电力电子技术直流直流变换

合集下载

电力电子技术-直流—交流变换器 单相方波型逆变电路

电力电子技术-直流—交流变换器 单相方波型逆变电路

直流-交流变换器(1)
逆变电路的分类2 —— 根据电路的结构
电压型单相半桥逆变电路
电压型全桥逆变电路
带中心抽头变压器的逆变电路
三相电压型桥式逆变电路
直流-交流变换器(1)
3. 换流方式
换流——电流从一个支路向另一个支路转移的过程,也称为换流。
开通:适当的门极驱动信号就可使器件开通。 关断:
全控型器件可通过门极关断。 半控型器件晶闸管,必须利用外部条件才能关断。 一般在晶闸管电流过零后施加一定时间反压,才能关断。 研究换流方式主要是研究如何使器件关断。
vo
VD
v 1 vo
C
π
0
D
T
vo
VD
2
vo v1
π
0 θ =ωTon T Ton 2
vo
VD
vo
ωt
X-Axis
t
(b) 180 o 方波

ωt
X-Axis T
t
(c) 宽度 θ < 180 o 方波
ωt
0
T/2
T
t
(d) PWM输出电压波形
直流-交流变换器(1)
2. 逆变电路的分类
逆变电路的分类 1 —— 根据直流侧电源性质的不同
直流侧是电压源 (并联电容)
直流侧是电流源 (串连电感)
电压型逆变电路——又称为电压源型逆变电路 Voltage Source Type Inverter-VSTI
电流型逆变电路——又称为电流源型逆变电路 Current Source Type Inverter-VSTI
电压型全桥逆变电路
电流型三相桥式逆变电路
本章主要内容:
z 逆变电路的结构和工作原理(单相桥式、三相桥式逆变电路)

电力电子技术第二章直流-直流变换技术

电力电子技术第二章直流-直流变换技术

工业自动化设备
工业自动化设备是直流-直流变换器的又一应用场景。工业 自动化设备需要大量的直流电源,如电机驱动器、传感器 等,通过直流-直流变换器为其提供稳定的电流和电压。
直流-直流变换器在工业自动化设备中具有高效率、高可 靠性、小型化等优势,能够提高设备的性能和稳定性,降 低维护成本。
航空电子设备
详细描述
升压型变换器通过控制开关管,使部分或全部输入电压被储能元件(如电感) 所吸收,并在开关管断开时将能量释放到负载上,从而实现电压的升高。其工 作原理基于电感的磁能积蓄和释放。
反极性型(Inverting)变换器
总结词
反极性型变换器是一种将输入直流电压反向并降低至所需电压的变换器。
详细描述
反极性型变换器通过控制开关管,使输入电压与储能元件(如电容)共同作用, 产生与输入电压极性相反的输出电压。其工作原理基于电容的电荷积蓄和释放。
优化控制参数
根据系统的动态特性和稳态特性,合理调整控制参数,以提高系统 的响应速度、稳定性和精度。
考虑动态特性和负载特性
根据系统的动态特性和负载特性,进行控制策略的优化,以实现更 好的系统性能。
能效优化与电磁兼容性设计
01
02
03
提高能效
通过优化电路拓扑和控制 策略,降低系统的能耗和 热损耗,提高能效。
的同步通断和变压器的工作原理。
Part
03
直流-直流变换器的应用场景 与优势
电动汽车充电系统
电动汽车充电系统是直流-直流变换器的重要应用场景之一。通过将交流电转换为直流电, 为电动汽车电池充电提供稳定的电流和电压。
直流-直流变换器在电动汽车充电系统中具有高效率、高可靠性、高功率密度等优势,能 够提高充电速度、延长电池寿命,并保障充电过程的安全可靠。

电力电子技术 徐德鸿版 习题解答

电力电子技术 徐德鸿版 习题解答

+
1 × U d D(1 −
2
fL
D)
= 15A
(3)增加 L 可以使 ΔI 下降
I VTm = 110%I 0 = 11A
1 ΔI = 11 −10 = 1A 2 L=500μH
1 × U d D(1 − D) = 1A
2
fL
2、Boost 电路如图 2.17 所示,设输入电压为 100V,电感 L 是 1000μH,电 容 C无穷大,输出接 10Ω 的电阻,电路工作频率 50kHz,MOSFET 的导通占 空比为0.5,求:(1)输出直流电压 Uo,输出直流电流 Io;
(2)电感电流平均值 IL; (3)MOSFET 阻断时的电压。
解:(1)U o
=
Ud 1− D
=
200V
I o= U o / R = 20A
(2) I L
=
I in
=
Io 1− D
=
40A
(3)U VTm = U o = 200V
1
3、设有两组蓄电池,A 组电压为 100V,B 组电压为 200V,用 Buck 电路和 Boost 电路组合设计一种电路,以完成既能由 A 组蓄电池向 B 组蓄电池充电,又能由 B 组蓄电池向 A 组蓄电池充电的功能。
解:(1)占空比范围
Uo < D < Uo
U dmax
U dmin
得:
0.25 < D < 0.5
(2)电感电流临界连续时,有
I omin
=
1 2
ΔI
L
=
5 10
=
0.2A
开关关断期间,有
L = U o (1 − D)T = U o (1 − D)T

电力电子技术学习重点提示(第四章)

电力电子技术学习重点提示(第四章)

一、DC-DC 变换的控制方式
1.时间比控制 DC-DC 变换中采用最多的控制方式,它是通过改变斩波器的通、断时间而连续控制输 出电压的大小。即
(4-1)
式中
为斩波周期 ;
为斩波频率;
为导通比。可以看出,改
变导通比 即可改变输出电压平均值 U0,而 比控制又有以下几种实现方式:
的变化又是通过对 T、ton 控制实现的。时间
图 4-8 Boost 变换器
电流连续时,Boost 变换器的输入、输出电压关系为
(4-17)
因为
,故为升压变换关系。
若忽略电路变换损耗,输入、输出功率相等
式中 I 为输入电流 平均值,I0 为输出电流 平均值,则可求得变换器的输入、输出电流关 系为
(4-18) 因此电流连续时 Boost 变换器相当一个升压的“直流”变压器。
电流断续时,设电流在 δ1T 时刻断续,则输入输出可表示为:
(4-25)
(4-26)
3.Boost-Buck(升降压型)变换器
Boost -Buck 变换电路如图 4-11 所示,其特点是: (1)输出电压 U0 可以小于(降压) 、 也可以大于(升压)输入电压 E; (2)输出电压与输入电压反极性。
图 4-4 Buck 变换器
电流连续时,Buck 变换器的输入、输出电压关系为:
(4-2)


故为降压变换关系。
若忽略电路变换损耗,输入、输出功率相等,有
式中 I 为输入电流 i 系为
(4-3) 因此电流连续时 Buck 变换器完全相当于一个“直流”变压器。
输入输出电压与占空比公式:
单极性调制与双极性调制方式的比较: 1)双极性调制控制简单,只要改变 位置就能将输出电压从+E 变到-E;而在单极性调制方 式中需要改变晶体管触发信号的安排。 2)当 H 桥输出电压很小时,双极性调制每个晶体管驱动信号脉宽都比较宽,能保证晶体管 可靠触发导通。 单极性调制时则要求晶体管驱动信号脉宽十分狭窄, 但过窄脉冲不能保证晶 体管可靠导通。 3)双极性调制时四个晶体管均处于开关状态,开关损耗大;而单极性调制时只有两个晶体 管工作,开关损耗相应小

电力电子技术课件05直流-交流(DC-AC)变换

电力电子技术课件05直流-交流(DC-AC)变换

第五章直流-交流(DC-AC)变换一、概述DC-AC变换器(无源逆变器)V1、V4和V2、V3轮流切换导通,u o为交变电压(1)电网换流 利用电网电压换流,只适合可控整流、有源逆变电路、交—交变频器(2)负载谐振式换流 利用负载回路中形成的振荡特性,使电流自动过零,只要负载 电流超前于电压时间大于t q ,即能实现换流,分串,并联。

VT 2、VT 3通后,u 0经VT 2、VT 3反向加在VT 1、VT 4上1. 晶闸管逆变电路的换流方式换流概念:直流供电时,如何使已通元件关断VT 1导通,C 充电左(-)右(+),为换流做准备; VT 2导通,C 上电压反向加至VT 1,换流,C 反向充电。

(3)强迫换流附加换流环节,任何时刻都能换流直接耦合式强迫换流2. 逆变电路的类型(1)电压源型逆变器电流源型逆变器电流源型逆变器功率流向控制(3)两类逆变器的比较比较点电流型电压型直流回路滤波环节电抗器电容器输出电压波形决定于负载,当负载为异步电动机时,近似为正弦波矩形输出电流波形矩形近似正弦波,有较大谐波分量输出动态阻抗大小续流二极管不需要需要过流及短路保护容易困难线路结构较简单较复杂适用范围适用于单机拖动,频繁加减速下运行,需经常反向的场合适用于多机供电不可逆拖动,稳速工作,快速性不高的场合二、强迫换流式逆变电路1.串联二极管式电流源型逆变器结构VT1~VT6为晶闸管C1~C6为换流电容VD1~VD6为隔离二极管2.工作过程(换流机理)(1)换流前运行阶段(2)晶闸管换流与恒流充、放电阶段(3)二极管换流阶段(4)换流后运行阶段diL dt引起三、逆变器的多重化技术及多电平化1. 多重化技术改善方波逆变的输出波形:中小容量:SPWM大容量:多重化技术思路:用阶梯波逼近正弦波(1)串联多重化特点:适合于电压源型逆变器二重化三相电压源逆变器单个三相逆变电路输出电压波形桥Ⅱ输出电压相位比桥Ⅰ滞后30º桥Ⅰ输出变压器△/Y,桥Ⅱ输出变压器△/Z变比为1变比为13二重化逆变电路输出电压比单个逆变电路输出电压台阶更多、更接近正弦。

直流直流变换器

直流直流变换器
利用软开关技术,如ZVS(零电 压开关)或ZCS(零电流开关), 降低开关损耗,提高变换器的效
率。
热设计
热分析
对变换器进行热分析,确 定关键发热元件和最高温 度点,为散热设计提供依 据。
散热设计
根据热分析结果,选择适 当的散热方式,如自然散 热、强制风冷或液冷等。
热管设计
利用热管的高效传热特性, 将热量从发热元件传导至 散热器,提高散热效果。
直流-直流变换器
目录
• 引言 • 直流-直流变换器的分类 • 直流-直流变换器的应用 • 直流-直流变换器的设计与优化 • 直流-直流变换器的挑战与解决方
案 • 未来展望
01
引言
定义与作用
定义
直流-直流变换器是一种将直流电 能转换为另一种直流电能的装置 。
作用
在电力电子、通信、仪器仪表、 工业自动化等领域,直流-直流变 换器广泛应用于电压调节、电流 控制和电源管理等方面。
电磁兼容性(EMC)设计
滤波设计
在变换器输入和输出端加入滤波电路,抑制电磁 干扰的传播。
屏蔽设计
对关键电路和元件进行屏蔽,以减小电磁干扰的 影响。
接地设计
合理设计接地网络,降低地线回路的干扰电压, 提高系统的电磁兼容性。
05
直流-直流变换器的挑战 与解决方案
效率与体积的权衡
挑战
在设计和制造直流-直流变换器时, 需要权衡效率和体积。通常情况下, 更高的效率需要更大的体积和更复杂 的电路设计。
THANKS
感谢观看
多路输出直流-直流变换器的发展
随着多路输出电源需求的增加, 多路输出直流-直流变换器的发
展成为未来的重要方向。
多路输出直流-直流变换器能够 同时提供多路稳定、可调的直流 电压,满足各种不同设备的电源

电力电子技术

电力电子技术

电力电子技术1.1:电力变换通常可分为四大类,即交流变直流(AC-DC)、直流变交流(DC-AC)、直流变直流(DC-DC)和交流变交流(AC-AC )。

交流变直流称为 整流 ,直流变交流称为 逆变 。

1.2:(1);晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于 半控型器型 。

对晶闸管电路的控制方式主要是相位控制方式,简称 相控方式 。

(2);才用全控型器件的电路的主要控制方式为脉冲宽度调制(PWM)方式。

相对应相位控制方式,可称为斩波控制方式,简称 斩控方式 。

2.1.2:电力电子器件在实际应用中,一般是由 控制电路 、 驱动电路 、和以 电力电子器件 为核心的主电路组成一个系统。

2.1.3:电力电子器件分为以下三类:1)通过控制信号可以控制其导通而不能控制其关断的电力电子器件被称为 半控型器件 。

2)通过控制信号既可以控制其导通,又可以控制其关断的女电力电子器件被称为全控型器件 。

3)也有不能用控制信号来控制其通断的电力电子器件,因此也就不需要驱动电路,这就是 电力二极管 ,又被称为 不可控器件 。

2.2.1:从外形上看,电力二极管可以有 螺栓形 、 平板形 等多种封装。

2.3.2:晶闸管正常工作的特性如下:1)当晶闸管承受反向电压时,无论门极是否有触发电流,晶闸管都 不会导通 。

2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管 才能导通 。

3)晶闸管一旦导通,门极就失去控制作用,无论门极触发电流是否还存在,晶闸管都 保持导通 。

4)若要使已导通的晶闸管 关断 ,只能利用外加电压电路的作用使流过晶闸管的电流降到接近零的某一数值以下。

2.3.4:晶闸管的派生器件分为哪几类 快速晶闸管 、 双向晶闸管 、 逆导晶闸管 、光控晶闸管 。

3.1.1:(1)从晶闸管开始承受正向阳极电压起,到施加触发脉冲止的电角度称为 触发延迟角 ,α用表示,也称 触发角 或 控制角 。

电力电子技术第2章 交流-直流变换电路习题和答案K

电力电子技术第2章 交流-直流变换电路习题和答案K

一、选择题2-1、单相半波电阻性负载可控整流电路中,控制角α的最大移相范围是( D)A、0º-90°B、0º-120°C、0º-150°D、0º-180°2-2、单相半波可控整流电路输出最大直流电压的平均值等于整流前交流电压的(C)倍。

A 1,B 0.5,C 0.45,D 0.9.2-3、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差(A )度。

A、180°,B、60°,C、360°,D、120°2-4、在单相桥式全控整流电路中,大电感负载时,控制角α的有效移相范围是(A)。

A、0°~90°B、0°~180°C、90°~180°2-5、普通的单相半控桥可控整流装置中一共用了(B )晶闸管。

A 一只,B 二只,C 三只,D 四只。

2-6、在单相全控桥整流电路中,两对晶闸管的触发脉冲,应依次相差(A)度。

A 、180度;B、60度;C、360度;D、120度2-7、α为( C )度时,三相半波可控整流电路电阻性负载输出电压波形处于连续和断续的临界状态。

A,0度,B,60度,C,30度,D,120度,2-8、晶闸管触发电路中,若改变(B)的大小,则输出脉冲产生相位移动,达到移相控制的目的。

A,同步电压,B、控制电压,C、脉冲变压器变比。

2-9、三相半波可控整流电路的自然换相点是( B)A、交流相电压的过零点;B、本相相电压与相邻相电压正、负半周的交点处;C、比三相不控整流电路的自然换相点超前30°;D、比三相不控整流电路的自然换相点滞后60°。

2-10、α=( 60度)度时,三相全控桥式整流电路带电阻负载电路,输出负载电压波形处于连续和断续的临界状态。

A、0度;B、60度;C、30度;D、120度;2-11、三相全控桥式整流电路带大电感负载时,控制角α的有效移相范围是(A)度。

电力电子技术_直流-直流变换技术

电力电子技术_直流-直流变换技术

考虑到输出电压脉动很小,有 iL iC,且有一周期内电 容充放电平衡,根据ic波形,电容充电电荷Q为
1 1 1 I L Q I L T 2 2 2 8f
电容纹波峰峰值为: U
Q U d D(1 D ) OPP C 8 LCf 2 ——LC滤波器设计约束条件之一 U CPP 2u
Buck-Boost电路基本结构及CCM状态下等效电路
2.4 升降压变换器(Buck-Boost converter)
电感电流连续模式(CCM)工作波形分析
晶体管导通状态(0t t1=DT)
di I VT开通、VD关断,有: uL U d L L L L1 dt DT u (t ) U iC o o R R
2.2 降压式变换器(Buck Converter)
2.2 降压式变换器(Buck Converter)
电感电流断续模式(DCM)下工作参数分析
稳态时电感伏秒平衡,由波形图得:
(U d U o ) DT U o D T 0
'
D'
t s t1 T
电感平均电流等于输出直流电流,由波形图得:
2.1
概述
变压器隔离基本DC-DC变换器
正激式变换器(Forward Converter) 反激式变换器(Flyback Converter) 半桥式变换器(Half-Bridge Converter) 桥式变换器(Bridge Converter)
推挽变换器(Push-Pull converter)
有: uo Uo uripple (t ) Uo —— 小纹波近似
(稳态工作时,电容上的电压是直流分量和微小纹波的合成)

电力电子技术第五章-直直变换器

电力电子技术第五章-直直变换器

1 (Ui 2
Uo L
)
DTS
Ui Uo
D Uo R
Ui Uo
2
Ui Uo
2L D2TS R
0
求解上式得:
电感电流断续时的工作波形
Uo 1 4K 1
Ui
2K
令 K 2L
D2TS R
电压传输比与占空比 D 和负载 R 相关,也与电路参数 L 和 TS 有关。与占空比D
为非线性关系。
三. BUCK变换器的应用
◆利用能量平衡推导
UO D Ud
开关S导通时电感电流上升幅值: I r
(U d
Uo) L
Ton
开关S关断时电感电流下降幅值: I f 已知: Ir I f
Uo L
Toff
则:
M Uo Ton D Ud T
UO D Ud
Ug
Ua Ud Ua
uL Ud Uo
uL
Ud Uo
L
iL
I r
5.2.1 降压型直直变换器(BUCK Converter)
BUCK降压直直变换器是一种基本的非隔离DC/DC变换
器,其输出直流电压低于输入直流电压,通称为BUCK变换
器,电路结构如下图:
S
Ua
L
+
1
2
+
2
Ud
Ug
D
C RL Uo
1
图中:
-
-
S为功率MOSFET器件,工作在开关状态;若为晶闸管,须有辅助 关断电路。
Ug Ua Ud
等效电路如b图所示,此时Ua等于Ud, D截止, Ua
电感电压 等于uL Ud-Uo,电感电流 线性iL 上升,

电力电子技术_交流-直流变换技术

电力电子技术_交流-直流变换技术

电路稳态工作时,每组晶闸管均在另一组晶闸管触发
导通时才换流关断,每组晶闸管导通时间均为180º 。
25
26
4.3
单相桥式全控整流电路
大电感负载运行参数分析
交流电源电压 u2 2U2 sint 整流输出电压平均值
Udav 1



2U 2rms sintd(t )

直流电流平均值Idav
I dav U dav 0.9U 2rms 1 cos R R 2
23
4.3
单相桥式全控整流电路
I VTrms 2U 2rms U 2rms 1 2 ( R sint ) d(t ) 2 R 2
1

晶闸管的电流有效值(方均根值)

不控整流电路
i2=-id
i2=-id
4
4.2
不控整流电路
自然换流点的认识 0~时段
VD1、VD4导通,负载上得到正弦交流电压的正半波。
~2时段
VD2、VD3导通,负载上得到正弦交流电压的负半波 在0、、 2时刻,VD1、VD4与VD2、VD3的工作状态 (导通或阻断)由外部电源电压变化而自然变换,器件的这种 切换叫做换流或换相,对应的切换点(相应的时刻)叫做换流 点或换相点,由于不存在主动控制过程,这些换相点称为自然 换流点或自然换相点。
I VTrms
1 Id 2
变压器二次交流电流有效值
I 2rms Id
27
4.3
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作波形
28
4.3
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作分析

电力电子技术第5章 直流-直流变换电路

电力电子技术第5章  直流-直流变换电路

5.2 单管非隔离直流斩波器
5.2.1、降压式直流斩波电路
1、电路结构
电路中的VT采用IGBT;VD起续流作用,在VT关断时为 电感L储能提供续流通路;L为能量传递电感,C为滤波电 容,R为负载;Us为输入直流电压,U0为输出直流电压。
is
VT
- + UL
iL
L
iD
Us
VD
i0 + u0
CR
toff≥1,故负载上的输出电压U0高于电路输入电压Us,
该变换电路称为升压式斩波电路。
5.2.3 升降压式直流斩波电路
1、电路的结构
该电路的结构是储能电感L与负载R并联,续流二 极管VD反向串接在储能电感与负载之间。
iT VT
iD
iL +
uL
Us
L
-
VD
-
-
uC
u0
C
R
+ +
图5-9 升-降(压a)式斩波电路及工作波形
2、工作原理
2)在VT关断时,储能电感L两端电势极性变成左 负右正,VD转为正偏,电感L与电源Us叠加共同向 电容C充电,向负载R供能。如果VT的关断时间为
toff,则此时间内电感电压为 (U o U S ) 。
图5-8 Boost变换器电流连续工作模式波形图
3、基本数量关系
根据电感电压的伏秒平衡特性
图5-5 电流连续工作模式波形图
3、基本数量关系
根据电感电压的伏秒平衡特性 T
ton
T

uLdt uLdt uLdt 0
0
0
ton
设输出电压平均值为U0,则在稳态时,上式可以表达为:

电力电子技术课件-10-DCDC变换器

电力电子技术课件-10-DCDC变换器

t off
L I L UO
根据式(3.2.4)、(3.2.5)可求出开关周期TS为
TS1ftontoffUO (IU LdLU dUO)
ILU O (U fdL dU U O)U dD (f1 LD )
流 可一 得上周式期中内△的I平L为均流值过与电负感载电电流流的IO峰相-等峰,即值同,最时大代为入I关2,最系小式为△II1L。= 电I2-感I电1
IOBU2dLTOS D(1D)
式中IOB为电感电流临界连续时的负载电流平均值。
总结:临界负载电流 IOB与输入电压Ud、电感L、开关频率f以及开关管T 的占空比D都有关。
当实际负载电流Io> IOB时,电感电流连续;
当实际负载电流Io = IOB时,电感电流处于连续(有断流临界点);
当实际负载电流Io <IOB时,电感电流断流;
I0
I2
2
I1
(3.2.8)
I1I0U2dLTS D(1D)
2021/5/4
10
4.1.1 Buck变换器
电感电流iL临界连续状态:
变换电路工作在临界连续状态时,即有I1=0,由
I1I0U2dLTS D(1D)
可得维持电流临界连续的电感值L0为:
Lo
UdTS 2I0B
D(1D)
即电感电流临界连续时的负载电流平均值为 :
2021/5/4
基本的斩波器电路及 其负载波形
3
4.1 直流变换电路的工作原理
直流变换电路的常用工作方式主要有两种:
① 脉冲频率调制(PFM)工作方式:
即维持导通时间不变,改变工作周期。在这种调 压方式中,由于输出电压波形的周期是变化的,因此 输出谐波的频率也是变化的,这使得滤波器的设计比 较困难,输出谐波干扰严重,一般很少采用。

机工社2023电力电子技术 第6版教学课件第5章 直流直流变换电路

机工社2023电力电子技术 第6版教学课件第5章 直流直流变换电路

开关周期开始时刻的电容电压值相等。故式(5-1)中uC(TS) = uC(0),所以电容
电流在一个开关周期内的平均值Ic = 0。
5-7
5.1 直接直流变流电路
5.1.1 降压斩波电路 5.1.2 升压斩波电路 5.1.3 升降压斩波电路 5.1.4 丘克斩波电路 5.1.5 多重斩波电路
5-8
5.1.1 降压斩波电路
5-20
5.1.3 升降压斩波电路
数量关系
电感电压在一个周期的平均值UL可以表示为
UL
U iton
U otoff Ts
由伏秒平衡,UL=0,可得
Uo D Ui 1 D
(5-6)
等式右边的负号表示升降压电路的输出电压与输入电压极性相反,其数 值既可以高于其输入电压,也可以低于输入电压。
S Ui
5-5
5.1 直接直流变流电路
伏秒平衡
电感两端电压在一个开关周期内的平均值:
其中: 可得:
1
UL Ts
TS 0
uL
(t
)
d
t
uL
(t)
L
d
iL (t) dt
U L
1 Ts
TS L d iL (t) d t 0 dt
1
Ts
TS 0
L
d
iL
(t
)
L Ts
[iL (TS
)
iL
(0)]
(5-1)
uL O
t1~t2时段:开关S关断,二极管VD 导通,电感通过VD向电容C放电,电感 电流不断减小。
t2~t3时段:t2时刻电感电流减小到 零,二极管VD关断,电感电流保持零值
,并且电感两端的电压也为零。

电力电子技术第4章直流直流变换器课件

电力电子技术第4章直流直流变换器课件

cos 2t
2
n
sin nD
cos nt)
以上分析表明,输出电压可以分解成直流分量、具有开关频率fs及其倍数的谐波分 量,如右下图所示,左下图中uo是未加滤波器前的直流电压,由傅里叶级数可以看出, 谐波的幅值和占空比有关,谐波的频率是开关频率的倍数。
采用由电感和电容组成的低通滤波器的特性 如图(c)所示。当低通滤波器的角频率fc<<开关频 率fs时,经过滤波器后的输出电压基本上消除了 高频谐波。电感和电容越大,输出电压越平稳, 纹波越小。而开关频率越高,滤波效果越好,滤 波器也可以越小。因此,在直流斩波器中,开关 频率较高,可以减少装置的体积,提高性能。
➢ 随着控制角的增大功率因数降低,无功功率增大,影响电网质量。 ➢ 由于输出电压中具有低次谐波,为保证输出电压具有较小的纹波,必须有较大的滤
波电感和电容。 ➢ 在直流电机调速系统中,为避免电流断续,最小负载电流越小,保证电流连
续的电感越大,体积重量越大,成本越高。 ➢ 相控整流器存在着较大的失控时间,导致动态响应慢,快速性差。
4.4.2 电流连续和断续模式的边界
在开关管导通期间,
Ud
uL
L diL dt
L
I LM ton
在临界连续的情况下,在断开间隔结束时电感电流iL降为0。因此有
I LB
1 2
I
LM
Udton 2L
TsUo 2L
D(1 D)
I OB
TsU o 2L
D(1
D)2
由在临界连续情况下电感电流和输出电流表达式,给出了临界电流与占空比的 关系曲线。图中,在输出电压不变 的条件下,如果输出电流平均值Io比IoB小,则工 作在电流断续模式下。

电力电子技术课件 第三章 直流调压电路

电力电子技术课件 第三章 直流调压电路

③逆变系统:
17
3.1.4 绝缘栅双极型晶体管(IGBT)
绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor)简称IGBT, 既具有输入阻抗高、速度快,热稳定性好和驱动电路简单的特点,又具有 通态电压低、耐压高和承受电流大等优点,因此发展迅速,备受青睐。由 于它的等效结构具有晶体管模式,所以称为绝缘栅双极型晶体管。IGBT 于1982年开始研制,1986年投产,是发展最快,使用最广泛的一种混合型 器件。
14
GTR桥臂互锁保护法
若一个桥臂上的两个GTR控制信号重叠或开关器件本身延时过长,则会 造成桥臂短路。为了避免桥臂短路,可采用互锁保护法,即一个GTR关断后, 另一个才导通。采用桥臂的互锁保护,不但能提高可靠性,而且可以改进系 统的动态性能,提高系统的工作频率。
15
3.GTR的应用
①直流传动:
20
③专用集成驱动电路
EXB系列IGBT专用集成驱动模块是日本富士公司出品的,它们性 能好、可靠性高、体积小,得到广泛应用。EXB850、EXB851是标准型, EXB840、EXB841是高速型,它们的内部框图如图所示。
21
集成驱动器的应用电路,它能 驱动150A/600V、75A/1200V、 400A/600V和300A/1200V的IGBT模 块。EXB850和EXB851的驱动延迟 ≤4μs,因此适用于频率高达10kHz的 开关操作。EXB840和EXB841的驱 动信号延迟≤1μs,适用于高达40kHz 的开关操作。使用中IGBT的栅极都 接有栅极电阻RG,表3.4和3.5分别列 出了EXB850和EXB840驱动电路中 IGBT的栅极串联电阻RG的推荐值和 电流损耗。
26
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流断续时
1
4.2 基本DC-DC变换器
Boost-Buck(升降压型)变换器
2
4.2 基本DC-DC变换器
3
4.2 基本DC-DC变换器
CÚK变换器
4
4.2 基本DC-DC变换器
5
4.2 基本DC-DC变换器
L1中电流变化
6
4.2 基本DC-DC变换器
L2中的电流变化
7
1. 降压斩波器
电流断续时 1.临界断续
6
2、断续
4.2 基本DC-DC变换器
7
4.2 基本DC-DC变换器
3、滤波器设计
8
4.2 基本DC-DC变换器
Boost(升压型)变换器
输出电压的平均值U0要大于输入电压E 主要用于开关稳压电源、直流电机能量
回馈制动
9
4.2 基本DC-DC变换器
电流连续时
0
4.2 基本DC-DC变换器
(4)uc=-E时,,ic=0,VT2断,uc经VD1反压 加至VT1,VT1关断,如图(d)。
(5)VT1断后,VD2通,C经L1、VD1、L2、 VD2回路谐振,uc由 -E上升到E,uc=E时 ,ic=0,停止向负载输出,如图(e) 。
(6)电源停止输出后,负载电流经VDF续流, 如图(f) 。
0
4.3 晶闸管斩波器电Leabharlann 中的能量∶输入-输出电压关系∶
1
3.斩波变阻
4.3 晶闸管斩波器
斩波器断∶ R=Rd+Rex 斩波器通∶ R=Rd
2
4.4桥式可逆斩波器
3
4.4桥式可逆斩波器
单极性脉宽调制
9
4.3 晶闸管斩波器
2 升压斩波器 利用电感中的储能释放时产生的电压来提高输出来提高输出电压
工作原理: (1) VT导通时,E加至L,L开始储能,iL上升;C向负载放电,并关断VD
,uC下降; (2)VT关断时,iL方向不变,则其感应电势和E叠加后向负载供电,同时
向C充电, uC上升,且有: 储存在L中的能量=转储到C中的能量+负载消耗的能量
电力电子技术直流直流变换
2
4.1 DC-DC变换的基本控制方式
瞬时值控制
3
4.2 基本DC-DC变换器
Buck(降压型)变换器
输出电压平均值U0恒小于输 入电压E
主要应用于开关稳压电源, 直流电机速度控制,以及 需要直流降压变换的环节
4
4.2 基本DC-DC变换器
1.直流连续时
5
4.2 基本DC-DC变换器
4.3 晶闸管斩波器
8
4.3 晶闸管斩波器
(1)VT1,VT2均不通 , E经L1、VD1 ,L1,R对C 充电,如图(a)。
(2)触通VT1,负载上有电压,VD1截至,C 无放电回路,如图(b) 。
(3)触通VT2,C经VT2与L1形成谐振,C放电 并反向充电,上(-)下(+),负载仍有电压 , 如图(c) 。
相关文档
最新文档