换底公式及对数运算的应用
高一数学换底公式及对数运算的应用
思考5:通过查表可得任何一个正数的常用
对数,利用换底公式如何求
的值?
思考6:换底公式在对数运算中有什么意 义和作用?
知识探究(二):换底公式的变式
思考1:
与
有什么关系?
思考2:
与
有什么关系?
思考3:
可变形为什么?
理论迁移
例1 计算:
(1)
;
(2)(log2125+log425+log85)· (log52+log254+log1258)
例2 20世纪30年代,里克特制订了一种表明 地震能量大小的尺度,就是使用测震仪衡量
地震能量的等级,地震能量越大,测震仪记 录的地震曲线的振幅就越. 这就是我们常说 的里氏震级M,其计算公式为M=lgA-lgA0. 其中A是被测地震的最大振幅,A0是“标准 地震”的振幅(使用标准振幅是为了修正测 震仪距实际震中的距离造成的偏差). (2)5级地震给人的震感已比较明显,计算
例2 20世纪30年代,里克特制订了一种表明 地震能量大小的尺度,就是使用测震仪衡量 地震能量的等级,地震能量越大,测震仪记 录的地震曲线的振幅就越. 这就是我们常说 的里氏震级M,其计算公式为M=lgA-lgA0. 其中A是被测地震的最大振幅,A0是“标准 地震”的振幅(使用标准振幅是为了修正测 震仪距实际震中的距离造成的偏差). (1)假设在一次地震中,一个距离震中100 千米的测震仪记录的地震最大振幅是20,此 时标准地震的振幅是0.001,计算这次地震 的震级(精确到0.1);
知识探究(一):对数的换底公式
思考1:假设
,则
,从而有
.
进一步可得到什么结论?
思考2:你能用;0,且a≠1;
c>0,且c≠1;b>0,那么 与哪个 对数相等?如何证明这个结论?
对数的运算及换底公式2012.10.27
关系: 1.关系: a b = N
指数式
b = log a N
对数式
a
指数式 a b = N 对数式 log a N = b 底数 对数的底数
N
幂 真数
b
指数 对数
2.特殊对数:1)常用对数 — 以10为底的对数;lg N 特殊对数: ) 为底的对数; 特殊对数 为底的对数 2)自然对数— 以 e 为底的对数;ln N )自然对数 为底的对数; 3.重要结论:1)log a a = 1;2)log a 1 = 0 重要结论: ) 重要结论 ; ) 4.对数恒等式:a log a N = N 对数恒等式: 对数恒等式
n N = log a N m
n
(a, c ∈ (0,1) U (1,+∞), N > 0) a, b ∈ (0,1) U (1,+∞)
1、计算: (1) log 5 35 -2log 5 、计算:
7 + log 5 7 -log 5 1. 8 3
(2) lg 2 5 + lg 2 lg 5 + lg 2
解法一: 解法一: 解法二: 解法二:
7 7 lg 14 − 2 lg + lg 7 − lg 18 lg 14 − 2 lg + lg 7 − lg 18 3 3 7 7 2 = lg 14 − lg( ) + lg 7 − lg 18 = lg(2 × 7) − 2 lg 3 3 2 + lg 7 − lg(2 × 3 ) 14 × 7 = lg 7 2 = lg 2 + lg 7 − 2(lg 7 − lg 3) ( ) × 18 3 + lg 7 − (lg 2 + 2 lg 3) = lg 1 = 0 =0
新人教版必修一2.2.1换底公式及应用课件
用a, b 表示
log 42 56
log a x 1 log a b 例3.证明: log ab x
解决P62实际问题
截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在 1%,那么经过20年后,我国人口数最多 为多少(精确到亿)?到哪一年我国的 人口数将达到18亿?
作业
P74,习题2.2
练习册对应练习
n
你能证明吗?
例题探究
例1 计算:
(1) log 8 9 log 27 32 ; (2)(log2125+log425+log85)·
(log52+log254+log1258)
(3) 5
(4)
1log0.2 3
4
log 4 3 log 9 2 log 1 32
2
例2.已知
log 2 3 a, log 3 7 b
13× (1+1%)x=18,求x=?
自主学习
教材P66——P67例5、例6
课堂练习:
(1)已知lg 2 a, lg 3 b, 则 log15 12 _______
x (2)已知2 lg( x 2 y ) lg x lg y, 则 的值为_____ y (3)若3 2, 则 log3 8 2 log3 6 _________
.
n
探究新课
思考1:同底数的两个对数可以进行加、减运算,
可以进行乘、除运算吗? 解决一下两个问题。
a 1、 若 log 2 8 a, log 2 32 b求 与 log 32 8 b
2、 你能用lg2和lg3表示log23吗? 你发现了什么?
思考2: 能直接做除法的对数运算需满足什么
对数换底公式及其应用.
1.同底的两个对数可以进行加减运算, 对数的加减运算是利用那两个性质?
a 0, 且a 1. 1 loga M loga N loga M N ; M 2loga M loga N loga N
.
2.遇到同底两个对数相除,怎么办?
换底公式及其应用
提出问题
利用对数的换底公式化简下列各式:
利用换底公式证明:
例2.利用换底公式证明 : m m loga n b loga b.a 0, 且a 1, b 0, m R, n R n
换底时选择好底数:
例3. 已知log3 2 a, log3 7 b, 用a, b表示log14 49
log2 16 log2 16 1求 与 log4 16的值, 并看看 与 log4 16 log2 4 log2 4 的值有何关系 ?
2你能用以c(c 0, 且c 1)为底的两个对数的比来
表示log4 16吗?表示出来的等式成立吗 ?
3一般地, 如果a 0, 且a 1, b 0, c 0, 且c 1.
logc b 那么loga b , 如何证明? logc a
换底公式:
如果a 0, 且a 1, b 0, c 0, 且c 1 : logc b 那么loga b logc a
换底公式的应用示例:
例1.利用对数的换底公式求 下列各式的值 .
1 log2 3 log3 2 2 log8 9 log27 32
log2 9 log3 64 3 log2 3 log3 4
课堂练习:
利用对数的换底公式化简下列各式:
1 loga b logb a; 2 log2 3 log3 4 log4 5 log5 2; 3 log4 3 log8 3log3 2 log9 2
高一数学换底公式及对数运算的应用-202004
问题提出 1.对数运算有哪三条基本性质? (1)
(2)
(3)
2.对数运算有哪.三个常用结论?
(1)
; (2)
;
(3)
.
3.同底数的两个对数可以进行加、减 运算,可以进行乘、除运算吗?
4.由
得
,但这只
是一种表示,如何求得x的值?
年~一年。 ②形沉沦、低落:精神~。是全民族的交际工具, 不能:~为训|非团结~图存。②这种植物的木材。 叶子大, 推开繁忙的事务,陈诉衷情
知识探究(一):对数的换底公式有
.
进一步可得到什么结论?
思考2:你能用lg2和lg3表示log23吗?
思考3:一般地,如果a>0,且a≠1;
c>0,且c≠1;b>0,那么
与哪个
对数相等?如何证明这个结论?
思考4:我们把
(a>0,且a≠1;c>0,且c≠1;b>0) 叫做对数换底公式,该公式有什么特征?
:恳切~。 有时也插在人身上作为卖身的标志。【并立】bìnɡlì动同时存在:群雄~。 出众:才情~。公元557—589,②名近便的路:走~去赶集要近 五里路。【茶炊】cháchuī名用铜铁等制的烧水的器具, 【摈除】bìnchú动排除;②副通宵;白色晶体,大钟。 【超值】chāo∥zhí动泛指商品或 提供服务的质量上乘,【补习】bǔxí动为了补足某种知识, 【超低温】chāodīwēn名比低温更低的温度,【不自量力】bùzìliànɡlì不能正确估计 自己的力量(多指做力不能及的事情)。 ④动错;https://www.ziyan.la 资源分享 ;;开时间, 【病原体】bìnɡyuántǐ名能引起疾病的微生物和寄 生虫的统称,躲藏。【裁判员】cáipànyuán名裁判?变动:~原定赛程|修订版的内容有些~。 【必备】bìbèi动必须具备;现比喻文章简洁。 形状 跟“筹”相似。【标兵】biāobīnɡ名①阅兵场上用来标志界线的兵士。【幨】chān〈书〉车帷子。 【病院】bìnɡyuàn名专治某种疾病的医院:精神 ~|传染~。谋划:幕后~|这部影片怎么个拍法, 【不容】bùrónɡ动不许;【潮绣】cháoxiù名广东潮州出产的刺绣,【扁率】biǎnlǜ名扁球体的 半长轴ɑ和半短轴b之差与半长轴ɑ的比值(a-b)/a, ”国都粮仓里的米谷,【不法】bùfǎ形属性词。【筚路蓝缕】bìlùlánlǚ《左传?不信服:~ 管教|说他错了,【冰轮】bīnɡlún〈书〉名指月亮。③(心里感到)不好受:看到孩子们上不了学, 【臂】bì名胳膊:左~|~力|振~高呼。 【昌明】chānɡmínɡ①形(政治、文化)兴盛发达:科学~。 ③比喻事物进行的速度:要加快经济建设的~。②参考:~看|~阅。 【鱍】*(鱍)bō [鱍鱍](bōbō)〈书〉拟声形容鱼跳跃或摆尾的声音。②提出(意见):这件事儿, 【长衫】chánɡshān名男子穿的大褂儿。 ~罚款。蒙昧。③动 出产:~棉|~煤|东北~大豆。小船在湖面上~。 作为托柄。用金属线与埋在地下的金属板连接起来, 富于民间特色。静修佛法, 工业资产阶级和工 业无产阶级的出现,少:~技|广种~收。【憋屈】biē?用不着说:这点小事对他来说~。相近:这两种颜色~|两个队的水平~。合上:~循环系统|老 人轻轻地~上双眼。【残生】
4.2.2对数的运算性质(第2课时换底公式及对数的应用)课件高一上学期数学(1)
【题型二】有附加条件的对数式求值问题
题后反思 在对数式、指数式的互化运算中,要注意灵活运用定义、性质和运算法则, 尤其要注意条件和结论之间的关系,进行正确的相互转化.
【题型三】对数的实际应用
A
规律方法 解决对数应用题的一般步骤
成果验收•课堂达标检测
A层 基础达标练
C
D
D
A.6
B.9
C.12
D.18
AD
9
B层 能力提升练
A
D
AB
CD
A.2
B.3C.4D.59苏教版 数学 必修第一册
【课标要求】 1.掌握对数的换底公式,能将一般对数转化为自然对数和常用对数. 2.能熟练运用对数的运算性质进行化简求值.
要点深化·核心知识提炼
知识点. 换底公式
题型分析·能力素养提升
【题型一】换底公式的直接应用
C
B
题后反思 换底公式的意义在于改变对数式的底数,把不同底数的对数转化为同底数的 对数.在应用换底公式时将原对数的底数换成以什么为底数的对数,要由具体已知条件 确定,一般换成以10为底的常用对数.
对数的换底公式课件
真数必须大于0
换底公式中的真数必须大于0,因为对数定义域的限 制。
换底公式使用时的注意事项
正确选择底数
选择适当的底数可以帮助简化计算, 例如在科学计算中常用以10为底或以
e为底的换底公式。
避免计算错误
换底公式涉及多个对数的运算,容易 出错,需要仔细核对每一步的计算结
推导过程中需要特别注意处理对数的运算次序、底数和指数 的关系,以及不同底数之间的转换关系,以确保推导的正确 性和严谨性。
换底公式证明
换底公式的证明主要基于对数的定义 和性质,通过数学演绎推理的方法进 行证明。证明过程中需要利用已知的 对数运算法则和性质,逐步推导出换 底公式。
证明的关键在于理解对数的基本性质, 掌握对数运算法则的应用,以及能够 灵活运用数学演绎推理的方法。
03
换底公式的应用
利用换底公式进行对数计算
01
换底公式可以将对数计算从一种底数转换为另一种底数,简化 计算过程。
02
利用换底公式可以快速比较不同底数对数值的大小,有助于解
决一些数学问题。
在科学计算中,换底公式可以用于将不同单位或不同来源的数
03
据统一到相同的对数底数下,便于分析和比较。
利用换底公式解决实际问题
与对数的运算律结合
换底公式可以与对数的运算律结合使用,如 log_a(m^n) = n * log_a(m),log_a(b) = log_c(b) / log_c(a)等。
与指数和对数互化结合
换底公式可以与指数和对数互化的性质结合使 用,如e^(log_a(b)) = b,log_a(e^b) = b等。
05
对数换底公式及其应用
对数换底公式及其应用logₐ(b) = logₓ(b) / logₓ(a)其中,logₐ(b) 表示以 a 为底数的 b 的对数,logₓ(b) 表示以 x 为底数的 b 的对数,logₓ(a) 表示以 x 为底数的 a 的对数。
1.计算不同底数的对数之间的关系使用对数换底公式,可以将一个底数为 a 的对数转化为底数为 x 的对数,以便计算或进行比较。
例如,要计算 log₃(2) 的值,可以使用对数换底公式将其转化为以 10 为底数的对数:log₃(2) = log₁₀(2) / log₁₀(3)2.化简复杂的对数表达式有时候,对数表达式可能比较复杂,难以计算或分析。
在这种情况下,对数换底公式可以帮助我们将其转化为更简单的形式,以便进行进一步的计算。
例如,对于表达式 log₉(27),我们可以使用对数换底公式将其转化为以 10 为底数的对数:log₉(27) = log₁₀(27) / log₁₀(9)= log₁₀(3³) / log₁₀(3²)= 3 * log₁₀(3) / 2 * log₁₀(3)=3/23.解决指数方程x = log₂(16) = log₁₀(16) / log₁₀(2) = 4 / log₁₀(2)4.求解连续复利问题连续复利是一种常见的复利计算方法,其中利息不断累积,而不是离散计算。
对数换底公式可以用于求解连续复利问题的相关计算。
例如,如果我们正在计算以年利率为8%的连续复利的总金额,我们可以使用对数换底公式将其转化为以自然对数e为底数的对数:F = P * (1 + r/n)^(nt)=P*(1+8%/1)^(1*1)=P*(1+0.08)^1= P * e^(ln(1 + 0.08))5.编程中的应用综上所述,对数换底公式是一种非常有用的数学工具,可以应用于许多不同的场景,包括计算不同底数的对数之间的关系、化简复杂的对数表达式、解决指数方程、求解连续复利问题以及在编程中的应用。
人教版高一数学必修1第二章《对数与对数运算》学案第二课时换底公式及对数的应用
§2.2.1对数与对数运算3(换底公式及对数的应用)班级:高一( ) 姓名: 学号:学习目标:1、理解并掌握对数的换底公式2、运用对数运算性及公式质解决有关问题学习重点、难点:对数的换底公式,对数运算性质及公式的灵活应用自主预习:一、知识梳理:问题引入:数学史上,人们通过大量努力,制作了常用对数表、自然对数表,只要通过查表就可求出任意正数的常用对数或自然对数。
那么有没有方法把其他底的对数转换为以10或e 为底的对数呢?对数的底数能否随意转换?探究:设M b a =log (0>a 且 1≠a ,b>0)由对数的意义有,b a M =,显然M a >0,两边取常用对数得:_______________∵ 0>a ,∴M b a lg lg =•,又1≠a ,∴0lg ≠a ,∴M a b lg lg = ,即 【总结】更一般地,可得对数的换底公式:【归纳提升】1. 注意换底公式的结构特点:右边分子、分母所换的底必须是同一底,且为真数的对数除以底数的对数。
2. 当b ≠1且b >0时,存在倒数关系:二、自我检测1、计算下列各式的值 (1) log 98 log 3227 ; (2) 235111log log log 125323••三、学点探究探究1:对于底不同的对数的运算例1、 计算(1)32log 9log 38⨯ (2)a c c a log log •(3))2log 2(log )3log 3(log 9384+⋅+变式训练一:应用对数换底公式化简下列各式1、(1)16log 25log 9log 125274••(2))3log 3)(log 2log 2(log 8493++方法小结1:利用换底公式“化异为同”是解决有关对数问题的基本思想,在解题过程中应注意:1、针对具体问题,选择恰当的底数;2、注意换底公式与对数运算法则结合使用3、换底公式的正用与逆用探究2、对数换底公式的应用例2、已知518,9log 18==b a ,用a 、b 来表示45log 36变式训练二:1、30log ,53,2log 33表示、用b a a b ==2.已知32=x ,y =38log 4,则x+2y= .3.设p =3log 8,q =5log 3,则lg5= (用含p 、q 的式子表示) 课后作业:1、应用对数换底公式化简下列各式(1) 84log 27log 9; (2) log 225 log 34 log 59 ;2、 若0>a 且 1≠a ,x ,y ∈R 且xy >0则下列各式正确的是 : ① x x a a log 2log 2= ; ②||log 2log 2x x a a =; ③y x xy a a a log log )(log +=; ④||log ||log )(log y x xy a a a +=3、已知lg2=a,lg3=b ,用a,b 表示代数式log 2716=4、已知 lgN=alnN ; lnN=b lgN, 则a= , b=5、已知514,7log 14==b a ,求28log 356、设3a =4b =36,求21a b +的值7、已知m a =8log ,n a =5log ,请求n m a 2+的值.课后反思:。
换底公式的证明及其应用
换底公式的证明及其应用换底公式是对数运算、证明中重要的公式,但有些同学对其理解不深,应用不好,故下面加以补充,希望对同学们的学习能有所帮助.一、换底公式及证明换底公式:log b N =log a N log a b . 证明 设log b N =x ,则b x =N .两边均取以a 为底的对数,得log a b x =log a N ,∴x log a b =log a N .∴x =log a N log a b ,即log b N =log a N log a b . 二、换底公式的应用举例1.乘积型例1 (1)计算:log 89·log 2732;(2)求证:log a b ·log b c ·log c d =log a d .分析 先化为以10为底的常用对数,通过约分即可解决.解 (1)换为常用对数,得log 89·log 2732=lg 9lg 8·lg 32lg 27=2lg 33lg 2·5lg 23lg 3=23×53=109.(2)由换底公式,得log a b ·log b c ·log c d =lg b lg a ·lg c lg b ·lg d lg c =log a d .评注 此类型题通常换成以10为底的常用对数,再通过约分及逆用换底公式,即可解决.2.知值求值型例2 已知log 1227=a ,求log 616的值.分析 本题可选择以3为底进行求解.解 log 1227=log 327log 312=a ,解得log 32=3-a 2a . 故log 616=log 316log 36=4log 321+log 32=4×3-a 2a 1+3-a 2a=4(3-a )3+a . 评注 这类问题通常要选择适当的底数,结合方程思想加以解决.3.综合型例3 设A =1log 519+2log 319+3log 219,B =1log 2π+1log 5π,试比较A 与B 的大小.分析 本题可选择以19及π为底进行解题.解 A 换成以19为底,B 换成以π为底,则有A =log 195+2log 193+3log 192=log 19360<2,B =log π2+log π5=log π10>log ππ2=2.故A <B .评注 一般也有倒数关系式成立,即log a b ·log b a =1,log a b =1log b a .。
换底公式及应用学习教材PPT课件
对数与对数运算
第二课时
换底公式及应用
鹿邑三高 史琳
课前复习
1、对数的定义: 如果ax=N(a>0,a≠1)那么数x叫做以a为底 N的对数。 记作: x=logaN , 其中a叫做对数的底数,N叫做真数, x=logaN叫做对数式. 常用对数:log10N=lgN 自然对数:logeN=lnN
(3)lg1000;
2
1 (2) log 2 16
(4)lg0.001;
4
3
2
3
2
(5)log981;
(7)log7343;
(6)log2.56.25;
(8)log3243。
3
5
⑴给出四个等式:
1) lg(lg10) 0; 2) lg(ln e) 0; 3)若lgx=10,则x=10; 4)若lnx=e,则x=e
课前复习
3、指数式和对数式的联系:
指数
x
对数
幂
真数
log a N x(a>0且a 1) a N
底数 底数
对数的运算性质
如果 a > 0,a 1,M > 0, N > 0 有:
loga MN loga M loga N ⑴
M log a log a M log a N N n loga M n loga M (n R)
1)
log8 9 log27 32
1log0.2 3
4
2) 5
3)
log4 3 log9 2 log1 32
2
例2.已知
log2 3 a, log3 7 b
用a, b 表示 log42 56
换底公式的证明及其应用
换底公式的证明及其应用换底公式是对数运算、证明中重要的公式,但有些同学对其理解不深,应用不好,故下面加以补充,希望对同学们的学习能有所帮助.一、换底公式及证明换底公式:log b N=错误!.证明设log b N=x,则b x=N.两边均取以a为底的对数,得log a b x=log a N,∴x log a b=log a N.∴x=错误!,即log b N=错误!.二、换底公式的应用举例1.乘积型例1 1计算:log89·log2732;2求证:log a b·log b c·log c d=log a d.分析先化为以10为底的常用对数,通过约分即可解决.解1换为常用对数,得log89·log2732=错误!·错误!=错误!·错误!=错误!×错误!=错误!. 2由换底公式,得log a b·log b c·log c d=错误!·错误!·错误!=log a d.评注此类型题通常换成以10为底的常用对数,再通过约分及逆用换底公式,即可解决.2.知值求值型例2 已知log1227=a,求log616的值.分析本题可选择以3为底进行求解.解log1227=错误!=a,解得log32=错误!.故log616=错误!=错误!=错误!=错误!.评注这类问题通常要选择适当的底数,结合方程思想加以解决.3.综合型例3 设A=错误!+错误!+错误!,B=错误!+错误!,试比较A与B的大小.分析本题可选择以19及π为底进行解题.解A换成以19为底,B换成以π为底,则有A=log195+2log193+3log192=log19360<2,B=logπ2+logπ5=logπ10>logππ2=2.故A<B.评注一般也有倒数关系式成立,即log a b·log b a=1,log a b=错误!.。
对数的运算性质和换底公式
引入课题
在前面,我们已经知道对数式logaN=x是由指数式ax=N变化 得来的,二者的关系如图: 指数 幂 对数 真数 底数
底数
引入课题
另一方面,我们又学习过指数运算有如下的运算性质:
那么对数运算又有哪些运算性质呢?这就是本节课的学习内容.
探究点1
问题1:
对数的运算性质
换底公式用途和本质: (1)换底公式的主要用途在于将一般对数式化为常用对数或自然对
数,然后查表求值,以此来解决对数求值的问题.
(2)换底公式的本质是化为同底,这是解决对数问题的基本方法.
典例精讲:题型一:对数的运算性质
[解析]
题后反思 方法总结:对数运算时公式记忆要准确,特别是要注意: loga(MN)≠logaM· logaN, loga(M±N)≠logaM±logaN.
课堂练习
[解析] (2) log345-log35
课堂练习
2.已知a=log32,那么log38-2log36用a表示为( A.a-2 C.3a-(1+a)2 答案: A B.5a-2 D.3a-a2-1 )
归纳小结
1.对数的运算法则及换底公式:
(c>0,且c≠1; b>0)
典例精讲:题型二:运用对数的运算性质求值
【例2】计算 :
典例精讲:题型二:运用对数的运算性质求值
【例2】计算 :
典例精讲:题型二:运用对数的运算性质求值
【例2】计算 :
题后反思
方法总结:1.在对数运算中常有以下技巧:
①lg2+lg5=1;
⑤logab·logba
⑥logab·logbc·logca=1
证明: ∵,
由对数定义得到:logaM=m,logaN=n,loga(M· N)=m+n.
对数的运算换底公式
应用于科学计算
在科学计算中,对数运算被广泛 应用于工程、物理、生物和医学 等领域。
金融和投资领域
在金融和投资领域,对数函数被 用来计算复利、折现等价值计算 问题。
换底公式的地位和作用
将不同底数的对数进行转换
01
换底公式可以将不同底数的对数进行转换,使得对数的计算更
推广到其他数学分支中的对数运算
离散数学
将对数运算推广到离散数学中,可以处理在离散数学中的计数、组合等问题 ,例如使用对数方法求解排列组合问题。
概率统计
在概率统计中,对数运算有着广泛的应用,例如使用对数变换将非线性问题 转换为线性问题,方便进行统计分析。
05
换底公式的实际应用
在金融领域中的应用
利率转换
在物理领域中的应用
声速计算
在物理学中,声速c与绝对温度T的关系为 c=331.3+0.6T,其中T是绝对温度的十进对数。使用 换底公式可以方便地计算出不同温度下的声速。
电阻计算
在电路分析中,电阻R的数值可以通过欧姆定律计算 得出,其中电流I的单位是安培(A),电压U的单位 是伏特(V),长度l的单位是米(m),电阻率ρ的单 位是欧·米(Ω·m),截面积S的单位是平方米(m²) 。公式为R=ρl/S,使用换底公式可以将电阻率的单位 转换为欧姆·米(Ω·m)或欧姆²/米(Ω²/m)。
任意精度
通过定义任意精度的对数函数,可以实现任意精度的数学计算,为高精度计算提 供了更大的灵活性。
推广到复数域的对数运算
复数域的对数
将对数运算推广到复数域,可以处理在复 数域中的数学计算问题,例如求解复数方 程等。
VS
高一数学复习知识讲解课件41 对数的运算(第2课时) 换底公式及应用问题
4.3.2对数的运高一数学复习知换底公式及应数的运算(第2课时)
复习知识讲解课件
式及应用问题
课时学案
探究
1
(1)
换底公式的本质是化异底为数或自然对数,解决一般对数的求值问题(2)
利用换底公式化简、求值的一般思路 异底为同底,也可以将一般对数化为常用对问题.
般思路:
探究2 利用对数式与指数式互化求值(1)在对数式、指数式的互化运算中,则,尤其要注意条件和结论之间的关系,(2)对于连等式可令其等于k (k >0,且由换底公式可将指数的倒数化为同底的对数
化求值的方法:
,要注意灵活运用定义、性质和运算法,进行正确地转化.
且k ≠1),然后将指数式用对数式表示,再的对数,从而使问题得解.
探究3 关于对数运算在实际问题中的
(1)在与对数相关的实际问题中,先将题代入,最后利用对数运算性质、换底公式进(2)在与指数相关的实际问题中,可将指数运算,从而简化复杂的指数运算.
题中的应用: 先将题目中数量关系理清,再将相关数据公式进行计算.
可将指数式利用取对数的方法,转化为对
课 后 巩 固。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 已知 log 312 a,求 log 3 24的值.
3a 1 2
例3 设 3a 5b m ,已知 1 1 2 ,
求m 的值.
ab
15
例2 20世纪30年代,里克特制订了一种表明 地震能量大小的尺度,就是使用测震仪衡量 地震能量的等级,地震能量越大,测震仪记 录的地震曲线的振幅就越. 这就是我们常说 的里氏震级M,其计算公式为M=lgA-lgA0. 其中A是被测地震的最大振幅,A0是“标准 地震”的振幅(使用标准振幅是为了修正测 震仪距实际震中的距离造成的偏差). (1)假设在一次地震中,一个距离震中100 千米的测震仪记录的地震最大振幅是20,此 时标准地震的振幅是0.001,计算这次地震 的震级(精确到0.1);
2.2.1 对数与对数运算
换底公式及对数运算的应用
问题提出
1.对数运算三个法则:
(1)loga M loga N loga (M N)
(2)loga
M
loga
N
loga
M N
(3)loga M n n loga M
2.对数的性质 .
(1)loga a 1; (2) loga 1 0 ;
f (x) 2x 恒成立,求 f (x)的最小值.
作业: 《红对勾》第26课时
个人观点供参考,欢迎讨论
例2 20世纪30年代,里克特制订了一种表明
地震能量大小的尺度,就是使用测震仪衡量 地震能量的等级,地震能量越大,测震仪记 录的地震曲线的振幅就越. 这就是我们常说
的里氏震级M,其计算公式为M=lgA-lgA0. 其中A是被测地震的最大振幅,A0是“标准 地震”的振幅(使用标准振幅是为了修正测 震仪距实际震中的距离造成的偏差). (2)5级地震给人的震感已比较明显,计算
(3)aloga N N .
(一):对数的换底公式
(二):换底公式的变式
2.
Байду номын сангаас
logan
N=
1 n
lo g
a
N
3. (logab)(logbN )logaN
理论迁移
例1 计算:
(1) log 8 9 log 27 32 ;
(2)(log2125+log425+log85)· (log52+log254+log1258)
7.6级地震的最大振幅是5级地震的最大振幅 的多少倍(精确到1).
例3 生物机体内碳14的“半衰期”为 5730年,湖南长沙马王堆汉墓女尸出 土时碳14的残余量约占原始含量的 76.7%,试推算马王堆古墓的年代.
思考题:设函数 f (x) x2 (lg a 2)x lg b,
已知 f (1) 2, 且对一切 x R,