1)(2n +3),然后累加求和即可得证.【详解】(1)依题意,得:S 1S 2=S 2S 4,即a 1a 1+a 2=a 1+a 2a 1+a 2+a 3+a 4所以,12+d =2+d4+6d,化简得:d (d -2)=0因为d ≠0,所以d =2所以a n =1+2(n -1)=2n -1经检验:S n S 2n =n 24n 2=14成立(2)因为a n =2n -1所以b n =n (2n -1)(2n +1)-n +1(2n +1)(2n +3)=144n (2n -1)(2n +1)-4(n +1)(2n +1)(2n +3)=1412n -1+12n +1 -12n +1+12n +3=1412n -1-12n +3 ,所以b 1+b 2+b 3+⋯+b n =14[1-15 +13-17 +15-19 +⋯+12n -5-12n -1 +12n -3-12n +1 +12n -1-12n +3 ]=141+13-12n +1-12n +3 =1443-12n +1-12n +3 <13.2(22·23·秦皇岛·模拟预测)设等比数列a n 的前n 项和为S n ,数列b n 为等差数列,且公差d ≠0,a 1=b 1=2,a 3=b 3,S 3=b 5.(1)求数列a n 的通项公式以及前n 项和S n ;(2)数列2n +1n 2b n +4 2的前n 项和为T n ,求证:T n≤19.【答案】(1)a n =2n ,S n =2n +1-2(2)证明见解析【分析】(1)利用等差数列通项公式运算、等比数列通项公式和求和公式运算即可求解.(2)利用裂项相消法求出T n =19×1-1n +1 2,而1-1n +1 2<1,从而得出证明.【详解】(1)设a n 的公比为q ,由题意,可得a 1q 2=b 1+2d a 1+a 1q +a 1q 2=b 1+4d ,解得q =2d =3 ,所以a n =2n,所以S n =2×1-2n 1-2=2n +1-2;(2)由(1)得b n =2+3n -1 =3n -1,所以2n +1n 2b n +4 2=2n +1n 2(3n +3)2=2n +19n 2(n +1)2=191n 2-1(n +1)2,所以T n =b 1+b 2+⋯+b n =19×1-122 +122-132+⋯+1n 2-1(n +1)2=19×1-1n +1 2 ,因为1-1n +12<1,所以T n ≤19,得证.3(2024下·福建·高三校联考开学考试)已知正项数列a n 中,a 1=1,a n +1=a n +2a n +1.(1)求数列a n 的通项公式;(2)记数列b n =2a n +1a n a n +1的前n 项和S n ,求满足S n <99100的正整数n 的集合.【答案】(1)a n =n 2(2)n ∈N *|1≤n ≤8【分析】(1)由题意,可得到数列a n 是公差为1的等差数列,进而得到数列a n 的通项公式;(2)由(1)可得数列b n 的通项公式,利用裂项相消法即可求出S n ,进而解不等式.【详解】(1)由a n +1=a n +2a n +1,有a n +1=a n +1 2,即a n +12=a n +1 2,因为数列a n 是正项数列,所以a n +1=a n +1,即a n +1-a n =1,可得数列a n 是首项为1,公差为1的等差数列,所以a n =a 1+n -1=n ,故数列a n 的通项公式为a n =n 2;(2)由(1)可得b n =2n +1n 2n +1 2=n +1 2-n 2n 2n +1 2=1n 2-1n +12.所以S n =1-122+122-132+⋅⋅⋅+1n 2-1n +1 2 =1-1n +12,故不等式S n <99100可化为1-1n +1 2<99100,解得0<n <9,所以满足S n <99100的正整数n 的集合为n ∈N *|1≤n ≤8 .【题型二】“函数型”裂项求和:指数函数型指数裂项法形如mq n +r +t hq n +b hq n +1+b 型,如果mq n +r +t =λhq n +b -hq n +1+b ,则可以分子裂差:mq n +r +t hq n +b hq n +1+b=λhq n +1+b -hq n +bhqn+b hq n +1+b=λ1hq n +b -1hq n +1+b1(2023·广西玉林·校联考模拟预测)记S n 为数列a n 的前n 项和,已知a 1=2,a n +1=S n +n .(1)证明:当n ≥2时,数列a n +1 是等比数列,并求数列a n 的通项公式;(2)设b n =2n +1a n +1a n +2,数列b n 的前n 项和为T n ,证明:T n <13.【答案】(1)证明见解析,a n =2,n =12n-1,n ≥2(2)证明见解析【分析】(1)令n =1可求得a 2的值,当n ≥2时,由a n +1=S n +n ,可得a n =S n -1+n -1,两式作差,结合等比数列的定义可证得结论成立,据此可求得数列a n 的通项公式;(2)b n =12n +1-1-12n +2-1,利用裂项相消法可证得结论成立.【详解】(1)证明:因为a 1=2,a n +1=S n +n ,S n 为数列a n 的前n 项和,当n =1时,a 2=S 1+1=2+1=3,当n ≥2时,由a n +1=S n +n ①,可得a n =S n -1+n -1②,①-②可得a n +1-a n =a n +1,即a n +1=2a n +1,所以,a n +1+1=2a n +1 ,又因为a 2+1=3+1=4≠2a 1+1 ,则当n ≥2时,数列a n +1 是等比数列,其公比为2,即当n ≥2时,a n +1=a 2+1 ⋅2n -2=4×2n -2=2n ,则a n =2n -1,a 1=2不满足a n =2n -1,所以,a n =2,n =12n -1,n ≥2.(2)证明:b n =2n +1a n +1a n +2=2n +12n +1-1 2n +2-1=12n +1-1-12n +2-1,则T n =b 1+b 2+⋯+b n =122-1-123-1 +123-1-124-1 +124-1-125-1 +⋯+12n +1-1-12n +2-1=13-12n +2-1<13.综上,对任意的n ∈N ∗,T n <13.2(2023上·海南海口·高三校考阶段练习)在数列a n a n ≠0 和b n 中,a 1=1,b 1=2,且a n +1b n 是a n a n +1和a n b n +1的等差中项.(1)设c n =b na n,求证:数列c n -1 为等比数列;(2)若b n =3×2n2n +1,a n 的前n 项和为S n ,求证:S n <3.【答案】(1)证明见解析(2)证明见解析【分析】(1)由等差中项整理得a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n +1,得c n +1-1=2(c n -1)即可证明;(2)应用裂项相消法即可求解.【详解】(1)依题a n +1b n 是a n a n +1和a n b n +1的等差中项,则2a n +1b n =a n a n +1+a n b n +1,即a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n+1a n≠0,得b n+1a n+1=2⋅b na n-1,即c n+1=2c n-1,则c n+1-1=2(c n-1),由c1-1=b1a1-1=1≠0,所以数列c n-1是以1为首项,2为公比的等比数列.(2)由(1)得c n-1=2n-1,则c n=2n-1+1,则a n=b nc n=3×2n(2n-1+1)(2n+1)=612n-1+1-12n+1,则S n=612-13+13-15+⋯+12n-2+1-12n-1+1+12n-1+1-12n+1=612-1 2n+1=3-62n+1,因为n∈N∗,则62n+1>0,故S n<3.3(2023上·湖南长沙·高二长沙一中校考阶段练习)已知数列a n的首项a1=4,且满足a n+1=3a n -2n∈N*.(1)求证:数列a n-1为等比数列;(2)记b n=3na n⋅a n+1,求数列b n的前n项和S n.【答案】(1)证明见解析(2)S n=18-12⋅3n+1+2【分析】(1)由题设递推式可得a n+1-1=3a n-1n∈N*,根据等比数列的定义,结合已知条件,即可证a n-1为等比数列;(2)由(1)有a n=3n+1,进而求b n,利用裂项相消法求S n.【详解】(1)由a n+1=3a n-2n∈N*得a n+1-1=3a n-1n∈N*,又a1-1=3,所以a n-1是首项为3,公比为3的等比数列.(2)由(1)知,a n-1=3×3n-1=3n,所以a n=3n+1所以b n=3n3n+1⋅3n+1+1=12×13n+1-13n+1+1,S n=b1+b2+b3+⋯+b n=12×131+1-132+1+132+1-133+1+⋯+13n+1-13n+1+1=12×131+1-13n+1+1=18-12⋅3n+1+2.【题型三】“函数型”裂项求和:等差裂和型正负型:等差裂和型形如-1n⋅f na n⋅a n+1型,如果f n =λa n+1-a n,则可以分子裂差:-1 n⋅f na n⋅a n+1=-1n⋅λa n+1-a na n⋅a n+1=-1n⋅λ1a n-1a n+11(2023·河北唐山·三模)设S n 为数列a n 的前n 项和,a n >0,a 2n +2a n +1=4S n .(1)求数列a n 的通项公式;(2)求数列-1n4na n a n +1的前n 项和T n.【答案】(1)a n =2n -1(2)T n =-1+(-1)n12n +1【分析】(1)利用S n 与a n 的关系计算求通项;(2)结合(1)的结论,利用裂项相消法计算即可.【详解】(1)已知a 2n +2a n +1=4S n ①,当n =1时,a 1=1.当n ≥2时,a 2n -1+2a n -1+1=4S n -1②①-②得:a 2n +2a n -a 2n -1-2a n -1=4a n ,即a n +a n -1 a n -a n -1-2 =0.又a n >0,所以a n +a n -1≠0,a n -a n -1=2.所以数列a n 是以1为首项,2为公差的等差数列.所以a n =2n -1.(2)设b n =(-1)n 4n a n a n +1=(-1)n 4n 2n -1 2n +1=(-1)n 12n -1+12n +1 .T n =-1+13 +13+15 -15+17 +⋯+(-1)n 12n -1+12n +1 =-1+(-1)n 12n +1.2(2023·江苏镇江·二模)已知数列a n 满足:a 1=14,a n +1=nn +2a n.(1)求数列a n 的通项公式;(2)若b n =(-1)n (2n +1)a n ,求数列b n 的前n 项和S n .【答案】(1)a n =12n n +1(2)S n =-12+-1 n ⋅12n +2【分析】(1)运用累乘法计算;(2)运用裂项相消法求和.【详解】(1)由题意:a 2a 1=13,a 3a 2=24,a 4a 3=35,a 5a 4=46,⋯,a n +1a n =nn +2 ,∴a 2a 1×a 3a 2×a 4a 3×a 5a 4×⋯×a n +1a n =13×24×35×46×⋯×n n +2=2n +1 n +2,a n +1a 1=2n +1 n +2 ,a n +1=a 1×2n +1 n +2 =12n +1 n +2 ,a n =12n n +1 ,将n =1代入上式也成立,∴a n =12n n +1;(2)b n =-1 n 2n +1 a n =-1 n 2n +12n n +1=-1 n 1n +1n +1 ⋅12,S n =b 1+b 2+b 3+b 4+b 5+⋯+b n =12-1-12+12+13-13-14+⋅⋅⋅+-1 n ⋅1n +-1 n ⋅1n +1=12-1+-1 n ⋅1n +1 =-12+-1 n⋅12n +2.3(2023·湖南永州·三模)记正项数列a n 的前n 项积为T n ,且1=1-4.(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅8n +6T n ⋅T n +1,求数列b n 的前2n 项和S 2n .【答案】(1)证明见解析(2)-8n 40n +25【分析】(1)根据题意得到T n T n -1=a n ,由1a n =1-4T n,化简得到T n -T n -1=4,求得T 1=5,结合等差数列的定义,即可求解;(2)由(1)可得T n =4n +1,得到b n =-1 n ⋅14n +1+14n +5,结合裂项法,即可求解.【详解】(1)证明:由题意得T n =a 1a 2⋯a n ,当n ≥2时,可得T n -1=a 1a 2⋯a n -1,可得Tn T n -1=a n ,(n ≥2),因为1a n =1-4T n ,所以T n -1T n =1-4T n,(n ≥2),即T n -1=T n -4(n ≥2),即T n -T n -1=4,(n ≥2),当n =1时,可得T 1=a 1,所以1T 1=1-4T 1,解得T 1=5,所以数列T n 是以5为首项,4为公差的等差数列.(2)解:由(1)可得T n =5+(n -1)×4=4n +1,所以b n =-1 n ⋅8n +6T n ⋅T n +1=-1 n ⋅8n +6(4n +1)(4n +5)=-1 n ⋅14n +1+14n +5 ,所以S 2n =-15+19+19+113 -113+117+⋯-18n -3+18n +1 +18n +1+18n +5 =-15+18n +5=-8n 40n +25.【题型四】“函数型”裂项求和:指数型裂和正负型:指数裂和型形如-1 n⋅mq n +r +t hq n +b hq n +1+b型,如果mq n +r +t =λhq n +b +hq n +1+b ,则可以分子裂和:-1 n ⋅mq n +r +t hq n +b hq n +1+b =-1 n ⋅λhq n +1+b +hq n +b hq n +b hq n +1+b=-1 n ⋅λ1hq n +b +1hq n +1+b1(23·24上·湖北·期中)已知{a n }为等比数列,且a 2+a 3+a 4=14,a 2,a 3+1,a 4成等差数列.(1)求数列{a n }的通项公式;(2)当{a n }为递增数列时,b n =(-1)n 6a n +22n +1 2n +1+1 ,数列{b n }的前n 项和为T n ,若存在n ∈N ∗,m ≥T n ,求m 的取值范围.【答案】(1)a n =2n -1或a n =25-n (2)m ≥-815【分析】(1)运用等差中项的性质和等比数列通项公式基本量运算,解方程即可得到{a n }通项.(2)由{a n }递增可得a n =2n -1,对b n 通项进行裂项展开,当n 为偶数、奇数时分别求出T n 表达式,然后再分别求出T n的范围,由存在n∈N∗,m≥T n,即可求出m的取值范围.【详解】(1)设等比数列{a n}公比为q,由a2+a3+a4=14a2+a4=2a3+1⇒a3=4q=2或a3=4q=12,∴a n=2n-1或a n=25-n.(2)当{a n}为递增数列时,a n=2n-1所以b n=(-1)n3⋅2n+22n+12n+1+1=(-1)n12n+1+12n+1+1当n为偶数时,T n=-12+1+122+1+122+1+123+1+⋯+12n+1+12n+1+1=-13+12n+1+1在n∈N*上单调递减,∴T n∈-13,-29,当n为奇数时,T n=-12+1+122+1+122+1+123+1+⋯-12n+1+12n+1+1=-13-12n+1+1在n∈N*上单调递增,∴T n∈-815,-13,∴m≥-815.2(23·24上·黔东南·阶段练习)已知数列a n满足:a1=1,a n=2a n-1+1n≥2.(1)证明:a n+1是等比数列,并求a n的通项公式;(2)令b n=(-1)n(3n+2)n(n+1)a n+1+1,求b n的前n项和S n.【答案】(1)证明见解析,a n=2n-1(2)S n=(-1)n(n+1)∙2n+1-12【分析】(1)通过构造可证a n+1为等比数列,根据等比数列通项公式可得a n+1,然后可得a n;(2)将数列b n通项公式变形为b n=(-1)n1n∙2n+1(n+1)∙2n+1,直接求和可得.【详解】(1)证明:由a n=2a n-1+1(n≥2),所以a n+1=2a n-1+2=2(a n-1+1),所以{a n+1}是以a1+1=2为首项,公比为2的等比数列,所以a n+1=2n,即a n=2n-1(2)由(1)知:a n+1+1=2n+1,所以b n=(-1)n(3n+2)n(n+1)∙2n+1.又b n=(-1)n1n∙2n+1(n+1)∙2n+1,所以S n=-12+12·22+12·22+13·23-13·23+14·24+⋯+-1 n1n·2n+1n+1·2n+1=(-1)n(n+1)∙2n+1-123(22·23高二下·黑龙江哈尔滨·期中)已知数列a n满足a1=14,a n+1=3a n-4.(1)求a n的通项公式;(2)设b n=(-1)n a n3n+13n+1+1,数列b n的前n项和为T n,若存在n∈N*,使m≥T n,求m的取值范围.【答案】(1)a n=4×3n+2(2)-720,+∞【分析】(1)依题意可得a n+1-2=3a n-2,再结合等比数列的定义即可证明;(2)由(1)可得b n=(-1)n13n+1+1 3n+1+1,再分n为偶数和奇数两类情况并结合裂项求和法讨论即可.【详解】(1)证明:因为a n+1=3a n-4,所以a n+1-2=3a n-2,即a n+1-2a n-2=3n∈N*,因为a1=14,所以a1-2=12,故数列a n-2是以12为首项,3为公比的等比数列,所以a n-2=12×3n-1=4×3n,则a n=4×3n+2.(2)解:由(1)知a n=4×3n+2,所以b n=(-1)n a n3n+13n+1+1=(-1)n4×3n+23n+13n+1+1=(-1)n13n+1+13n+1+1.当n为偶数时,T n=-13+1-1 32+1+132+1+133+1+L+-13n++113n+1+13n+1+13n++1=-13+1+13n+1+1=-14+13n+1+1,因为T n=-14+13n+1+1是单调递减的,所以-14<T n≤-314.当n为奇数时,T n=-13+1-1 32+1+132+1+133+1+⋯+13n++1+13n+1+-13n+113n+1+1=-13+1-13n+1+1=-14-13n+1+1,又T n=-14-13n+1+1是单调递增的,因为13n+1+1>0,所以-720≤T n<-14.要使存在n∈N*,使m≥T n,只需m≥T nmin,即m≥-720,故m的取值范围是-720,+∞.【题型五】“函数型”裂项求和:同构仿写型 仿写规律:t>1①b na n⋅a n+1⋅t n⇒1a n⋅t n-1-1a n+1⋅t n=λb na n⋅a n+1⋅t n(可通分反解λ);②b n⋅t na n⋅a n+1⇒t n+1a n+1-t na n=λb n⋅t na n⋅a n+1(可通分反解λ)1(23·24上·甘南·期中)在数列a n中,a1=2且∀n∈N*,a n+1=3a n+2×3n.(1)求a n的通项公式;(2)设b n=a n+3na n a n+1,若b n的前n项和为S n,证明:S n<14.【答案】(1)a n=2n⋅3n-1,n∈N∗(2)证明见解析【分析】(1)根据题意,化简得到a n+13n+1-a n3n=23,得出数列a n3n为等差数列,结合等差数列的通项公式,进而求得数列a n的通项公式;(2)由a n=2n⋅3n-1,得到b n=121a n-1a n+1,结合裂项法求和,求得S n=14-14(n+1)⋅3n,进而证得S n<1 4.【详解】(1)解:由a n+1=3a n+2×3n,两边同除以3n+1,可得a n+13n+1=a n3n+23,即a n+13n+1-a n3n=23,因为a1=2,可得a13=23,所以数列a n3n是首项为23,公差为23的等差数列,可得a n3n=23+(n-1)×23=2n3,所以a n=2n3×3n=2n⋅3n-1,即数列a n的通项公式为a n=2n⋅3n-1,n∈N∗.(2)解:由a n=2n⋅3n-1,可得b n=a n+3na n a n+1=2n⋅3n-1+3n2n⋅3n-1⋅2(n+1)⋅3n=(2n+3)⋅3n-12n⋅3n-1⋅2(n+1)⋅3n=1212n⋅3n-1-12(n+1)⋅3n=121a n-1a n+1,所以数列b n的前n项和为S n=121a1-1a2+1a2-1a3+⋯+1an-1a n+1=121a1-1a n+1=1212-12(n+1)⋅3n=14-14(n+1)⋅3n,因为4(n+1)⋅3n>0,可得14-14(n+1)⋅3n<14,即S n<14.2(23·24上·合肥·阶段练习)在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,令a n=log3T n.(1)求数列a n的通项公式;(2)若b n=n+1⋅2n-1a n a n+1,求数列b n的前n项和S n.【答案】(1)a n=n+22(2)S n=2n+2n+3-43【分析】(1)利用等比数列的基本性质结合倒序相乘法可求得T n,结合对数的运算可得出数列a n的通项公式;(2)计算得出b n=-2n+1n+2+2n+2n+3,利用裂项相消法可求得S n.【详解】(1)解:在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,设插入的这n个数分别为c1、c2、⋯、c n,由等比数列的性质可得c1c n=c2c n-1=⋯=c n c1=1×3=3,所以,T n=1⋅c1c2⋯c n⋅3 T n=3⋅c n c n-1⋯c1⋅1,所以,T2n =1⋅3⋅c1c n⋅c2c n-1⋅⋯⋅c n c1⋅1⋅3=3n+2,易知T n>0,所以,T n=3n+22,则an=log3T n=log33n+22=n+22.(2)解:b n =n +1 ⋅2n -1a n a n +1=n +1 ⋅2n -1n +2 n +34=n +1 ⋅2n +1n +2 n +3=2n +2 -n +3 ⋅2n +1n +2 n +3=-2n +1n +2+2n +2n +3,所以,S n =-223+234 +-234+245+⋯+-2n +1n +2+2n +2n +3 =2n +2n +3-43.3(23·24上·昆明·阶段练习)已知数列a n 满足a 1=2,a n +1=2n +1a n n ∈N * .(1)求数列a n 的通项公式;(2)设b n =log 2a 2n -n 2,数列b n +22n +1b n ⋅b n +1 的前n 项和为S n ,求证:38≤S n<12.【答案】(1)a n =2n n +12(2)证明见解析【分析】(1)运用累乘法求出a n 的通项公式;(2)先运用裂项法求出S n 的解析式,再运用缩放法证明.【详解】(1)由已知a 1=2,a n +1a n=2n +1n ∈N * ,所以a n =a n a n -1⋅a n -1a n -2⋯⋯a 2a 1⋅a 1=2n ⋅2n -1⋯⋯22⋅2=2n n +12n ≥2 ,当n =1时,a 1=2满足条件,所以a n =2n n +12;(2)由于b n =log 2a 2n -n 2=n ,所以b n +22n +1b n ⋅b n +1=n +22n +1n n +1 =1n ⋅2n -1n +1 2n +1,所以S n =11×2-12×22+12×22-13×23 +13×23-14×24+⋯+1n ⋅2n 1n +1 2n +,所以S n =11×2-1n +1 2n +1,显然S n 在N *上为增函数,S 1=11×2-12×22=38,∴S n ≥S 1=38,又S n =11×2-1n +12n +1<11×2=12,所以38≤S n <12;综上,a n =2n n +12.【题型六】“函数型”裂项求和:三角函数裂项型常见的三角函数裂项:1.正切型裂项:若a n +1-a n =α,tan α=m (特殊角),则tan α=tan a n +1-a n =tan a n +1-tan a n1+tan a n +1tan a n=m ,b n =tan a n +1tan a n =1mtan a n +1-tan a n -1;2.正余弦和与差公式应用裂项型:b n =sin1cos n cos (n -1)=sin [n -(n -1)]cos n cos (n -1)=sin n cos (n -1)-cos n sin (n -1)cos n cos (n -1)=tan n -tan (n -1)1(2023·山东威海·二模)已知2n +2个数排列构成以q n q n >1 为公比的等比数列,其中第1个数为1,第2n +2个数为8,设a n =log 2q n .(1)证明:数列1a n是等差数列;(2)设b n =tanπa n tan πa n +1,求数列b n 的前100项和S 100.【答案】(1)数列1a n是以公差为23的等差数列.1a n +1-1a n =23(2)-99【分析】(1)根据等比数列的性质分析可得a n =32n +1,再结合等差数列的定义分析证明;(2)根据两角差的正切公式整理得b n =-33tan πa n +1-tan πa n-1,结合裂项相消法运算求解.【详解】(1)由题意可得:q 2n +1n=81=8,且q n >1,可得q n =232n +1,所以a n =log 2232n +1=32n +1,可得1a n =2n +13,则1a n +1-1a n =2n +1 +13-2n +13=23,所以数列1a n是以公差为23的等差数列.(2)由(1)可得πa n +1-πa n =2π3,则tan 2π3=tan πa n +1-πa n=tan πa n +1-tan πan 1+tan πa n +1tan πan=-3,整理得b n =tanπa n tan πa n +1=-33tan πa n +1-tan πa n-1,则S 100=b 1+b 2+⋅⋅⋅+b 100=-33tan πa 2-tan πa 1 -1+-33tan πa 3-tan πa 2-1 +⋅⋅⋅+-33tan πa 101-tan πa 100-1=-33tanπa 2-tan πa 1 +tan πa 3-tan πa 2 +⋅⋅⋅+tan πa 101-tan πa 100-100=-33tan πa 101-tan πa 1-100=-33tan 203π3-tanπ -100=-33tan 68π-π3 -100=33tan π3-100=-99,所以数列b n 的前100项和S 100=-99.2(22·23高三上·山东济宁·期中)已知n ∈N *,抛物线y =-x 2+n 与x 轴正半轴相交于点A ,在点A 处的切线在y 轴上的截距为a n (1)求数列a n 的通项公式;(2)若b n =4n cos n πa n -1 a n +1,求数列b n 的前项和S n .【答案】(1)a n =2n ;(2)S n =-2n +22n +1,n =2k -1-2n 2n +1,n =2k,k ∈N ∗ .【分析】(1)利用导数的几何意义求出切线方程,再求出纵截距作答.(2)由(1)的结论求出b n,再分奇偶利用裂项相消法求解作答.【详解】(1)n∈N∗,抛物线与x轴正半轴的交点坐标为(n,0),由y=-x2+n求导得:y =-2x,因此抛物线在点A处的切线的斜率为-2n,切线方程为y=-2n(x-n),当x=0时,y=2n,所以a n=2n.(2)由(1)知,a n=2n,则b n=4n cos nπ(2n-1)(2n+1)=12n-1+12n+1cos nπ,当n为偶数时,S n=-1+1 3+13+15-15+17+17+19-⋯-12n-3+12n-1+1 2n-1+1 2n+1=-1+12n+1=-2n2n+1,当n为奇数时,S n=S n+1-b n+1=-1+12n+3-12n+1+12n+3=-1-12n+1=-2n+22n+1,S n=-2n+22n+1,n=2k-1-2n2n+1,n=2k,k∈N∗.3(22·23上·芜湖·期末)已知S n是数列a n的前n项和,2S n=n+1a n.且a1=1(1)求a n的通项公式;(2)设a0=0,已知数列b n满足b n=sin1cos a n cos a n-1,求b n的前n项的和T n【答案】(1)a n=n;(2)tan n.【分析】(1)利用给定的递推公式,结合a n=S n-S n-1,n≥2变形,构造数列求解作答.(2)由(1)的结论,利用差角的正弦公式变形,再利用错位相减法求解作答.【详解】(1)因为n∈N*,2S n=n+1a n,当n≥2时,2S n-1=na n-1,两式相减得:2a n=(n+1)a n-na n-1,即(n-1)a n=na n-1,变形得a nn=a n-1n-1,于是得数列a nn是常数列,因此a nn=a11=1,即a n=n,所以数列a n的通项公式是a n=n.(2)由(1)知,a n=n,b n=sin1cos n cos(n-1)=sin[n-(n-1)]cos n cos(n-1)=sin n cos(n-1)-cos n sin(n-1)cos n cos(n-1)=tan n-tan(n-1),所以T n=(tan1-tan0)+(tan2-tan1)+(tan3-tan2)+⋅⋅⋅+[tan n-tan(n-1)]=tan n-tan0=tan n.【题型七】递推公式:分式型不动点已知分式一次型数列递推关系a n+1=Ca n+DAa n+B求通项的问题解法:法一,化归法.当D=0时,递推关系两边取倒数,再裂项构造即可;当D≠0时,为了保持取倒数后分母一致性,通常可以令a n+1+x=Ca n+DAa n+B+x=C+xAa n+D+BxAa n+B,可由1x=C+AxD+Bx解得x的值,即可得到构造方向b n+1=tb nAa n+B,通过这样的转化将问题又化归为D=0的情形再求解.法二,特征根法求解.先构造特征方程x=Cx+DAx+B,解方程得根x1,x2,若x1≠x2,则a n-x2a n-x1为等比数列;若x1=x2,则1a n-x1为等差数列.1(22-23高三·河南·阶段练习)已知数列a n满足a1=0,a n+1=-a n-22a n+3,n∈N∗.(1)证明:数列1a n+1是等差数列;(2)证明:a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.【答案】(1)证明见解析.(2)证明见解析.【分析】(1)根据条件a1=0,a n+1=-a n-22a n+3,n∈N∗可得1a n+1+1=2+1a n+1,利用等差数列的定义即可证明结论;(2)利用(1)的结论可得a n=-2n+22n-1,即得|a n |=2n-22n-1,(n≥2,n∈N∗),利用作差法可得|a n|=2n-22n-1>2n-32n-2,由此可设S=a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,即得S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,两式相乘可证明结论.【详解】(1)证明:根据题意a1=0,a n+1=-a n-22a n+3,n∈N∗,可得a n+1+1=a n+12a n+3,则1a n+1+1=2a n+3a n+1=2+1a n+1,故1a n+1+1-1a n+1=2,1a1+1=10+1=1故数列1a n+1是以1为首项,2为公差的等差数列.(2)由(1)知,1a n+1=1+2(n-1)=2n-1,则a n=12n-1-1=-2n+22n-1,则|a n|=2n-22n-1,(n≥2,n∈N∗),由于2n-22n-1-2n-32n-2=(2n-2)2-(2n-3)(2n-1)(2n-1)(2n-2)=1(2n-1)(2n-2)>0,故|a n|=2n-22n-1>2n-32n-2,(n≥2,n∈N∗)设S=a2⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,则S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,则S2>23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1⋅12⋅34⋅56⋅⋅⋅⋅⋅2n-12n=12n+1,故S>12n+1,∴a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.2(2024高三·全国·专题练习)在数列{a n}中,a1=4且a n+1=3a n+2a n+4,求数列{a n}的通项公式.【答案】a n=2n-1+5n-1 5n-1-2n-2【分析】法一,由a n+1+x=3a n+2a n+4+x=(x+3)a n+4x+2a n+4,令1x=x+34x+2,解得x1=-1,x2=2,即在等式两边同减去1,可构造出形式a n+1-1=2(a n-1)a n+4,从而两边再同取倒数可得1a n+1-1=12+52⋅1a n-1,由此配凑常数,可构造等比数列1a n-1+13进而求得等比数列通项,解an可得;法二,利用特征方程x=3x+2x+4有两个不等式根:x1=1,x2=-2,确定构造方向,先构造两个等式,再作比即可构造特殊数列,即可求得特殊数列的通项,再解出a n即可.【详解】法一,由a n+1=3a n+2a n+4两边减去1得,a n+1-1=3a n+2a n+4-1=2(a n-1)a n+4,两边取倒数得,1a n+1-1=a n+42(a n-1)=a n-1+52(a n-1)=12+52⋅1a n-1,两边同加13得,1a n+1-1+13=56+52⋅1a n-1=52⋅1a n-1+13,由a1=4,则1a1-1+13=23≠0,所以有1a n+1-1+131a n-1+13=52,故1a n-1+13是以23为首项,52为公比的等比数列.所以1a n-1+13=23⋅52n-1,故a n-1=3⋅2n-12⋅5n-1+2n-1,解得a n=2n-1+5n-15n-1-2n-2.法二:因为a n+1=3a n+2a n+4,两边同减去1得a n+1-1=3a n+2a n+4-1=2a n-2a n+4①,两边同加上2得a n+1+2=3a n+2a n+4+2=5a n+10a n+4②,由已知a1=4,则a1-1=3≠0,a1+2=6≠0,①②两式相除得,a n+1-1 a n+1+2=2a n-15(a n+2),且a1-1a1+2=12≠0,所以,数列a n-1a n+2是以12为首项,25为公比的等比数列,∴a n-1a n+2=a1-1a1+2·25n-1=12⋅25 n-1,∴a n=2n-1+5n-15n-1-2n-2.3(2023高三·全国·专题练习)已知数列a n满足性质:对于n∈N,a n-1=a n+42a n+3,且a1=3,求{a n}的通项公式.【答案】a n =(-5)n -42+(-5)n【分析】根据特征方程的根,构造数列c n 的通项公式,再得到数列a n 的通项公式.【详解】依定理作特征方程x =x +42x +3,变形得2x 2+2x -4=0,其根为λ1=1,λ2=-2.故特征方程有两个相异的根,使用定理2的第(2)部分,则有c n =a 1-λ1a 1-λ2⋅p -λ1r p -λ2rn -1=3-13+2⋅1-1⋅21+2⋅2n -1,n ∈N ∴c n =25-15n -1,n ∈N .∴a n =λ2c n -λ1c n -1=-2⋅25-15 n -1-125-15n -1-1,n ∈N .即a n =(-5)n -42+(-5)n,n ∈N .【题型八】插入数型插入数型1.插入数构成等差数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等差数列,可通过构造新数列{b n }来求解d nn +2个数构成等差数列,公差记为d n ,所以:b n +2=b 1+(n +2-1)d n ⇔d n =b n +2-b 1(n +2-1)2.插入数构成等比数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等比数列,可通过构造新数列{b n }来求解d nn +2个数构成等比数列,公差记为d n ,所以:b n +2=b 1∙q n (n +2-1)⇔q n (n +2-1)=b n +2b 1⇔ln b n +2b 1=ln q n (n +2-1)=(n +2-1)ln q n3.插入数混合型混合型插入数列,其突破口在于:在插入这些数中,数列a n 提供了多少项,其余都是插入进来的。

2019年高考数学真题分类汇编专题18:数列(综合题含解析)

2019年高考数学真题分类汇编专题18:数列(综合题含解析)

2019年高考数学真题分类汇编专题18:数列(综合题)一、解答题1.(2019•江苏)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n} 满足:,求证:数列{a n}为“M-数列”;(2)已知数列{b n}满足: ,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M-数列”{c n} ,对任意正整数k,当k≤m时,都有成立,求m的最大值.2.(2019•上海)已知等差数列的公差,数列满足,集合.(1)若,求集合;(2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.3.(2019•浙江)设等差数列{a n}的前n项和为S n,a3=4.a4=S3,数列{b n}满足:对每个n∈N*,S n+b n,S n+1+b n、S n+2+b n成等比数列(1)求数列{a n},{b n}的通项公式(2)记C n= ,n∈N*,证明:C1+C2+…+C n<2 ,n∈N*4.(2019•天津)设是等差数列,是等比数列,公比大于0,已知,,.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足求.5.(2019•天津)设是等差数列,是等比数列.已知.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足其中.(i)求数列的通项公式;(ii)求.6.(2019•卷Ⅱ)已知是各项均为正数的等比数列,,。

(1)求的通项公式;(2)设,求数列{ }的前n项和。

7.(2019•北京)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(I)求{a n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求S n的最小值.8.(2019•卷Ⅱ)已知数列{a n}和{b n}满足a1=1,b1=0,,.(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.9.(2019•北京)已知数列{a n},从中选取第i1项、第i2项…第i m项(i1<i2<…<i m).若a i1<a i2<…<a im.则称新数列a i1,a i2,…,a im.为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(I)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(II)已知数列{a n}的长度为P的递增子列的末项的最小值为a m0,长度为q的递增子列的末项的最小值为a n0,若p<q,求证:a m0<a n0;(III)设无穷数列{a n}的各项均为正整数,且任意两项均不相等。

2024年高考数学一轮复习课件(新高考版) 第6章 必刷大题12 数列的综合问题

2024年高考数学一轮复习课件(新高考版)  第6章 必刷大题12 数列的综合问题

当n=1时,整理得a1=ma1-1,解得m=2,
故Sn=2an-1,
(a)
当n≥2时,Sn-1=2an-1-1,
(b)
123456
(a)-(b)得 an=2an-2an-1,整理得aan-n 1=2(常数),
所以数列{an}是以1为首项,2为公比的等比数列,
所以an=2n-1.
选条件③时,2a1+3a2+4a3+…+(n+1)an=kn·2n(k∈R),
当n=1时,整理得2a1=k·21,解得k=1,
故2a1+3a2+4a3+…+(n+1)an=n·2n(k∈R),
(a)
当n≥2时,2a1+3a2+4a3+…+nan-1=(n-1)·2n-1,
(b)
(a)-(b)得an=2n-1(首项符合通项),
所以an=2n-1.
123456
(2)若 bn=n+1l1og2an+1,且数列{bn}的前 n 项和 Tn=19090,求 n 的值. 由(1)得 bn=n+1l1og2an+1=nn1+1=1n-n+1 1, 所以 Tn=1-12+12-13+…+1n-n+1 1=1-n+1 1=19090,解得 n=99.
123456
(2)删去数列{bn}中的第ai项(其中i=1,2,3,…),将剩余的项按从小到大 的顺序排成新数列{cn},求数列{cn}的前n项和Sn.
123456
由题意可知新数列{cn}为b1,b2,b4,b5,…,
则当n为偶数时,Sn= b1+b4+
+b3
n 2
-2

b2+b5+
n
n
n
= 3(1 272 ) +32(1 272 )
k=1
n
n
= {[a2k-(-1)2k-1a2k-1]b2k-1+[a2k+1-(-1)2ka2k]b2k}= 2k·4k,

高中数学满分精练 专练33 高考大题专练(三) 数列的综合运用 解析版

高中数学满分精练  专练33 高考大题专练(三) 数列的综合运用 解析版

高中数学满分精练专练33高考大题专练(三)数列的综合运用1.[2022·全国甲卷(理),17]记S n 为数列{a n }的前n 项和.已知2Sn n+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.2.[2023·新课标Ⅰ卷]设等差数列{a n }的公差为d ,且d >1.令b n =n 2+na n,记S n ,T n 分别为数列{a n },{b n }的前n 项和.(1)若3a 2=3a 1+a 3,S 3+T 3=21,求{a n }的通项公式;(2)若{b n }为等差数列,且S 99-T 99=99,求d .3.[2021·新高考Ⅰ卷]已知数列{a n }满足a 1=1,a n +1n +1,n 为奇数,n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }(2)求{a n }的前20项和.4.[2022·新高考Ⅰ卷]记S n 为数列{a n }的前n 项和,已知a 1=1是公差为13的等差数列.(1)求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n<2.5.[2023·全国甲卷(理)]记S n 为数列{a n }的前n 项和,已知a 2=1,2S n =na n .(1)求{a n }的通项公式;(2)求数列{a n +12n}的前n 项和T n .6.记S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2S n +1b n=2.(1)证明:数列{b n }是等差数列;(2)求{a n }的通项公式.7.[2023·新课标Ⅱ卷]已知{a n }为等差数列,b n n -6,n 为奇数a n ,n 为偶数.记S n ,T n 分别为数列{a n },{b n }的前n 项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:当n >5时,T n >S n .8.设{a n }是首项为1的等比数列,数列{b n }满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <Sn2专练33高考大题专练(三)数列的综合运用1.解析:(1)证明:由已知条件,得S n =na n -n 22+n2.当n =1时,a 1=S 1.当n ≥2时,a n =S n -S n -1=na n -n 22+n 2-(n -1)a n -1-(n -1)22+n -12,∴(1-n )a n =-n +1-(n -1)a n -1.等式两边同时除以1-n ,得a n =1+a n -1,∴a n -a n -1=1.∴{a n }是公差为1的等差数列.(2)由(1)可得a n =a 1+(n -1).∴a 4=a 1+3,a 7=a 1+6,a 9=a 1+8.∵a 4,a 7,a 9成等比数列,∴a 27=a 4·a 9,即(a 1+6)2=(a 1+3)(a 1+8),∴a 1=-12,∴S n =na 1+n (n -1)2×1=-12n +n 2-n 2=12n 2-252n .当n =12或n =13时,S n 取得最小值,为12×122-252×12=-78.2.解析:(1)因为3a 2=3a 1+a 3,所以3(a 2-a 1)=a 1+2d ,所以3d =a 1+2d ,所以a 1=d ,所以a n =nd .因为b n =n 2+n a n ,所以b n =n 2+n nd =n +1d ,所以S 3=3(a 1+a 3)2=3(d +3d )2=6d ,T 3=b 1+b 2+b 3=2d +3d +4d =9d .因为S 3+T 3=21,所以6d +9d =21,解得d =3或d =12,因为d >1,所以d =3.所以{a n }的通项公式为a n =3n .(2)因为b n =n 2+na n,且{b n }为等差数列,所以2b 2=b 1+b 3,即2×6a 2=2a 1+12a 3,所以6a 1+d -1a 1=6a 1+2d,所以a 21-3a 1d +2d 2=0,解得a 1=d 或a 1=2d .①当a 1=d 时,a n =nd ,所以b n =n 2+n a n =n 2+n nd =n +1d,S 99=99(a 1+a 99)2=99(d +99d )2=99×50d ,T 99=99(b 1+b 99)2=99(2d +100d )2=99×51d .因为S 99-T 99=99,所以99×50d -99×51d=99,即50d 2-d -51=0,解得d =5150或d =-1(舍去).②当a 1=2d 时,a n =(n +1)d ,所以b n =n 2+n a n =n 2+n (n +1)d=nd ,S 99=99(a 1+a 99)2=99(2d +100d )2=99×51d ,T 99=99(b 1+b 99)2=99(1d +99d )2=99×50d .因为S 99-T 99=99,所以99×51d -99×50d=99,即51d 2-d -50=0,解得d =-5051(舍去)或d =1(舍去).综上,d =5150.3.解析:(1)由题设可得b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5又a 2k +2=a 2k +1+1,a 2k +1=a 2k +2,(k ∈N *)故a 2k +2=a 2k +3,即b n +1=b n +3,即b n +1-b n =3所以{b n }为等差数列,故b n =2+(n -1)×3=3n -1.(2)设{a n }的前20项和为S 20,则S 20=a 1+a 2+a 3+…+a 20,因为a 1=a 2-1,a 3=a 4-1,…,a 19=a 20-1,所以S 20=2(a 2+a 4+…+a 18+a 20)-10=2(b 1+b 2+…+b 9+b 10)-10=2×2+9×102×-10=300.4.解析:(1)∵a 1=1,∴S1a 1=1.是公差为13的等差数列,∴S n a n =S 1a 1+13(n -1),即S n =(13n +23)a n =13(n +2)a n ,∴当n ≥2时,S n -1=13(n +1)a n -1,∴a n =S n -S n -1=13(n +2)a n -13(n +1)a n -1,n ≥2,即(n -1)a n =(n +1)a n -1,n ≥2,∴a na n -1=n +1n -1,n ≥2,∴当n ≥2时,a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n +1n -1·n n -2·…·42·31=n (n +1)2,∴a n =n (n +1)2.当n =1时,a 1=1满足上式,∴a n =n (n +1)2.(2)证明:由(1)知a n =n (n +1)2,a n n (n +1)n n +1∴1a 1+1a 2+…+1a n =2(1-12+12-13+…+1n -1n +1)=2(1-1n +1).∵n ∈N *,∴0<1n +1≤12,∴1-1n +1<1,∴2(1-1n +1)<2,∴1a 1+1a 2+…+1a n <2.5.解析:(1)当n =1时,2S 1=a 1,即2a 1=a 1,所以a 1=0.当n ≥2时,由2S n =na n ,得2S n -1=(n -1)a n -1,两式相减得2a n =na n -(n -1)a n -1,即(n -1)a n -1=(n -2)a n ,当n =2时,可得a 1=0,故当n ≥3时,a n a n -1=n -1n -2,则a n a n -1·a n -1a n -2·…·a 3a 2=n -1n -2·n -2n -3 (2)1,整理得an a 2=n -1,因为a 2=1,所以a n =n -1(n ≥3).当n =1,n =2时,均满足上式,所以a n =n -1.(2)方法一令b n =a n +12n=n2n ,则T n =b 1+b 2+…+b n -1+b n =12+222+…+n -12n -1+n2n ①,12T n =122+223+…+n -12n +n 2n +1②由①-②得12T n =12+122+123+…+12n -n 2n +1=21-12-n 2n +1=1-2+n 2n +1,即T n =2-2+n2n .方法二设b n =a n +12n,所以b n =a n +12n =n 2n =(12n +0)n -1,故a =12,b =0,q =12.故A =a q -1=1212-1=-1,B =b -A q -1=0+112-1=-2,C =-B =2.故T n =(An +B )·q n +C =(-n -n+2,整理得T n =2-2+n2n .6.解析:(1)因为b n 是数列{S n }的前n 项积,所以n ≥2时,S n =b nb n -1,代入2S n +1b n =2可得,2b n -1b n+1b n =2,整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).S 1b 1b 12故{b n }是以32为首项,12为公差的等差数列.(2)由(1)可知,b n =n +22,则2S n +2n +2=2,所以S n =n +2n +1,当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1).故a n n =1-1n (n +1),n ≥2.7.设等差数列{a n }的公差为d .因为b n n -6,n 为奇数a n ,n 为偶数,所以b 11-6,b 2=2a 2=2a 1+2d ,b 3=a 3-6=a 1+2d -6.因为S =32,T 3=16,a 1+6d =32a6)+(2a 1+2da 1+2d -6)=16,a 1+3d =161+d =71=5=2,所以{a n }a n =2n (2)由(1)知a n =2n +3,所以S n =n [5+(2n +3)]2=n 2+4n .当n 为奇数时,T n =(-1+14)+(3+22)+(7+30)+…+[(2n -7)+(4n +2)]+2n -3=[-1+3+7+…+(2n -7)+(2n -3)]+[14+22+30+…+(4n +2)]=n +12(-1+2n -3)2+n -12(14+4n +2)2=3n 2+5n -102.当n >5时,T n -S n =3n 2+5n -102-(n 2+4n )=n 2-3n -102=(n -5)(n +2)2>0,所以T n >S n .当n 为偶数时,T n =(-1+14)+(3+22)+(7+30)+…+[(2n -5)+(4n +6)]=[-1+3+7+…+(2n -5)]+[14+22+30+…+(4n +6)]=n 2(-1+2n -5)2+n 2(14+4n +6)2=3n 2+7n2.当n >5时,T n -S n =3n 2+7n 2-(n 2+4n )=n 2-n 2=n (n -1)2>0,所以T n >S n .综上可知,当n >5时,T n >S n .8.解析:(1)设{a n }的公比为q ,则a n =q n -1.因为a 1,3a 2,9a 3成等差数列,所以1+9q 2=2×3q ,解得q =13,故a n =13n -1,b n =n3n .(2)由(1)知S n =1-13n1-13=32(1-13n ),T n=13+232+333+…+n 3n ,①13T n =132+233+334+…+n -13n +n 3n +1,②①-②得23T n =13+132+133+…+13n -n 3n +1,即23T n =13(1-13n )1-13-n 3n +1=12(1-13n )-n 3n +1,整理得T n =34-2n +34×3n,则2T n -S n =2(34-2n +34×3n)-32(1-13n )=-n 3n <0,故T n <Sn 2.。

统计概率与数列综合经典题(含详解答案)

统计概率与数列综合经典题(含详解答案)

统计概率与数列综合经典题(含详解答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March高考数学热点难点:统计概率与数列综合经典题1.随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x =1”表示2015年,“x =2”表示2016年,依次类推;y 表示人数):(1)试根据表中的数据,求出y 关于x 的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是12,方格图上标有第0格、第1格、第2格、…、第20格。

遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从k 到1k +)若掷出偶数遥控车向前移动两格(从k 到2k +),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。

设遥控车移到第(119)n n ≤≤格的概率为n P ,试证明{}1n n P P --是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.附:在线性回归方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii nii x y nxyb ay b x xnx ==-==--∑∑. 2.冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征和严重急性呼吸综合征等较严重疾病.而今年出现新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n (n *∈N )份血液样本,有以下两种检验方式: 方式一:逐份检验,则需要检验n 次.方式二:混合检验,将其中k (k *∈N 且2k ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为1k +. 假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p (01p <<).现取其中k (k *∈N 且2k ≥)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ. (1)若()()12E E ξξ=,试求p 关于k 的函数关系式()p f k =; (2)若p 与干扰素计量n x 相关,其中12,,,n x x x (2n ≥)是不同的正实数,满足11x =且n N *∀∈(2n ≥)都有1222113221121n n n i i i x x x e x x x x --=+-⋅=-∑成立. (i )求证:数列{}n x 等比数列; (ii)当1p =的期望值比逐份检验的总次数的期望值更少,求k 的最大值3.在读书活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为12,市民之间选择意愿相互独立.(1)从问卷市民中随机抽取4人,记总得分为随机变量ξ,求ξ的分布列和数学期望;(2)(i )若从问卷市民中随机抽取(N )m m +∈人,记总分恰为m 分的概率为m A ,求数列{}m A 的前10项和;(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为n 分的概率为n B (比如:1B 表示累计得分为1分的概率,2B 表示累计得分为2分的概率,N n +∈),试探求n B 与1n B -之间的关系,并求数列{}n B 的通项公式.4.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.A 市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了100人,并将这100人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过3000元):()1由频数分布表可以认为,该市大学生网络外卖消费金额Z (单位:元)近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x (每组数据取区间的中点值,660σ=).现从该市任取20名大学生,记其中网络外卖消费金额恰在390元至2370元之间的人数为X ,求X 的数学期望;()2A 市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值100元的饭卡,并推出一档“勇闯关,送大奖”的活动.规则是:在某张方格图上标有第0格、第1格、第2格、…、第60格共61个方格.棋子开始在第0格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是12,其中01P =),若掷出正面,将棋子向前移动一格(从k 到1k +),若掷出反面,则将棋子向前移动两格(从k 到2k +).重复多次,若这枚棋子最终停在第59格,则认为“闯关成功”,并赠送500元充值饭卡;若这枚棋子最终停在第60格,则认为“闯关失败”,不再获得其他奖励,活动结束.①设棋子移到第n 格的概率为n P ,求证:当159n ≤≤时,{}1n n P P --是等比数列;②若某大学生参与这档“闯关游戏”,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<≤+=,()220.9545P μσξμσ-<+=,()330.9973P μσξμσ-<+=.5.在某次世界新能源汽车大会上着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表).(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,经计算第(1)问中样本标准差s 的近似值为50.用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<+≈,(22)0.9545P μσξμσ-<+≈,(33)0.9973P μσξμσ-<+≈.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是12,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车车向前移动一次,若掷出正面,遥控车向前移动一格(从k 到1k +),若掷出反面,遥控车向前移动两格(从k 到2k +),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,设遥控车移到第n 格的概率为n P ,试说明{}1n n P P --是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.6.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.7.一种掷硬币走跳棋的游戏:在棋盘上标有第1站、第2站、第3站、…、第100站,共100站,设棋子跳到第n 站的概率为n P ,一枚棋子开始在第1站,棋手每掷一次硬币,棋子向前跳动一次.若硬币的正面向上,棋子向前跳一站;若硬币的反面向上,棋子向前跳两站,直到棋子跳到第99站(失败)或者第100站(获胜)时,游戏结束. (1)求1,P 2,P 3P ;(2)求证:数列{}1n n P P +-(1,2,3,,98)n =⋯为等比数列; (3)求玩该游戏获胜的概率.8.某市不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来该市参观旅游的人数不胜数.其中,名人园与梦岛被称为该市的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为23,且游客之间的选择意愿相互独立. (1)从游客中随机抽取3人,记总得分为随机变量X ,求X 的分布列与数学期望;(2)若从游客中随机抽取m 人,记总分恰为m 分的概率为m A ,求数列{}m A 的前6项和;(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为n 分的概率为n B ,探讨n B 与1n B -之间的关系,并求数列{}n B 的通项公式.参考答案1.解:(1)123453,5x ++++==20501001501801005y ++++==511202503100415051801920i ii x y==⨯+⨯+⨯+⨯+⨯=∑522222211234555,ii x==++++=∑故19205310042,5559b -⨯⨯==-⨯ 从而10042326,a y bx =-=-⨯=-所以所求线性回归方程为4226y x =-, 令*4226300,x x N ->∈,解得8x ≥.故预计到2022年该公司的网购人数能超过300万人(2)遥控车开始在第0格为必然事件,01P =,第一次掷骰子出现奇数,遥控车移到第一格,其概率为12,即112P =.遥控车移到第n (219n )格的情况是下列两种,而且也只有两种.①遥控车先到第2n -格,又掷出奇数,其概率为212n P -②遥控车先到第1n -格,又掷出偶数,其概率为112n P -所以211122n n n P P P --=+,1121()2n n n n P P P P ---∴-=--∴当119n 时,数列1{}n n P P --是公比为12-的等比数列 2312132111111,(),(),()2222nn n P P P P P P P -∴-=--=--=-⋅⋅⋅-=- 以上各式相加,得2311111()()()()2222nn P -=-+-+-+⋅⋅⋅+-=11()1()32n ⎡⎤---⎢⎥⎣⎦1211()32n n P +⎡⎤∴=--⎢⎥⎣⎦(0,1,2,,19n =⋅⋅⋅),∴获胜的概率2019211()32P ⎡⎤=--⎢⎥⎣⎦失败的概率1920181111232P P ⎡⎤==+⎢⎥⎣⎦() ∴设参与游戏一次的顾客获得优惠券金额为X 元,200X =或500 ∴X 的期望201919211115001()2001()1004()32322EX ⎡⎤⎡⎤⎡⎤=⨯-+⨯+=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∴参与游戏一次的顾客获得优惠券金额的期望值为1911004()2⎡⎤-⎢⎥⎣⎦,约400元.2.(1)解:由已知,1k ξ=,()11P ξ=,得()1E k ξ=,2ξ的所有可能取值为1,1k +,∴()()211kP p ξ==-,()()2111kP k p ξ=+=--.∴()()()()()2111111k k kE p k p k k p ξ⎡⎤=-++--=+--⎣⎦. 若()()12E E ξξ=,则()11kk k k p =+--,()11kp k -=,∴111kp k ⎛⎫-= ⎪⎝⎭,∴111kp k ⎛⎫=- ⎪⎝⎭.∴p 关于k 的函数关系式为()111kf k k ⎛⎫=- ⎪⎝⎭,(k *∈N ,且2k ≥).(2)(i )∵证明:当2n =时,12222213221221x x x e x x x x --⋅=-,∴1231x e x =,令12310x q e x ==>,则1q ≠,∵11x =,∴下面证明对任意的正整数n ,13n n x e -=.①当1n =,2时,显然成立; ②假设对任意的n k =时,13k k x e-=,下面证明1n k =+时,31k k x e +=;由题意,得12221113221121kk k i i i x x x e x x x x -++=+-⋅=-∑,∴12213121223113111111k k k k k k x e xx x x x x x x x e -++-+⎛⎫-⋅++++= ⎪⎝⎭-,∴11233122131212333111111k k k k k e e x e x e e x e ----++--+⎧⎫⎡⎤⎛⎫⎪⎪⎢⎥- ⎪⎪⎪⎢⎥⎝⎭-⎪⎪⎣⎦⋅+=⎨⎬⎪⎪-⋅-⎪⎪⎪⎪⎩⎭,()21231213122331111k k k k k xe x e xe e --+-++⎛⎫- ⎪ ⎪-⎝⎭+⋅=--,∴()212233331110k k k k k exe e x ----+++⎛⎫⋅+-⋅-= ⎪⎝⎭,233311110k k k k e x e x --+++⎛⎫⎛⎫-+= ⎪⎪⎝⎭⎝⎭. ∴31k k x e +=或2331k k x e -+=-(负值舍去).∴31k k x e +=成立.∴由①②可知,{}n x 为等比数列,13n n x e -=.(ii )解:由(i)知,11p ==,()()12E E ξξ>,∴()11kk k k p >+--,得()11kkp k <-=,∴1ln 3k k >.设()1ln 3f x x x =-(0x >),()33xf x x-'=,∴当3x ≥时,0fx ,即()f x 在[)3,+∞上单调减.又ln 4 1.3863≈,4 1.33333≈,∴4ln 43>;ln5 1.6094≈,5 1.66673≈.∴5ln 53<. ∴k 的最大值为4.3.解(1)ξ的可能取值为4,5,6,7,8,04411(4)C (),216P ξ=== 1134111(5)C (),24(2)P ξ=== 2224113(6)C ,2()()28P ξ===,3314111(7)C ,2()()24P ξ===4404111(8)C 2()()216P ξ=== 所有ξ的分布列为所以数学期望11311()4567861648416E ξ=⨯+⨯+⨯+⨯+⨯=. (2)(i )总分恰为m 分的概率为1()2mm A =,所以数列{}m A 是首项为12,公比为12的等比数列,前10项和101011(1)1023221102412S -==-. (ii )已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为1111,22n B B -=.因为1112n n B B -+=,即1112n n B B -=-+,所以1212()323n n B B --=--,则{23}n B -是首项为12136B -=-,公比为12-的等比数列, 所以1211()362n n B --=--,所以211()332n n B =+-. 4.解:()12500.27500.3512500.2517500.1x =⨯+⨯+⨯+⨯22500.05+⨯+27500.051050⨯=,因为Z 服从正态分布()21050,660N ,所以()()0.95450.6827390237020.95450.81862P Z P Z μσμσ-<≤=-<≤+=-=.所以()20,0.8186XB ,所以X 的数学期望为()200.818616.372E X =⨯=.()2①棋子开始在第0格为必然事件,01P =.第一次掷硬币出现正面,棋子移到第1格,其概率为12,即112P =. 棋子移到第()259n n ≤≤格的情况是下列两种,而且也只有两种:棋子先到第2n -格,又掷出反面,其概率为212n P -;棋子先到第1n -格,又掷出正面,其概率为112n P -,所以211122n n n P P P --=+,即112(1)2n n n n P P P P ----=--,且1012P P -=-, 所以当159n ≤≤时,数列{}1n n P P --是首项1012P P -=-,公比为12-的等比数列.②由①知1112P -=-,12212P P ⎛⎫-=- ⎪⎝⎭,33212P P ⎛⎫-=- ⎪⎝⎭,,112nn n P P -⎛⎫-=- ⎪⎝⎭,以上各式相加,得21111222n nP ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以21111222nn P ⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()12110,1,2,,5932n n +⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.所以闯关成功的概率为6060592121113232P ⎡⎤⎡⎤⎛⎫⎛⎫=--=-⎢⎥⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 闯关失败的概率为5959605811211111223232P P ⎡⎤⎡⎤⎛⎫⎛⎫==⨯--=+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.60595859602111111110323232P P ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=--+=->⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以该大学生闯关成功的概率大于闯关失败的概率. 5.解:(1)0.002502050.004502550.009503050.004503550.00150405300x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(千米).(2)由~(300X N ,250).0.95450.6827(250400)0.95450.81862P X -∴<=-=.(3)遥控车开始在第0 格为必然事件,01P=.第一次掷硬币出现正面,遥控车移到第一格,其概率为12,即112P=.遥控车移到第(249)n n 格的情况是下面两种,而且只有两种:①遥控车先到第2n -格,又掷出反面,其概率为212n P -.②遥控车先到第1n -格,又掷出正面,其概率为112n P -.211122n n n P P P --∴=+. 1121()2n n n n P P P P ---∴-=--.149n ∴时,数列1{}n n P P --是等比数列,首项为1012P P -=-,公比为12-的等比数列.1112P ∴-=-,2211()2P P -=-,3321()2P P -=-,⋯⋯,11()2n n n P P --=-. 1112100111()()()()()1222n n n n n n n P P P P P P P P ----∴=-+-+⋯⋯+-+=-+-+⋯⋯-+ 1111()212[1()]1321()2n n ++--==----(0n =,1,⋯⋯,49). ∴获胜的概率504921[1()]32P =--,失败的概率49495048112111[1()][1()]223232P P ==⨯--=+.5049484950211111[1()][1()][1()]0323232P P ∴-=---+=->. ∴获胜的概率大.∴此方案能成功吸引顾客购买该款新能源汽车.6.解(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:(2)0.5α=,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯= (i )()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7i i i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i ii i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=- ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+ 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为,乙药治愈率为时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.7.(1)棋子开始在第1站是必然事件,11P ∴=; 棋子跳到第2站,只有一种情况,第一次掷硬币正面向上,其概率为1,2212P ∴=;棋子跳到第3站,有两种情况,①第一次掷硬币反面向上,其概率为12;②前两次掷硬币都是正面向上,其概率为111,224⨯=3113244P ∴=+=; (2)棋子棋子跳到第2n +()*197,n n N ≤≤∈站,有两种情况:①棋子先跳到第n 站,又掷硬币反面向上,其概率为12nP;②棋子先跳到第1n +站,又掷硬币正面向上,其概率为112n P +.故211122n n n P P P ++=+.()21112n n n n P P P P +++∴-=--又2112P P -=-, 数列()1(1,2,3,n nP P n +-=…,98)是以12-为首项,12-为公比的等比数列. (3)由(2)得112nn n P P +⎛⎫-=- ⎪⎝⎭.()()9999989897P P P P P =-+-+…()211P P P +-+98971122⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭ …112⎛⎫+-+ ⎪⎝⎭99112112⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭9821332=+⋅ 所以获胜的概率为9998111332P -=-⋅ 8.解(1)X 可能取值为3,4,5,6()3113327P X ⎛⎫===⎪⎝⎭, ()21321643327P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()223211253327P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()3286327P X ⎛⎫===⎪⎝⎭, 故其分布列为()5E X =.(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭,故6611(1)36433172913S -==-. (3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,而113B =,故1213n n B B --=,即1213n n B B -=-+,可得1323535n n B B -⎛⎫-=-- ⎪⎝⎭,134515B -=-,所以13425153n n B -⎛⎫-=-- ⎪⎝⎭可得322553nn B ⎛⎫=+⋅- ⎪⎝⎭.。

2023年高考数学一轮复习第六章数列6数列中的综合问题练习含解析

2023年高考数学一轮复习第六章数列6数列中的综合问题练习含解析

数列中的综合问题考试要求 1.了解数列是一种特殊的函数,会解决等差、等比数列的综合问题.2.能在具体问题情境中,发现等差、等比关系,并解决相应的问题. 题型一 数学文化与数列的实际应用例1 (1)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块答案 C解析 设每一层有n 环,由题意可知,从内到外每环之间构成公差为d =9,首项为a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,解得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3402(块).(2)(2021·新高考全国Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm,20dm× 6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么∑k =1n S k =_______dm 2.答案 5 240⎝⎛⎭⎪⎫3-n +32n解析 依题意得,S 1=120×2=240;S 2=60×3=180;当n =3时,共可以得到5dm×6dm,52dm×12dm,10dm×3dm,20dm×32dm 四种规格的图形,且5×6=30,52×12=30,10×3=30,20×32=30,所以S 3=30×4=120;当n =4时,共可以得到5dm×3dm,52dm×6dm,54dm×12dm,10dm×32dm,20dm×34dm 五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15,52×6=15,54×12=15,10×32=15,20×34=15,所以S 4=15×5=75; ……所以可归纳S k =2402k ×(k +1)=240k +12k. 所以∑k =1nS k =240⎝ ⎛⎭⎪⎫1+322+423+…+n 2n -1+n +12n ,①所以12×∑k =1nS k=240⎝ ⎛⎭⎪⎫222+323+424+…+n 2n +n +12n +1,②由①-②得,12×∑k =1nS k=240⎝ ⎛⎭⎪⎫1+122+123+124+…+12n -n +12n +1=240⎝ ⎛⎭⎪⎫1+122-12n×121-12-n +12n +1=240⎝ ⎛⎭⎪⎫32-n +32n +1, 所以∑k =1nS k =240⎝⎛⎭⎪⎫3-n +32ndm 2. 教师备选1.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,前三个节气日影长之和为28.5尺,最后三个节气日影长之和为1.5尺,今年3月20日为春分时节,其日影长为( ) A .4.5尺 B .3.5尺 C .2.5尺 D .1.5尺答案 A解析 冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长构成等差数列{a n },设公差为d ,由题意得,⎩⎪⎨⎪⎧a 1+a 2+a 3=28.5,a 10+a 11+a 12=1.5,解得⎩⎪⎨⎪⎧a 1=10.5,d =-1,所以a n =a 1+(n -1)d =11.5-n , 所以a 7=11.5-7=4.5, 即春分时节的日影长为4.5尺. 2.古希腊时期,人们把宽与长之比为5-12⎝ ⎛⎭⎪⎫5-12≈0.618的矩形称为黄金矩形,把这个比值5-12称为黄金分割比例.如图为希腊的一古建筑,其中图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形,若M 与K 之间的距离超过1.5m ,C 与F 之间的距离小于11m ,则该古建筑中A 与B 之间的距离可能是(参考数据:0.6182≈0.382,0.6183≈0.236,0.6184≈0.146,0.6185≈0.090,0.6186≈0.056,0.6187≈0.034)( )A .30.3mB .30.1mC .27mD .29.2m答案 C解析 设|AB |=x ,a ≈0.618,因为矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形, 所以有|BC |=ax ,|CF |=a 2x ,|FG |=a 3x , |GJ |=a 4x ,|JK |=a 5x ,|KM |=a 6x .由题设得⎩⎪⎨⎪⎧a 6x >1.5,a 2x <11,解得26.786<x <28.796,故选项C 符合题意. 思维升华 数列应用问题常见模型(1)等差模型:后一个量比前一个量增加(或减少)的是同一个固定值. (2)等比模型:后一个量与前一个量的比是同一个固定的非零常数.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,那么应考虑a n 与a n +1(或者相邻三项)之间的递推关系,或者S n 与S n +1(或者相邻三项)之间的递推关系.跟踪训练1 (1)(2022·佛山模拟)随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月 B .2023年2月 C .2023年4月 D .2023年6月答案 B解析 每个月开通5G 基站的个数是以5为首项,1为公差的等差数列, 设预计我国累计开通500万个5G 基站需要n 个月,则70+5n +n n -12×1=500,化简整理得,n 2+9n -860=0, 解得n ≈25.17或n ≈-34.17(舍),所以预计我国累计开通500万个5G 基站需要25个月,也就是到2023年2月.(2)(多选)(2022·潍坊模拟)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…,设各层球数构成一个数列{a n },则( )A .a 4=12B .a n +1=a n +n +1C .a 100=5050D .2a n +1=a n ·a n +2解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n ,故a n =n n +12,∴a 4=4×4+12=10,故A 错误; a n +1=a n +n +1,故B 正确; a 100=100×100+12=5050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n n +1n +2n +34,显然2a n +1≠a n ·a n +2,故D 错误.题型二 等差数列、等比数列的综合运算例2 (2022·滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解 (1)设等差数列{a n }的公差为d , 因为b 2=4,所以a 2=2log 2b 2=4, 所以d =a 2-a 1=2, 所以a n =2+(n -1)×2=2n . 又a n =2log 2b n ,即2n =2log 2b n , 所以n =log 2b n , 所以b n =2n.(2)由(1)得b n =2n=2·2n -1=a 2n -1, 即b n 是数列{a n }中的第2n -1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n , 因为b 7=62a =a 64,b 8=72a =a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的, 所以S 100=P 107-Q 7=107×2+2142-2-281-2=11302.(2020·浙江)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n +1-a n ,c n +1=b nb n +2c n ,n ∈N *. (1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式; (2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1d,n ∈N *.(1)解 由b 1=1,b 1+b 2=6b 3,且{b n }为等比数列,得1+q =6q 2,解得q =12(负舍).∴b n =12n -1.∴c n +1=b nb n +2c n =4c n ,∴c n =4n -1. ∴a n +1-a n =4n -1,∴a n =a 1+1+4+…+4n -2=1-4n -11-4+1=4n -1+23. (2)证明 由c n +1=b n b n +2·c n (n ∈N *), 可得b n +2·c n +1=b n ·c n , 两边同乘b n +1,可得b n +1·b n +2·c n +1=b n ·b n +1·c n , ∵b 1b 2c 1=b 2=1+d ,∴数列{b n b n +1c n }是一个常数列, 且此常数为1+d ,即b n b n +1c n =1+d , ∴c n =1+db n b n +1=1+d d ·d b n b n +1=⎝⎛⎭⎪⎫1+1d ·b n +1-b n b n b n +1=⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b n -1b n +1,又∵b 1=1,d >0,∴b n >0, ∴c 1+c 2+…+c n=⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b 1-1b 2+⎝⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b 2-1b 3+…+⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b n -1b n +1 =⎝ ⎛⎭⎪⎫1+1d ⎝⎛⎭⎪⎫1b 1-1b 2+1b 2-1b 3+…+1b n-1b n +1=⎝⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b 1-1b n +1=⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1-1b n +1<1+1d,∴c 1+c 2+…+c n <1+1d.思维升华 对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.数列的求和主要是等差、等比数列的求和及裂项相消法求和与错位相减法求和,本题中利用裂项相消法求数列的和,然后利用b 1=1,d >0证明不等式成立.另外本题在探求{a n }与{c n }的通项公式时,考查累加、累乘两种基本方法.跟踪训练2 已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n-12.题型三 数列与其他知识的交汇问题 命题点1 数列与不等式的交汇例3 已知数列{a n }满足a 1=12,1a n +1=1a n +2(n ∈N *).(1)求数列{a n }的通项公式;(2)求证:a 21+a 22+a 23+…+a 2n <12.(1)解 因为1a n +1=1a n+2(n ∈N *),所以1a n +1-1a n=2(n ∈N *),因为a 1=12,所以1a 1=2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以首项为2,公差为2的等差数列,所以1a n =2+2(n -1)=2n (n ∈N *),所以数列{a n }的通项公式是a n =12n (n ∈N *).(2)证明 依题意可知a 2n =⎝ ⎛⎭⎪⎫12n 2=14·1n 2<14·1n ·1n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n >1), 所以a 21+a 22+a 23+…+a 2n<14⎝ ⎛⎭⎪⎫1+1-12+12-13+…+1n -1-1n=14⎝⎛⎭⎪⎫2-1n <12.故a 21+a 22+a 23+…+a 2n <12.命题点2 数列与函数的交汇例4 (1)(2022·淄博模拟)已知在等比数列{a n }中,首项a 1=2,公比q >1,a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,则数列{a n }的前9项和是________. 答案 1022解析 由f (x )=13x 3-6x 2+32x ,得f ′(x )=x 2-12x +32,又因为a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,所以a 2,a 3是函数f ′(x )=x 2-12x +32的两个零点,故⎩⎪⎨⎪⎧a 2+a 3=12,a 2·a 3=32,因为q >1,所以a 2=4,a 3=8,故q =2, 则前9项和S 9=21-291-2=210-2=1022.教师备选1.已知函数f (x )=log 2x ,若数列{a n }的各项使得2,f (a 1),f (a 2),…,f (a n ),2n +4成等差数列,则数列{a n }的前n 项和S n =______________. 答案163(4n-1) 解析 设等差数列的公差为d ,则由题意,得2n +4=2+(n +1)d ,解得d =2, 于是log 2a 1=4,log 2a 2=6,log 2a 3=8,…, 从而a 1=24,a 2=26,a 3=28,…,易知数列{a n }是等比数列,其公比q =a 2a 1=4, 所以S n =244n-14-1=163(4n-1).2.求证:12+1+222+2+323+3+…+n 2n +n <2(n ∈N *).证明 因为n 2n+n <n2n , 所以不等式左边<12+222+323+…+n2n .令A =12+222+323+…+n2n ,则12A =122+223+324+…+n 2n +1, 两式相减得12A =12+122+123+…+12n -n 2n +1=1-12n -n2n +1,所以A =2-n +22n<2,即得证.思维升华 数列与函数、不等式的综合问题关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n 项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明.跟踪训练3 (1)(2022·长春模拟)已知等比数列{a n }满足:a 1+a 2=20,a 2+a 3=80.数列{b n }满足b n =log 2a n ,其前n 项和为S n ,若b nS n +11≤λ恒成立,则λ的最小值为________.答案623解析 设等比数列{a n }的公比为q , 由题意可得⎩⎪⎨⎪⎧a 1+a 1q =20,a q +a q 2=80,解得a 1=4,q =4,故{a n }的通项公式为a n =4n,n ∈N *.b n =log 2a n =log 24n =2n , S n =2n +12n (n -1)·2=n 2+n ,b nS n +11=2n n 2+n +11=2n +11n+1,n ∈N *, 令f (x )=x +11x,则当x ∈(0,11)时,f (x )=x +11x单调递减,当x ∈(11,+∞)时,f (x )=x +11x单调递增,又∵f (3)=3+113=203,f (4)=4+114=274,且n ∈N *,∴n +11n ≥203,即b nS n +11≤2203+1=623, 故λ≥623,故λ的最小值为623.(2)若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,S 2=4. ①求数列{a n }的通项公式; ②设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解 ①设{a n }的公差为d (d ≠0), 则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d . 因为S 1,S 2,S 4成等比数列, 所以a 1·(4a 1+6d )=(2a 1+d )2. 所以2a 1d =d 2.因为d ≠0,所以d =2a 1.又因为S 2=4,所以a 1=1,d =2, 所以a n =2n -1. ②因为b n =3a n a n =32n -12n +1=32⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以T n =32⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =32⎝⎛⎭⎪⎫1-12n +1<32. 要使T n <m 20对所有n ∈N *都成立, 则有m 20≥32,即m ≥30. 因为m ∈N *,所以m 的最小值为30. 课时精练1.(2022·青岛模拟)从“①S n =n ⎝ ⎛⎭⎪⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n .注:如果选择多个条件分别解答,按第一个解答计分.解 (1)选①: S n =n ⎝ ⎛⎭⎪⎫n +a 12=n 2+a 12n , 令n =1,得a 1=1+a 12,即a 1=2, 所以S n =n 2+n .当n ≥2时,S n -1=(n -1)2+n -1,当n ≥2时,a n =S n -S n -1=2n ,又a 1=2,满足上式,所以a n =2n .选②:由S 2=a 3,得a 1+a 2=a 3,得a 1=d ,又由a 4=a 1a 2,得a 1+3d =a 1(a 1+d ),因为d ≠0,则a 1=d =2,所以a n =2n .选③:由a 4是a 2,a 8的等比中项,得a 24=a 2a 8,则(a 1+3d )2=(a 1+d )(a 1+7d ),因为a 1=2,d ≠0,所以d =2,则a n =2n .(2)S n =n 2+n ,b n =(2n +1)2+2n +1-(2n )2-2n =3·22n +2n ,所以W n =3×22+2+3×24+22+…+3×22n +2n =12×1-4n 1-4+2×1-2n 1-2=4(4n-1)+2(2n -1)=4n +1+2n +1-6.2.(2022·沈阳模拟)已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2.(1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2,得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1,即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1.当n =1时,a 22=2a 1+2=4,∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n .(2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n ,2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·1-2n 1-2-n ·2n +1 =(1-n )2n +1-2,∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0,∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022,当n =8时,T 8=7×29+2=3 586>2 022,∴使T n >2 022的最小的正整数n 的值为8.3.(2022·大连模拟)已知等差数列{a n }的前n 项和为S n ,S 5=25,且a 3-1,a 4+1,a 7+3成等比数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n +1,T n 是数列{b n }的前n 项和,求T 2n .解 (1)由题意知,等差数列{a n }的前n 项和为S n ,由S 5=25,可得S 5=5a 3=25,所以a 3=5, 设数列{a n }的公差为d ,由a 3-1,a 4+1,a 7+3成等比数列,可得(6+d )2=4(8+4d ),整理得d 2-4d +4=0,解得d =2,所以a n =a 3+(n -3)d =2n -1.(2)由(1)知 b n =(-1)n a n +1=(-1)n (2n -1)+1,所以T 2n =(-1+1)+(3+1)+(-5+1)+(7+1)+…+[-(4n -3)+1]+(4n -1+1)=4n .4.(2022·株洲质检)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.解 (1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,可得⎩⎪⎨⎪⎧ a 1+2d =5,a 1·a 1+d =2a 1+3d ,整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1, 因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3,所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n , 根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2 =(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2)=2×1-22n +11-2+3+2n +42n +22=4n +1+2n 2+9n +5.5.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解 (1)∵等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列, ∴S n =na 1+n (n -1),(2a 1+2)2=a 1(4a 1+12),解得a 1=1,∴a n =2n -1.(2)由(1)可得b n =(-1)n -14na n a n +1=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+⎝ ⎛⎭⎪⎫15+17-…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1;当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+⎝ ⎛⎭⎪⎫15+17-…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.∴T n =⎩⎪⎨⎪⎧ 2n2n +1,n 为偶数,2n +22n +1,n 为奇数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新编辑数列高考大题专题(理科)(2012江苏)已知各项均为正数的两个数列{}n a 和{}n b满足:1n a n *+=∈N .1.设11n n nb b n a *+=+∈N ,,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;2.设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值. 解:(1)∵()2222221111n*n n nn n n n n n na b b b b a b b n N a a a a ++⎛⎫+⎪⎛⎫⎛⎫⎛⎫⎛⎫ ⎪-=-=-=∈ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭+ (2)∵0n a >,0n b >∴()()22222n nn n n n a b a b a b +≤+<+∴11n a +<=≤∵{}n a 是各项都为正数的等比数列 ∴设其公比为q ,则0q > ①当1q >时, ∵0n a >∴数列{}n a是单调递增的数列,必定存在一个自然数,使得1n a +>②当01q <<时 ∵0n a >∴数列{}n a 是单调递减的数列,必定存在一个自然数,使得11n a +<最新编辑由①②得:1q = ∴()1*n a a n N =∈∵11n a +<=≤得:1a =11a <≤∴1n b =∵*11n n n n b b n N a +==∈, ∴数列{}n b是公比为1a 的等比数列∵11a <≤∴11a ≥ ①当11a >时 数列{}n b是单调递增的数列,这与1n b =矛盾②当11a =时 数列{}n b 是常数数列,符合题意∴1a∴n b =∴1b(2010江苏)19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示)(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立,求证:c 的最大值为29.(2011高考)(本小题满分12分)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式.2.设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =。

有条件可知a>0,故13q =。

由12231a a +=得12231a a q +=,所以113a =。

故数列{a n }的通项式为a n =13n 。

(Ⅱ )111111log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n -+(辽宁理17)已知等差数列{an}满足a2=0,a6+a8=-10 (I )求数列{an}的通项公式;(II )求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和.解:(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩ 解得11,1.a d =⎧⎨=-⎩ 故数列{}n a 的通项公式为2.n a n =- ………………5分 (II )设数列1{}2n n n a n S -的前项和为,即2111,122nn n a a S a S -=+++=故,12.2242n nn S a a a =+++所以,当1n >时,1211111222211121()2422121(1)22n n n n n nn n n nS a a a a a a n n------=+++--=-+++--=--- .2n n所以1.2n n nS -=综上,数列11{}.22n n n n a n n S --=的前项和 ………………12分 (天津理20) 已知数列{}n a 与{}n b 满足:1123(1)0,2nn n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c是等比数列;最新编辑(I )解:由*3(1),,2nn b n N +-=∈可得1,n n b ⎧=⎨⎩为奇数2,n 为偶数 又1120,n n n n n b a a b a +++++=123123234434543;5;4.=-=-=当n=1时,a +a +2a =0,由a =2,a =4,可得a 当n=2时,2a +a +a =0,可得a 当n=3时,a +a +2a =0,可得a(II )证明:对任意*,n N ∈ 2122120,n n n a a a -+++= ① 2212220,n n n a a a ++++= ② 21222320,n n n a a a +++++= ③②—③,得 223.n n a a += ④将④代入①,可得21232121()n n n n a a a a ++-++=-+即*1()n n c c n N +=-∈又1131,0,n c a a =+=-≠故c因此11,{}n n n c c c +=-所以是等比数列.3.(17)(本小题满分12分) 设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S (17)解:(Ⅰ)由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+21233(222)2n n --=++++2(1)12n +-=。

而 12,a =所以数列{n a }的通项公式为212n n a -=。

(Ⅱ)由212n n n b na n -==⋅知35211222322n n S n -=⋅+⋅+⋅++⋅ ①从而23572121222322n n S n +⋅=⋅+⋅+⋅++⋅ ②①-②得2352121(12)22222n n n S n -+-⋅=++++-⋅ 。

即 211[(31)22]9n n S n +=-+17.(本小题满分12分)已知数列{a n }满足a 1=1,a 2=3,a n+2=3a n+1-2a n (n ∈N +) (1)证明:数列{a n+1-a n }是等比数列; (2)求数列{a n }的通项公式 (1)证明:2132,n n n a a a ++=-21112*2112(),1,3,2().n n n n n n n na a a a a a a a n N a a ++++++∴-=-==-∴=∈-{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列。

(2)解:由(1)得*12(),n n n a a n N +-=∈112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+12*22...2121().n n nn N --=++++=-∈17.(本小题满分12分)在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N .(1)证明数列{}n a n -是等比数列;(2)设数列{}n a 的前n 项和n S ,求n n S S 41-+的最大值。

17.证明:(Ⅰ)由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n ∈*N . 又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列.(Ⅱ)由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32n n n n S -+=+. 1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭= )43(212-+-n n 故n=1,最大0..(2011·东莞期末)(本小题满分14分)已知数列{}n a 的各项满足:k a 311-=)(R k ∈,1143n n n a a --=-.(1) 判断数列}74{nn a -是否成等比数列;(2)求数列{}n a 的通项公式;解:(1)n n n n nn n a a a 4733743474111⨯+-=--=-+++ )74(3nn a --=,k k a 3737431741-=--=-.当17k =时,0741=-a ,则数列}74{n n a -不是等比数列;当17k ≠时,0741≠-a ,则数列}74{n n a -是公比为3-的等比数列.(2)由(1)可知当17k ≠时,1)3()373(74--⋅-=-n n n k a , 74)3()373(1n n n k a +-⋅-=-.当17k =时,74n n a =,也符合上式,所以,数列{}n a 的通项公式为74)3()373(1n n n k a +-⋅-=-.(2011·佛山一检)(本题满分14分)已知正项等差数列{}n a 的前n 项和为n S ,若312S =,且1232,,1a a a +成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)记3nn na b =的前n 项和为n T ,求n T . 解:(Ⅰ)∵312S =,即12312a a a ++=,∴2312a =,所以24a =,--------------------------------2又∵12a ,2a ,31a +成等比数列, ∴22132(1)a a a =⋅+,即22222()(1)a a d a d =-⋅++,--------------------------------4分解得,3d =或4d =-(舍去), ∴121a a d =-=,故32n a n =-;---------------------------------------7分(Ⅱ)法1:321(32)333n n n n n a n b n -===-⋅,∴231111147(32)3333n n T n =⨯+⨯+⨯++-⨯, ①①13⨯得,2341111111147(35)(32)333333n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ②①-②得,234121111113333(32)3333333n n n T n +=+⨯+⨯+⨯++⨯--⨯2111111(1)115111333(32)(32)133623313n n n n n n -+-+-=+⨯--⨯=-⨯--⨯-∴2511321565144323443n n n n n n T --+=-⨯-⨯=-⨯. ---------------------------------------14分法2:1321123333n n n n n na nb n --===⋅-⨯, 设231111112343333n n A n -=+⨯+⨯+⨯++⨯, ①则234111111234333333n n A n =+⨯+⨯+⨯++⨯, ② ①-②得,2312111111333333n n n A n -=+++++-⨯1113313()1322313n n n n n -=-⨯=-+⨯- ∴9931()4423n n A n =-+⨯,∴11(1)993115651332()(1)14423344313n n n n n n n T A n ⨯-+=-⨯=-+⨯--=-⨯-. 9.(2011·三明三校一月联考)(本小题满分12分)已知等差数列{}n a 和正项等比数列{}n b ,111==b a ,1073=+a a , 3b =4a (1)求数列{}n a 、{}n b 的通项公式(2)若n n n b a c •=,求数列{}n c 的前n 项和n T .解(1)依题意, {}n a 为等差数列,设其公差为d ; {}n b 为正项等比数列,设其公比为q ,则可知0>q∵ 1073=+a a ∴可知2105=a ,即55=a 又11=a ∴ 4415==-d a a ,解得1=d 故n d n a a n =-+=)1(1 (3)分由已知3b =4a =4, ∴ 4132==b b q ,即2=q ∴ 1112--==n n n q b b 所以na n =,12-=n n b ………………………………………………………………6分(2)∵ n n n b a c ⋅==12-⋅n n∴ n T =12102232221-⨯++⨯+⨯+⨯n n∴ n T 2 = n n n n 22)1(2322211321⨯+⨯-++⨯+⨯+⨯-以上两式相减,得-n T =n n n 222221210⨯-++++- ………………………9分=n n n 221)21(1⨯---⨯=12)1(-⨯-n n ∴nT =12)1(+⨯-n n ………………………………………………………………12分10.(2011·杭州一检)(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =,(1)证明:数列{}n a 是等比数列;(2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得143n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a .所以{}n a 是首项为1,公比为43的等比数列. 7分(2)解:因为14()3n n a -=,由1(1,2,)n n n b a b n +=+=,得114()3n n n b b -+-=. 9分由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b=1)34(3341)34(1211-=--+--n n ,(2≥n ), 当n=1时也满足,所以1)34(31-=-n n b .(2011·泰安高三期末)(本小题满分12分)在数列{a n }中,a 1=2,a n+1=a n +cn (c 是常数,n=1,2,3…),且a 1, a 2,a 3,成公比不为1的等比数列.(Ⅰ)求c 的值;(Ⅱ)求{a n }的通项公式.解:(1)a 1=2,a 2=2+c,a 3=2+3c,(1分)因为a 1,a 2,a 3成等比数列,所以(2+c )2=2(2+3c),解得c=0或c=2.当c=0时,a 1=a 2=a 3,不符合题意舍去故c=2.(2)当n ≥2时,由于a 2 – a 1 =c ,a 3 – a 2 =2c ,a n – a n-1=(n-1)c,所以a n –a 1 =[1+2+…+(n-1)]c=(1).2n n c - 又a 1=2,c=2,故a n =2+n(n -1)= n 2- n +2(n =2,3,…). 当n=1时,上式也成立,所以a n = n 2- n +2(n =1,2,…).(2011·温州十校期末联考)(本题满分14分)已知等差数列{}n a 满足前2项的和为5,前6项的和为3.(1)求数列{}n a 的通项公式;(2)设)(,2)4(*∈⋅-=N n a b n n n ,求数列{}n b 的前n 项和n S 。

相关文档
最新文档