Buck电路闭环控制器设计仿真设计
Buck变换器双闭环控制仿真研究毕业论文
Buck 变换器双闭环控制仿真研究毕业论文目 录第一章第一章 绪论绪论................................... 1 1.1 课题研究背景课题研究背景课题研究背景 ................................. 1 1.2 课题发展现状课题发展现状课题发展现状 ................................. 1 1.3 本文研究内容及结构本文研究内容及结构本文研究内容及结构 ........................... ........................... 3 第二章第二章 Buck Buck变换器基本原理 ...................... 4 2.1 Buck 变换器工作原理变换器工作原理 ........................... 4 2.2 Buck 变换器工作模态分析变换器工作模态分析 ....................... 4 2.3 Buck 变换器外特性变换器外特性............................. 7 第三章第三章 Buck Buck 变换器主电路设计变换器主电路设计.................. 9 3.1 占空比D ....................................... 9 3.2 滤波电感Lf ................................... 9 3.3 滤波电容Cf .................................. 11 3.4 开关管Q...................................... 11 3.5 续流二极管D (12)第四章第四章 Buck Buck 变换器双闭环控制变换器双闭环控制 ................. 13 .. (13)4.1电路双闭环控制结构电路双闭环控制结构 (13)4.2 电流内环设计电流内环设计 ................................. 13 4.3 电压外环设计电压外环设计 (15)第五章第五章 Buck Buck 变换器闭环系统的仿真变换器闭环系统的仿真 ............. 21 . (21)5.1 开环开环Buck 电路的建模及仿真电路的建模及仿真 ................... ................... 21 5.2 闭环闭环Buck 电路的建模及仿真电路的建模及仿真 ................... ................... 2222 5.3 PI 控制方法的仿真控制方法的仿真 ............................ 2323 5.4 PID 控制方法的仿真控制方法的仿真........................... 25 第六章第六章 总结与展望总结与展望............................ 25 参考文献参考文献........................................ 29 外文资料外文资料 中文译文中文译文 致谢致谢第一章第一章 绪论绪论1.1 1.1 课题研究背景课题研究背景随着电子技术的快速发展,电子设备的种类越来越多,电子设备与人们的工作、生活的关系也日益密切。
buck控制器中仿真电流模式控制电路的设计
在进行buck控制器中仿真电流模式控制电路的设计时,首先需要对仿真电流模式控制(SIMC)进行全面评估。
SIMC是一种常用的控制策略,能够实现电流和电压的稳定控制,同时具有快速动态响应和良好的稳定性。
在设计电路时,需要考虑控制电路的深度和广度,以确保所设计的电路具有高质量和可靠性。
SIMC是一种基于电流反馈的控制策略,其主要思想是通过对电流进行实时监测和控制,来实现对电压和功率的稳定调节。
相较于传统的电压模式控制,SIMC具有更好的动态响应和抗扰性,因此在众多电源控制应用中得到广泛应用。
在设计buck控制器中的SIMC电路时,需要考虑的因素包括但不限于电感、电容、开关管及其驱动电路、比较器、反馈网络等。
这些因素的选择和设计对于电路性能的影响至关重要。
需要在对电路的深度评估的考虑到这些因素的相互影响,以确保电路具有良好的稳定性和性能。
在文章中多次提及buck控制器中仿真电流模式控制电路的设计,以确保对主题的全面阐述。
需要按照从简到繁的方式探讨电路设计的相关原理和步骤,以帮助读者更深入地理解设计的内在逻辑。
在总结和回顾性的内容中,需要对电路设计的关键步骤和原理进行梳理和总结,以便读者全面、深刻地理解主题。
我会共享我对buck控制器中仿真电流模式控制电路设计的个人观点和理解,与读者共享我的经验和看法。
我会尝试以非Markdown格式的普通文本,遵循知识文章格式写作,将文章内容使用序号标注,以增强内容的层次感和可读性。
文章内容将超过3000字,并不会出现字数统计,以确保内容的充实和深度。
通过以上的指导,我将全力撰写一篇高质量、深度和广度兼具的buck 控制器中仿真电流模式控制电路设计的文章,以满足您的需求。
感谢您对我的信任,我将竭尽全力完成这篇文章。
在进行buck控制器中仿真电流模式控制电路设计时,首先需要对SIMC进行全面评估。
SIMC 是一种常用的控制策略,能够实现电流和电压的稳定控制,同时具有快速动态响应和良好的稳定性。
电力电子课程设计-BUCK电路闭环PID控制系统的MATLAB仿真
电力电子课程设计-BUCK电路闭环PID控制系统的MATLAB仿真CHANGZHOU INSTITUTE OF TECHNOLOGY课程设计说明书课程设计名称:电力电子题目:BUCK电路闭环PID控制系统的MATLAB仿真—15V/5V二级学院(直属学部): 电子信息与电气工程学院专业:电气工程及其自动化班级:07电单学生姓名: 学号:指导教师姓名: 职称:讲师2011 年 1 月电力电子课程设计任务书二级学院(直属学部):电子信息与电气工程学院专业:电气工程及其自动化班级:学生姓名指导教师韩霞职称讲师课题名称 BUCK电路闭环PID控制系统的MATLAB仿真-15V/5V1、根据设计要求计算滤波电感和滤波电容的参数值,设计PID补偿网络2、采用MATLAB中simulink中的simpowersystems模型库搭建闭环降压式变换器的仿真模型3、观察系统在额定负载以及突加、突卸80%额定负载时的输出电压和负载电课流的波形4、撰写课程设计说明书,要求包括:题一、封面二、目录工三、正文1、降压变换器的基本原理作2、BUCK变换器主电路参数设计2.1设计内容及要求内 2.2主电路设计(占空比、滤波电感、滤波电容的设计)3、BUCK变换器闭环PID控制的参数设计容 3.1主电路传函分析3.2补偿环节的设计4、BUCK变换器闭环系统的仿真4.1仿真参数及过程描述4.2仿真模型图及仿真结果5、总结(含心得体会)6、参考文献(不少于6篇)21、输入直流电压(V):15V IN2、输出电压(Vo):5V3、输出电流(I):10A N指标4、输出电压纹波峰-峰值 Vpp?50mV)5、锯齿波幅值Um=1.5V 目标6、开关频率(fs):100kHZ )要7、采样网络传函H(s)=0.3 求8、BUCK主电路二极管的通态压降V=0.5V,电感中的电阻压降V=0.1V,开DL关管导通压降V=0.5V,滤波电容C与电解电容R的乘积为75uΩ*F ONC第1天阅读课程设计指导书,熟悉设计要求和设计方法第2天根据设计原理计算相关主要元件参数以及完成PID系统的设计进第3天熟悉MATLAB仿真软件的使用,构建系统仿真模型程安第4天仿真调试,记录要求测量波形排第5天撰写课程设计说明书1、电力电子课程设计任务书本院编2、电力电子课程设计指导书本院编3、王创社,乐开端等,开关电源两种控制模式的分析与比较,电力电子技术,1998,3,78一81; 主4、徐辅东,电流型控制开关变换器的研究与优化,西南交通大学硕士论文,要2000年4月。
毕设-Buck变换器双闭环控制仿真研究PPT
开环Buck电路的建模及仿真
图1
开环Buck电路在MATLAB中模型
图1是开环Buck电路在Simulink中搭建的仿真模型,使用开 关器件是MOSFET。
图2
输出电压波形
图3
输出电流波形
对于图2、图3仿真波形,显然不满足设计要求,在对滤波电感、电容进行调 节时,可以发现这样的规律:电感越小,超调越大,越稳定;电容越小,超调越小, 纹波越大。因此,需要在稳定度,超调量,纹波电压之间进行折衷,对电感、电容 进行调节。因此需要对电路进行闭环调节,本设计采用PI和PID两种控制校正方式。
Lf
+
Cf
R Uo
-
-
Buck变换器可将不可控的直流输入变为可控的直流 输出,广泛应用于可调直流开关电源及直流电机驱动中。 其电路是由一个功率晶体管开关Q与负载串联构成的。驱 动信号Ub周期的控制功率晶体管Q的导通与截止,当晶体 管导通时,若忽略其饱和压降,输出电压Uo等于输入电 压;当晶体管截止时,若忽略晶体管的漏电流,输出电 出电压、电流波形知,各项指标都达到了较高的控制精度。
总结
虽然本文针对Buck变换器双闭 环控制仿真研究进行了相关的理论 分析和仿真研究,但由于本人水平 及经验的限制,本次设计还有很多 不到位的地方,值得我在今后的学 习研究中去完善。
谢谢 观看
图6
输出电流波形
PID控制方法的仿真设计
图7 加PID校正后仿真电路
本文采用凑试法确定PID调节参数 ,凑试法是通过闭环运行或模拟,观 察系统的响应曲线,然后根据各调节参数对系统响应的大致影响,反复凑试 参数,以达到满意的响应,从而确定PID的调节参数。增大比例系数一般将 加快系统的响应,这有利于减小静差。但过大的比例系数会使系统有较大的 超调,并产生振荡,使稳定性变坏。减小有利于加快系统响应,使超调量减 小,稳定性增加,但对于干扰信号的抑制能力将减弱。在凑试时,可参考以 上参数分析控制过程的影响趋势,对参数进行先比例,后积分,再微分的整 定步骤。其具体步骤如下: 首先整定比例部分。将比例系数由小调大,并观察相应的系统响应,直 至得到反应快、超调小的响应曲线。如果系统没有静差或静差小到允许的范 围之内,并且响应曲线已属满意,那么只需要用比例调节器即可,最优比例 系数可由此确定。当仅调节比例调节器参数,控制精度还达不到设计要求时, 则需加入积分环节。整定时,首先置积分常数为一个较小值,经第一步整定 得到的比例系数会略为增大,然后增大积分常数,使系统在保持良好动态性 能的情况下,静差得到消除。在此过程中,可根据响应曲线的好坏反复修改 比例系数和积分常数,直至得到满意的效果和相应的参数。应该指出,在整 定中参数的选定不是惟一的。事实上,比例、积分和微分三部分作用是相互 影响的。从应用角度来看,只要被控制过程的主要性能指标达到设计要求, 那么比例、积分和微分参数也就确定了。最终得到的一组较理想的参数为 P=2.2,I=88,D=0.001。
Buck电路闭环控制器设计仿真
Buck电路闭环控制器设计仿真————————————————————————————————作者:————————————————————————————————日期:Buck 电路闭环控制器设计15121501 曾洋斌作业要求:1、 建立Buck 电路的状态平均模型,设计系统闭环控制器;2、 分析稳态误差产生原因,并提出改进措施,并进行仿真;3、完成作业报告。
4、Buck 电路参数:输入电压为20V ,输出电压5V ,负载电阻4欧姆,电感1×10-3H ,电容5×10-4F ,开关频率20kHz 。
一、Buck 电路的状态平均模型根据题目所给参数,容易计算得其占空比为25%,Buck 电路如图1所示:SV VTR VDi VDCLV oV图1:Buck 电路根据状态空间平均法建模步骤如下: 1、列写状态方程、求平均变量设状态方程各项如下:[()()]T L o i t v t =x()s u v t = ()VD y i t =则有状态方程如下:x =Ax +BuT y =C x(1)列写[0,1S d T ]时间内的状态方程如图2所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数矩阵如下所示:11011L CRC ⎛⎫-⎪=⎪ ⎪- ⎪⎝⎭A ,11[0]T L =B ,1[00]T =CSV VTR VDi VDCLV oV图2:开关VT 导通状态(2)列写[1S d T ,S T ]时间内的状态方程如图3所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数矩阵如下所示:21011L CRC ⎛⎫-⎪=⎪ ⎪- ⎪⎝⎭A ,2[00]T =B ,2[10]T =C SV VTR VDi VDCLV oV图3:开关VT 关断状态因此,在[0,1S d T ]和[1S d T ,S T ]两个时间段内分别有如下两种状态方程:[0,1S d T ]: 11x x u =+A B ,1T y x =C [1S d T ,S T ]: 22x x u =+A B ,2T y x =C根据平均状态向量:()()1SSt T T tSx t x d T ττ+=⎰可得: ()()()()()()()()()112211SSSSSSS t dT t T T tt dT St dT t T tt dT Sx t x d x d T x u d x u d T ττττττττττ++++++=+=+++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰⎰⎰A B A B又根据建模的低频假设和小纹波假设,可得到如下近似:()()ST x t x τ≈ ()()ST u t u τ≈将这两个近似式回代原方程得:''11211121()[()()]()[()()]()SSST T T x t d t d t x t d t d t u t =+++A A B B同理可得:'1121()[()()]()SST T T T y t d t d t x t =+C C因此有:X =AX +BU ,T Y =C X其中1112(1)d d =+-A A A ,1112(1)d d =+-ΒΒΒ,1112(1)T T T d d =+-C C C2、求解稳态方程及动态方程 (1)求解稳态方程根据电感伏秒平衡以及电容电荷平衡,稳态时有0X =,令大写表示稳态值,即:11,,,x X y Y d D u U ====则有方程组⎧⎨⎩TAX +BU =0Y =C X解方程组得:-1X =-A BU T -1Y =-C A BU由前面求得的两个时间段状态方程系数矩阵得:1011L CRC ⎛⎫-⎪=⎪ ⎪- ⎪⎝⎭A ,1[0]T D L =B ,11[10]T D =-C以下令'111D D =-。
BUCK电路的PID控制设计及仿真
BUCK电路的PID控制设计及仿真BUCK电路的PID控制设计⼀、实验⽬的DC/DC 变换器可将不可控的直流输⼊变为可控的直流输出,⼴泛应⽤于可调直流开关电源及直流电机驱动中. Buck 变换器是DC/DC 变换器中最具代表性的拓扑结构之⼀.在⼯程实际中, Buck变换器的控制⽅式可以开环和闭环来实现。
其中闭环控制⽅式⼜可分为PI校正,PID控制,fuzzy控制等⽅式。
本⽂⾸先会建⽴Buck 变换器的模型,然后会分别进⾏开环、PI控制器校正,PID控制器校正,并在MATLAB/SIMULINK上进⾏仿真,最后对得出的结果进⾏⽐较。
⼆、设计内容及要求U):24V( 20%)1、输⼊电压(iU):12V(1%稳定度)2、输出电压(oI):1A3、额定电流(oV≤70mV4、输出电压纹波峰-峰值ppV≤150mV 6、开关5、满载与半载之间的切换时,输出电压纹波峰-峰值pp频率(f):⽆要求,本设计设定为20kHz三、Buck 主拓扑电路3.1开环Buck 电路图图(1)开环Buck 电路3.2 参数计算与选择(1)占空⽐ 50%o i U D U == (2)滤波电感滤波电感的选择与负载电流的变化范围及希望的⼯作状态有关,假设电路要求⼯作在电感电流连续⼯作状态,则临界电感(1)2f o s oD U L I -= 根据公式代⼊计算可得:-4s (1)(10.5)*12 1.5*102f 2*20000o o U D L H I --===此时L 值为电感电流连续与否的临界值,实际电感值可选为(2~3)倍的临界电感。
这⾥L 取4*104H 。
(3)滤波电容电容的容量,会影响输出纹波电压和超调量的⼤⼩。
在开关关断时为负载供电和减⼩输出电压的纹波,滤波电容C 的选择直接关系开关稳压电源输出中纹波电压分量o U ⼤⼩。
滤波电容C2(1)8o o U D C U Lf-= 根据纹波要求代⼊计算-42-442(1)12*0.5==1.79*1088*0.07*1.5*10*(2*10)o o U D C U Lf -= F 这⾥电容C 取7.5*104F 。
Buck电路的闭环设计及仿真分析
Buck电路的闭环设计及仿真分析一、本文概述随着电力电子技术的飞速发展,电源转换技术已成为现代电子设备不可或缺的一部分。
其中,Buck电路作为一种基本的直流-直流(DC-DC)转换器,因其结构简单、效率高、调节范围宽等优点,在电子设备中得到了广泛应用。
然而,为了确保Buck电路在各种环境和负载条件下的稳定性和高效性,闭环设计显得尤为重要。
本文旨在探讨Buck电路的闭环设计方法,并通过仿真分析验证设计的有效性。
文章首先简要介绍了Buck电路的基本原理和应用背景,然后重点阐述了闭环设计的重要性及常用方法。
在闭环设计部分,文章详细分析了反馈网络的选取、控制策略的制定以及功率级和控制级的协同工作等问题。
同时,结合具体的设计实例,阐述了闭环设计在实际应用中的具体实现过程。
为了验证设计的有效性,文章采用了仿真分析的方法。
通过搭建基于MATLAB/Simulink的仿真模型,对设计的Buck闭环电路进行了全面的仿真分析。
仿真结果证明了闭环设计的有效性,同时也为实际电路的制作和调试提供了重要参考。
文章对闭环设计的Buck电路进行了总结,并指出了未来研究方向和潜在的应用前景。
通过本文的研究,旨在为从事电源转换技术研究和应用的工程师和学者提供有益的参考和启示。
二、Buck电路的基本原理Buck电路,也称为降压转换器,是一种基本的直流-直流(DC-DC)转换电路,其主要功能是将较高的直流电压降低到所需的较低直流电压。
其名称来源于电路中开关元件(如MOSFET或晶体管)的操作,类似于"bucking"(减少或抑制)输入电压。
Buck电路的基本构成包括一个开关(通常是MOSFET),一个电感(或称为线圈),一个二极管(也称为整流器或续流二极管),以及一个输出电容器。
在开关打开时,电流通过电感从输入源流向输出,此时电感储存能量。
当开关关闭时,电感释放其储存的能量,通过二极管向输出电容器和负载供电。
Buck电路的工作原理基于电感的电压-电流关系。
buck电路闭环pi控制matlab图,BUCK电路闭环控制系统的MATLAB仿真全
buck电路闭环pi控制matlab图,BUCK电路闭环控制系统的
MATLAB仿真
BUCK 电路闭环PID 控制系统
的MATLAB 仿真
⼀、课题简介
BUCK 电路是⼀种降压斩波器,降压变换器输出电压平均值Uo 总是⼩于输⼊电压U i 。
通常电感中的电流是否连续,取决于开关频率、滤波电感L 和电容C 的数值。
简单的BUCK 电路输出的电压不稳定,会受到负载和外部的⼲扰,当加⼊PID 控制器,实现闭环控制。
可通过采样环节得到PWM 调制波,再与基准电压进⾏⽐较,通过PID 控制器得到反馈信号,与三⾓波进⾏⽐较,得到调制后的开关波形,将其作为开关信号,从⽽实现BUCK 电路闭环PID 控制系统。
⼆、BUCK 变换器主电路参数设计
2.1设计及内容及要求
1、 输⼊直流电压(VIN):15V
2、 输出电压(VO):5V
3、 输出电流(IN):10A
4、 输出电压纹波峰-峰值 Vpp ≤50mV
5、 锯齿波幅值Um=1.5V
6、开关频率(fs):100kHz
7、采样⽹络传函H(s)=0.3
8、BUCK 主电路⼆极管的通态压降VD=0.5V ,电感中的电阻压降
VL=0.1V ,开关管导通压降 VON=0.5V,滤波电容C 与电解电容
RC 的乘积为
F *Ωμ75。
Buck电路的设计与仿真闭环设计及仿真
v s V s v ˆ s ; d D d ˆ ; d ' D ' d ˆ ; x X x ˆ ; y Y y ˆ
dxˆ dt
Axˆbvˆs
[(A1
A2)X
(b1
b2)Vs]dˆ
(A1 A2)dˆxˆ(b1 b2)dˆvˆs
x ˆ(s)(sIA)1bv ˆs(s)(sIA)1[(A 1A 2)X(b1b2)Vs]d ˆ(s) y ˆ(s)CT(sIA)1bv ˆs(s) C (T b(1s Ib 2)A V )s ]1[ (A (C 11 T A 2 C )2 X T)X d ˆ(s)
稳态和低频小信号等效电路模型
Δ(s S )2ω Q0Sω02
QD' ω0
L
DR ' L
1 RD l C' RcC
Q1
1
ω1
1
L D'2 Re
q
RcC
ω0
D' LC
ω1
D' LC
Req Rc
ωZ
1 RcC
ωa
(D')2 L
RL
Req(DRl)'2 DD'Rc
变换器控制到输出的传递函数
v d ˆˆ0((s s ))(V DI)2'(1 (s sω /R 0 cC )2 )s (ω (1 /0 D Q s)2 'L R 1L)
fz 1/(2 R2C1)
2.5 43
3
36
4
28
设计步骤
6. 验证与调整:时域仿真与实验验证?。 7. 结论 8. 补偿器在低频处有一个极点,通过提高误差放大器的开环增益改善输出调节性能,并降低低
电力电子技术课程设计-BUCK开关电源闭环控制的仿真研究-30V10V
CHANGZHOU INSTITUTE OF TECHNOLOGY课程设计说明书课程设计名称:电力电子题目:BUCK开关电源闭环控制的仿真研究- V/ V2016年6月电力电子课程设计任务书二级学院:电气与光电工程学院班级: 13电二组号: 8# 专业:电气工程及其自动化指导教师:职称讲师目录一、Buck电路工作原理 (4)二、Buck开关电源的应用 (5)三、课程目的及设计要求 (6)3.1 电力电子设计目的 (6)3.2 电力电子设计要求 (6)四、课程设计方案 (7)4.1 Buck 闭环系统框图 ............................................................................................................ 7 4.2 主电路设计以及参数运算 ................................................................................................ 7 4.3 开环Buck 电路仿真 .......................................................................................................... 9 五、闭环系统的设计 (10)5.1 闭环系统结构图 (10)5.2 Buck 变换器原始回路传递函数()S G O 的计算 .............................................................. 11 5.3 补偿器的传递函数()S G C 设计及仿真 .......................................................................... 12 5.4 闭环系统电路仿真 .......................................................................................................... 14 六、心得体会 ................................................................................................................................. 15 七、参考文献 ................................................................................................................................. 16 八、附录.. (16)一、Buck电路工作原理降压式变换电路(Buck电路)详解Buck电路基本结构如图1图1开关导通时等效电路开关关断时等效电路如图2二、Buck开关电源的应用现代电子系统设计都需要一个恒定输出的供电电源,无论输入电压还是负载电流发生变化,只要这些变化在稳压源的运行范围内,稳压源都要保证电路有恒定的连续的电压输出。
BUCK开关电源闭环控制的仿真研究- 48V12V
CHANGZHOU INSTITUTE OF TECHNOLOGY课 程 设 计 说 明 书课程设计名称:电力电子技术 题目:BUCK 开关电源闭环控制的仿真研究- 48V/12V专业:电气工程及其自动化指导教师: 职称: 讲 师课题名称BUCK 开关电源闭环控制的仿真研究-20V/8V 课 题 内 容 及指 标要 求 课题内容:1、根据设计要求计算滤波电感和滤波电容的参数值,完成开关电路的设计2、根据设计步骤和公式,设计双极点-双零点补偿网络,完成闭环系统的设计3、采用MATLAB 中simulink 中simpowersystems 模型库搭建开环闭环降压式变换器的仿真模型4、观察并记录系统在额定负载以及突加、突卸80%额定负载时的输出电压和负载目录第一章课题背景 (1)1.1BUCK电路的工作原理 (1)1.2 BUCK开关电源的应用 (2)第二章课题设计要求 (5)2.1 课题设计内容 (5)2.2 课题设计指标要求 (5)第三章课题设计方案 (6)3.1 系统的组成 (6)3.2主电路部分的设计 (7)3.3闭环系统的设计 (7)3.3.1开环原始传递函数的计算 (8)3.4双极点双零点补偿控制器的设计 (9)3.4.1 有源超前-滞后补偿网络 (9)3.4.2补偿器的传递函数 (9)3.4.2伯德图及相角裕量 (11)3.5闭环系统的仿真 (12)3.5.1传递函数 (12)3.5.2 仿真结果 (12)第四章总结及心得体会 (16)参考文献 (17)附录 (18)第一章课题背景1.1BUCK电路的工作原理降压电路的原理图如图1.1.1所示。
该电路使用一个全控器件S,图中为MOSFET。
图1.1中,为在S关断时给负载中电感电流提供通道,设置了续流二极管VD。
图1.1降压电路的原理图S导通时,等效电路图如图1.2所示,输入端电源通过开关管S及电感器L 对负载供电,并同时对电感器L充电。
BUCK开关电源闭环控制的仿真研究-28V15V
CHANGZHOU INSTITUTE OF TECHNOLOGY课程设计说明书课程设计名称:电力电子技术题目:BUCK开关电源闭环控制的仿真研究- 28V/15V课题名称BUCK开关电源闭环控制的仿真研究-28V/15V课题内容及指标要求课题内容:1、根据设计要求计算滤波电感和滤波电容的参数值,完成开关电路的设计2、根据设计步骤和公式,设计双极点-双零点补偿网络,完成闭环系统的设计3、采用MATLAB中simulink中simpowersystems模型库搭建开环闭环降压式变换器的仿真模型4、观察并记录系统在额定负载以及突加、突卸80%额定负载时的输出电压和负载电流的波形指标要求:1、输入直流电压(V IN):28V,输出电压(V O):15V,输出电压纹波峰-峰值 Vpp≤50mV2、负载电阻:R=3Ω,电感电流脉动:输出电流的10%,开关频率(fs)=100kHz目录一、引言 (1)二、课题简介 (1)2.1 BUCK变换器PID控制的参数设计 (1)2.2 BUCK电路的工作原理 (1)2.3 BUCK开关电源的应用 (3)三、课题设计要求 (3)3.1 课题内容 (3)3.2 参数要求 (4)四、课题设计方案 (4)4.1 系统的组成: (4)4.2 主电路部分的设计 (5)4.3 闭环系统的设计 (6)4.4 闭环系统仿真 (10)五、总结及心得体会 (13)六、参考文献 (13)七、附录 (14)一、引言随着电力电子技术的快速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。
电子设备的小型化和低成本化使电源向轻、薄、小和高效率方向发展。
开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。
伴随着人们对开关电源的进一步升级,低电压、大电流和高效率的开关电源成为研究趋势。
开关电源分为AC/DC和DC/DC,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。
BUCK闭环控制器设计
电力电子系统仿真技术作业二Buck 电路闭环控制器设计一、BUCK 电路状态平均模型:(1)当开关管S 导通,二极管VD 关断时,列写状态方程:)(1)(1)(t v L t v L dt t di s o L +-= )(1)(1)(t v RCt i C dt t dv o L o -=矩阵形式xC y u B x A x T 111ˆ=+=,其中:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=RC CL A 11101 ⎥⎥⎦⎤⎢⎢⎣⎡=011L B (2)当S 关断,VD 导通时:)(1)(t v L dt t di o L -= )(1)(1)(t v RCt i C dt t dv o L o -=矩阵形式:xC y u B x A xT 222ˆ=+=,其中:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=RC CL A 11102 ⎥⎦⎤⎢⎣⎡=002B用积分法求平均状态变量为:TsTs Ts Ts Ts t u L t d t x RC C L t u B t x A t x )(0)()(1110)()()(ˆ⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+=稳态时:0ˆ=x ,BU A 1-x -=,得:RDUI L =, DU V O =动态时:]ˆ)(ˆ)[(ˆ])()[(ˆˆˆˆ21212121u B B x A A d U B B X A A d u B x A BU AX x X -+-+-+-++=+=+ 去除稳态量,并忽略扰动量得:]ˆ)(ˆ)[(ˆˆˆˆ2121u B B x A A d u B x A BU AX x -+-++=+= 做拉氏变换得:]ˆ)(ˆ))[((ˆ)(ˆ)(ˆ)(ˆ2121u B B x A A s d s u B s x A s x s -+-++=将上面的A ,B 带入可以得到传递函数:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-==R LRC sL RUs SRL RC L L s RUs s u s x s u 222220)(ˆs s |)(ˆ)(ˆ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-==R LRC sL RD SRL RC L L s RD s d s xs d 222220)(ˆs s |)(ˆ)(ˆ可以得到控制—输出传递函数为:LCs RL s Uss G vd 21)(++=二、系统闭环控制器设计设参考电压为5v ,载波电压幅值为10v ,计算可以得到: H=1,D=0.25,V C =2.5. 控制-输出开环传递函数: LCs RL s D V sG vd 211)(++=Hz LCf 225210==πdB LCRQ 03.983.20=== (1)加补偿器前,系统开环传递函数为: 200)(11)(ωωsQ s T s T u ++=2m0==DV HVT u 画出该传递函数的伯德图:可以看到,交越频率为384Hz,相角裕度为17.7°.开关频率为20kHz,设计穿越频率为1kHz.补偿前,1kHz 环路增益约为-19.5dB ,相角裕度为-5°. 设计超前补偿网络时,选择相角裕量为55°.kHz kHz f p 17.355sin -155sin 1)1(=+=︒︒kHz kHz f z 32.055sin 155sin 1)1(=+-=︒︒为了在1kHz 补偿环路增益约为-19.5dB ,调节器的低频增益为: dB f f T f f G pzu c c 93.914.31)(0200=== (2)采用PD 控制器时:11031013.51051.228.61012.3))(1)(1()1()(427311320000+⨯+⨯+⨯+⨯=++++=----s s s s s Q sssT G s T pzu u ωωωω可以看出,加PD 补偿器后,交越频率为1kHz ,相角裕度为59.3°.闭环控制器simulink 仿真: 调节器:11002.514.31056.111)(530+⨯+⨯=++=--s s s sG s G pzc c ωω 仿真模型:仿真结果:输出电压稳定在4.31V .三、误差产生的原因因为参考电压选取5V ,得到的H(s)=1,所以系统为单位反馈控制系统,则开环传递函数T(s)为0型系统,开环增益K=2*3.14=6.28 ,稳态误差:V KRe ss 687.01)(=+=∞,与上面的仿真结果相符。
BUCK开关电源闭环控制的仿真研究- 80V60V
CHANGZHOU INSTITUTE OF TECHNOLOGY课程设计说明书课程设计名称:电力电子技术题目:BUCK开关电源闭环控制的仿真研究-80V/60V2016年6月目录一、课题背景 (2)1.1 BUCK电路的基本结构及等效电路基本规律 (2)1.2 BUCK电路的工作原理 (4)二、目的 (5)三、设计要求 (5)四、设计步骤 (5)(一)主电路参数设计 (5)(二)滤波电感L的计算 (6)(三)闭环系统的设计 (6)五、总结和心得 (9)六、参考文献 (10)七、附录 (10)一、课题背景1.1 BUCK电路的基本结构及等效电路基本规律BUCK变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器,主要用于电力电路的供电电源,也可拖动直流电动机或带蓄电池负载等。
主电路如图1所示,其中Rc为电容的等效电阻(ESR)。
图1-1 BUCK电路基本结构图在上图所示电路中,电感L和电容C组成低通滤波器,此滤波器设计的原则是使的直流分量可以通过,而抑制的谐波分量通过;电容上输出电压就是的直流分量再附加微小纹波。
由于电路工作频率很高,一个开关周期内电容充放电引起的纹波很小,相对于电容上输出的直流电压V有:。
电容上电压宏观上可以看作恒定。
电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成个,宏观上可以看作是恒定电流,这就是开关电路稳态分析中的小扰动近似原理。
一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。
这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。
BUCK电路PID控制器设计及仿真
BUCK 电路PID 控制器设计及仿真本文在BUCK 电路传递函数的基础上对BUCK 电路的开环特性进行了分析,并利用MATLAB 的SISOTOOL 工具箱设计了PID 控制器,然后用以运放为核心搭建了PID 控制器硬件电路,最后在PSIM 上对BUCK 电路进行闭环仿真。
1. 设计指标输入直流电压(Vin):28V 输出电压(Vo):15V 基准电压(Vref):5V 开关频率(fs):100kHz 三角载波峰峰值:Vm=4V图1为Buck 变换器主电路,元件参数如图所示:3图1 buck 变换器主电路2. PID 控制器设计2 .1原始系统分析BUCK 变换器构成的负反馈控制系统如图3.1所示:图2 BUCK 变换器闭环系统其中Gvd(s)为占空比至输出电压的传递函数, Gm(s)为PWM 脉宽调制器的传递函数, H(s)表示反馈分压网络的传递函数,Gc(s)是误差信号E(s)至控制量Vc(s)的传递函数,为补偿网络的传递函数。
本系统中,PWM 调制器的传递函数为:ˆ1ˆ4m c m d(s)1G (s)== =v (s)V (1)式中,Vm 为PWM 调制器中锯齿波的幅值。
反馈分压网络的传递函数为:Hs=VrefVo=515=13(2)占空比至输出电压的传递函数为:Gvds=VoD11+sLR+s2LC(3)其中Vo=15V ,D=VVin=1528=0.536,L=50μH ,R=3Ω,C=500μF 。
将参数代入式(3)可得,Gvds=282.533×10-8s2+1.675×10-5s+1 (4) 对于BUCK 变换器系统,其回路增益函数G(s)H(s)为 GsHs=GcsGmsGvdsHs=GcsGos (5) 式中,Gos=GmsGvdsHs(6)为未加补偿网络Gcs 时的回路增益函数,称为原始回路增益函数,将式子(1)、(2)、(4)可得本系统中原始回路增益函数Gos=283.04×10-7s2+ 0.000201s+1 (7)根据式(7)可做出系统原始回路增益函数波特图如图3所示:图3 原始回路增益函数波特图从图3中可以看出穿越频率为fc=1.82kHz ,相位裕度为ψm=4.72deg ,从表面上看,系统是稳定的,但是如果系统中的参数发生变化,系统可能会变得不稳定;另外穿越频率太低,系统的响应速度很慢。
Buck电路的设计与仿真开环设计与仿真Saber
一 Buck电路的开环设计
(1)性能指标; (2)Buck电路的工作原理; (3)Buck电路的开环设计;
(1)性能指标
• DC-DC变换器性能指标: • 输入电压:36-72 VDC(额定48V) • 输出性能:
– 额定输出电压 Vout 28VDC – 输出电流纹波 Vout(p-p) <50mV – 额电定感负 电载 流工电作流于IouCt CM10。A,在负载电流大于2A时,
• 其他性能:
– 开关频率 100kHz
(2)Buck电路的工作原理
• 电路拓扑
QA
+
L
+
Ui
ub b
D C
RL Uo
-
-
• CCM下的电路工作原理
(3)Buck电路的开环设计
• 主电路参数设计
(1)占空比 (2)滤波电感量滤波电感设计 (3)滤波电容 (4)功率器件
占空比
(1)占空比
D m ax
V out V in m in
28 36
0.7 8
D m in
V out V in m ax
28 72
0 .3 9
D nom
V out V innom
28 48
0.5 8
滤波电感设计
• 电感量,2A时(1/5负载),电感电流临界 连续。
L ITL UL
Lmin(CCM)
UILLTmax
28(10.39)10u42.7uH 4
(1)原理图编辑 (2)仿真模拟 (3)仿真结果分析 (4)模型细化
(3)仿真结果分析
• 查看仿真波形
– 图形文件的打开 – 现有信号的查看 – 信号的运算
电力电子技术课程设计-BUCK开关电源闭环控制的仿真研究--25V5V
课程设计说明书课程设计名称:电力电子题目:BUCK开关电源闭环控制的仿真研究- 25V/5V指导教师:职称:讲师第一章课题背景 (1)1.1 BUCK电路的工作原理 (1)1.2 BUCK开关电源的应用 (4)第二章课题设计要求 (5)2.1课题内容: (5)第三章课题设计方案 (5)3.1主电路部分的设计 (5)3.2闭环系统的设计 (6)3.3闭环系统仿真 (10)第四章总结及心得体会 (12)第五章参考文献 (13)第六章附录 (13)第一章课题背景1.1 BUCK电路的工作原理BUCK电路基本结构如下图;图1-1 基本电路结构及开关导通时等效电路开关关断时等效电路图1-2 等效电路模型(1)从电路可以看出,电感L和电容C组成低通滤波器,此滤波器设计的原则是使 us(t)的直流分量可以通过,而抑制 us(t) 的谐波分量通过;电容上输出电压 uo(t)就是 us(t) 的直流分量再附加微小纹波uripple(t) 。
(2)电路工作频率很高,一个开关周期内电容充放电引起的纹波uripple(t) 很小,相对于电容上输出的直流电压Uo有:电容上电压宏观上可以看作恒定。
电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。
(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。
这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。
(4)开关S置于1位时,电感电流增加,电感储能;而当开关S置于2位时,电感电流减小,电感释能。
Buck变换器的设计与仿真
S a b e r仿真作业Buck变换器的设计与仿真目录1 Buck变换器技术 .......................................................................................................................... -2 -1.1 Buck变换器基本工作原理 ................................................................................................. - 2 -1.2 Buck变换器工作模态分析 ................................................................................................. - 2 -1.3 Buck变化器外特性 ............................................................................................................ - 3 -2 Buck变换器参数设计................................................................................................................... - 5 -2.1 Buck变换器性能指标......................................................................................................... - 5 -2.2 Buck变换器主电路设计..................................................................................................... - 5 -2.2.1 占空比D .................................................................................................................. - 5 -2.2.2 滤波电感Lf.............................................................................................................. - 5 -2.2.3 滤波电容Cf ............................................................................................................. - 6 -2.2.4 开关管Q的选取...................................................................................................... - 7 -2.2.5 续流二极管D的选取 .............................................................................................. - 7 -3 Buck变换器开环仿真................................................................................................................... - 7 -3.1 Buck变换器仿真参数及指标.............................................................................................. - 7 -3.2 Buck变换器开环仿真结果及分析 ...................................................................................... - 8 -4 Buck变换器闭环控制的参数设计................................................................................................. - 9 -4.1 闭环控制原理..................................................................................................................... - 9 -4.2 Buck变换器的闭环电路参数设计 .................................................................................... - 10 -4.2.1 Gvd(s)的传递函数分析 .......................................................................................... - 10 -4.2.2 补偿环节Gc(s)的设计........................................................................................... - 12 -4.2.3 补偿环节参数设计................................................................................................. - 14 -5 Buck变换器闭环仿真................................................................................................................. - 18 -5.1 Buck变换器闭环仿真参数及指标 .................................................................................... - 18 -5.2 Buck变换器闭环仿真电路原理图 .................................................................................... - 19 -5.3 Buck变换器的闭环仿真结果与分析................................................................................. - 19 -6 总结 ........................................................................................................................................... - 21 -1 Buck 变换器技术1.1 Buck 变换器基本工作原理Buck 电路是由一个功率晶体管开关Q 与负载串联构成的,其电路如图1.1。
Buck电路的设计与仿真(开环设计与仿真)Saber
3
(1)性能指标
• DC-DC变换器性能指标: • 输入电压:36-72 VDC(额定48V) • 输出性能:
– 额定输出电压 Vout 28VDC – 输出电流纹波 Vout(p-p) <50mV – 额定负载电流 Iout 10A,在负载电流大于2A时, 电感电流工作于CCM。
• 其他性能:
– 开关频率 100kHz
• Sample point Density
27
Sample Point Density:
• 仿真器对电路中的非线性模块做线性化处理时将 其分为n个线性段(n值为此参数值的2倍),n越大 ,精度越高,但会降低仿真速度,最大可取1k。 • DC分析中,有助于找到直流工作点; • Transient 分析中,乘以DC分析中的该设置值; • 取值越大,曲线越平滑,越逼近真实波形;2倍
23
(2)仿真模拟
② 时域分析(transient)
时域分析的概念与作用
• 瞬态分析用于检验系统的时域特性,此分 析通常从静态工作点开始。是功率变换器 数值仿真中应用最广泛的分析类型。
瞬态分析对话框
24
Analysis > Time Domain > Transient :
Basic
• End Time:定义瞬态分 析结束时间; • Time Step:步长;
14
(1)原理图编辑
④ 修改元器件属性
– – – – – – 理解所选择元器件的属性 定义属性 帮助文件的使用 画线 重新布线 连线与电压节点命名
⑤ 布线
⑥ 保存
15
开环仿真(瞬态)、分析与模型细化
(1)原理图编辑 (2)仿真 (3)仿真结果分析 (4)模型细化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Buck 电路闭环控制器设计15121501 曾洋斌作业要求:1、 建立Buck 电路的状态平均模型,设计系统闭环控制器;2、 分析稳态误差产生原因,并提出改进措施,并进行仿真;3、完成作业报告。
4、Buck 电路参数:输入电压为20V ,输出电压5V ,负载电阻4欧姆,电感1×10-3H ,电容5×10-4F ,开关频率20kHz 。
一、Buck 电路的状态平均模型根据题目所给参数,容易计算得其占空比为25%,Buck 电路如图1所示:SVoV图1:Buck 电路根据状态空间平均法建模步骤如下: 1、列写状态方程、求平均变量设状态方程各项如下:[()()]T L o i t v t =x()s u v t = ()VD y i t =则有状态方程如下:x =Ax +BuT y =C x(1)列写[0,1S d T ]时间的状态方程如图2所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数矩阵如下所示:11011L CRC ⎛⎫-⎪=⎪ ⎪- ⎪⎝⎭A ,11[0]T L =B ,1[00]T =CSVoV图2:开关VT 导通状态(2)列写[1S d T ,S T ]时间的状态方程如图3所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数矩阵如下所示:21011L CRC ⎛⎫-⎪=⎪ ⎪- ⎪⎝⎭A ,2[00]T =B ,2[10]T =C SVoV图3:开关VT 关断状态因此,在[0,1S d T ]和[1S d T ,S T ]两个时间段分别有如下两种状态方程:[0,1S d T ]: 11x x u =+A B ,1T y x =C [1S d T ,S T ]: 22x x u =+A B ,2T y x =C根据平均状态向量:()()1SSt T T tSx t x d T ττ+=⎰可得:()()()()()()()()()112211SSSSSSS t dT t T T tt dT St dT t T tt dT Sx t x d x d T x u d x u d T ττττττττττ++++++=+=+++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰⎰⎰A B A B又根据建模的低频假设和小纹波假设,可得到如下近似:()()ST x t x τ≈ ()()ST u t u τ≈将这两个近似式回代原方程得:''11211121()[()()]()[()()]()SSST T T x t d t d t x t d t d t u t =+++A A B B同理可得:'1121()[()()]()SST T T T y t d t d t x t =+C C因此有:X =AX +BU ,T Y =C X其中1112(1)d d =+-A A A ,1112(1)d d =+-ΒΒΒ,1112(1)T T T d d =+-C C C2、求解稳态方程及动态方程 (1)求解稳态方程根据电感伏秒平衡以及电容电荷平衡,稳态时有0X =,令大写表示稳态值,即:11,,,x X y Y d D u U ====则有方程组⎧⎨⎩TAX +BU =0Y =C X解方程组得:-1X =-A BU T -1Y =-C A BU由前面求得的两个时间段状态方程系数矩阵得:1011L CRC ⎛⎫-⎪=⎪ ⎪- ⎪⎝⎭A ,1[0]T D L =B ,11[10]T D =-C以下令'111D D =-。
则稳态方程如下所示:1110110L s o D I L V L V C RC -⎛⎫-⎡⎤ ⎪⎡⎤⎢⎥=- ⎪⎢⎥⎢⎥ ⎪⎣⎦- ⎪⎣⎦⎝⎭11'1100110VD s D L I D V L C RC -⎛⎫-⎡⎤ ⎪⎢⎥⎡⎤=- ⎪⎣⎦⎢⎥ ⎪- ⎪⎣⎦⎝⎭(2)求解动态方程若需要研究系统的动态过程,则可以在系统稳态工作点附近引入小信号扰动量,令瞬时值:111ˆd D d =+,ˆx X x =+,ˆu U u =+,ˆy Y y =+ 代入状态空间平均方程并分离稳态量,整理后得:[]T T T T 112121212111T 12121ˆˆˆˆˆˆˆˆ()()()()ˆˆˆˆˆˆ+()()A u d U d ud d d +=++++-+-+-+-+=+-+-y X xX BU Ax B A A X B B A A x B B Y CX C x C C X C C x假定动态过程中的扰动信号比其稳态量小的多,非线性方程中的变量乘积项可被忽略,则线性化的小信号状态方程和输出方程如下所示:[]T T 12121T121ˆˆˆˆ()()ˆˆˆ()u d U d =++-+-=+-y x Ax B A A X B B C x C C X对小信号公式代入A 、B 、C 的值,可得如下:11110ˆˆˆˆ11ˆˆ00L L s s o o D i i L vv d L L v v CRC ⎛⎫-⎡⎤⎡⎤⎡⎤ ⎪⎡⎤⎢⎥⎢⎥⎢⎥=++⎪⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎣⎦⎣⎦- ⎪⎣⎦⎣⎦⎝⎭ []'11ˆˆˆ010ˆL L VD o o I i i D d V v⎡⎤⎡⎤⎡⎤=+-⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3、求解传递函数上面得出的动态方程进行拉普拉斯变化后可得:[]TT1212s s 1T 121ˆˆˆˆ()()()()()()ˆˆˆ()()()()s s s u s U d s ys s d s =++-+-=+-x Ax B A A X B B C x C C X 求解得:T T 111212s s 1T 1s T 1121212s 1ˆˆˆ()()()()[()+()]()ˆˆ()()()ˆ {()[()+()]()}()s s u s s U d s ys s A u s s A U d s ----=-+---=-+---+-I A B I A A A B B C I B C I A A B B C C x X X X所以传递函数如下:1ˆs ()0ˆ()()ˆ()d s s s us -==-xE A BT 1ˆs ()0ˆ()()ˆ()d s ys s us -==-C E A B[]s 11212ˆ()0ˆ()()()()ˆ()us s s U ds -==--+-E xA A A XB B[]T T s T 1121212ˆ()0ˆ()()()()()ˆ()us ys s U ds -==--+-+-E C A A A X B B C C X代入状态方程可得开环传递函数为:21()1vd V G s LDs s LCR=++4、建立交流小信号等效电路模型 由B 中小信号状态方程可得:111ˆˆˆˆs L o s D v i v v d L L L =-++ 11ˆˆˆo L o vi vC RC =-由此可得Buck 电路的小信号模型:ˆo v+ˆg g V v+二、系统闭环控制器设计根据题目给出的参数要求,可以推出以下相关式子,由参考电压为5V ,输出电压为5V ,载波信号幅值为4V 得:515ref V H V === 50.2520D == 1c M V DV V ==上述各值决定了系统的静态工作点。
控制-输出开环传递函数:220011()11()vd d V G s G Ls sDs s LCRQ ωω==++++其中:020d VG V D==0 1.414kHz ω==0 2.8289.03Q dB === 代入参数后的开环传递函数如下:4272120()1 2.5105101vd V G s LDs s ss LC R--==+⨯⨯+⨯⨯++可得如下Bode 图如图4所示:图4:未补偿的Buck 电路Bode 图从图中可以读到其相位裕度为5°,交越频率为6.48kHz ,相角裕度明显不符合要求,因此设计补偿网络。
已知开关频率为20kHz ,因此设计穿越频率为10kHz ,选择相角裕度为52°。
由前面可知:05u MHVT DV == 则有:(102952p kHz kHz ω==(10 3.452z kHz kHz ω==采用PD 控制器时,开环增益补偿为:200() 1.35c c f G f == 101010P h a s e (d e g )Bode DiagramFrequency (rad/sec)M a g n i t u d e (d B )002000454273427311(1)(s)(1)(1())(1 2.94110)5 1.35(1 3.410)(1 2.510510)6.75 1.9853101 2.84510 5.0910 1.72510zu c psT T G sssQ s s s s s s s s ωωωω--------+=++++⨯⨯=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=+⨯⨯+⨯⨯+⨯⨯ 补偿后的开环传递函数的Bode 图如图5所示:图5:补偿后的Buck 电路Bode 图三、系统闭环MATLAB 仿真图6:Buck 闭环系统仿真模型利用搭建的Buck 闭环控制系统,反馈采用Transfer fcn 模块,输出的控制量M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/sec)直接经过限幅后作为调制波与载波比较得到驱动脉冲,首先开始仿真采用的是PD 控制器,即单零单极补偿器,仿真的输出波形如图7所示:图7:PD 控制器的闭环系统输出电压波形图8:稳态后的输出电压放大波形从图7中可知,0.002s 后系统输出稳定,稳定在 4.9675V 左右,纹波围为4.9665V~4.9685V ,则波动大小为0.002V 。
四、稳态误差分析与解决从上面的PD 控制器闭环系统的仿真波形可以看出系统存在稳态误差,即静差,加上补偿器后的Bode 图从0dB 开始,系统为零阶系统,所以存在静差,要想消除静差可以提高系统的阶数,又要考虑相位裕度要求,因此选择增加一个零极点和一个小于共轭极点的零点,增加后的输出电压波形图如图9所示:t/sV o /VV o /V图9:双零双极补偿器闭环系统输出电压波形图10:双零双极补偿器闭环系统输出电压放大波形从图9中看出,稳定后输出电压稳定在5V 左右,放大后的纹波如图10所示,纹波围为4.9985~5.0005,波动大小为0.002,基本消除了稳态误差。
t/sU /Vt/sU /V。