高中数学完整讲义——二项式定理1二项展开式1求展开式中的指定项
高中数学《二项式定理》课件
![高中数学《二项式定理》课件](https://img.taocdn.com/s3/m/ec52508bdb38376baf1ffc4ffe4733687e21fc2b.png)
03
二项式定理的证明
数学归纳法的应用
数学归纳法是一种证明数学命题的重 要方法,尤其在证明二项式定理时, 它能够通过有限步骤来证明无限递推 关系。
然后,通过假设当$n=k$时二项式定 理成立,推导出当$n=k+1$时二项 式定理也成立。
在二项式定理的证明中,数学归纳法 首先证明基础步骤,即当$n=0$或 $n=1$时,二项式定理成立。
二项式定理的推导
二项式定理推导思路
通过组合数的性质,将二项式定理展开式中的每一项表示为组合数的形式,从而推导出二项式定理的 展开式。
二项式定理的推导过程
根据组合数的性质,将二项式定理展开式中的每一项表示为C(n, k)的形式,其中k表示二项式中某一 项的次数。通过计算,可以得到二项式定理的展开式为C(n, 0) + C(n, 1)x + C(n, 2)x^2 + ... + C(n, n)x^n。
C(n, m) = C(n, n-m),即从n个不同元素中取出m个元素和取出n-m个元素的 组合数相等。
组合数的性质2
C(n+1, m) = C(n, m-1) + C(n, m),即从n+1个不同元素中取出m个元素的组 合数等于从n个不同元素中取出m-1个元素的组合数加上从n个不同元素中取出 m个元素的组合数。
详细描述
二项式定理的应用场景非常广泛。在多项式的展开中,二项式定理可以用来求解形如$(x+y)^n$的多项式的展开 结果。在组合数学中,二项式定理可以用来计算组合数和排列数等。在概率论中,二项式定理可以用来计算事件 的概率和期望值等。此外,二项式定理在统计学、物理、工程等领域也有广泛的应用。
02
二项式定理的推导过程
二项式定理
![二项式定理](https://img.taocdn.com/s3/m/03e199f427fff705cc1755270722192e453658b9.png)
1.二项式定理二项式定理 (a +b )n =C 0n a n +C 1n a n -1b 1+…+C r n a n -r b r +…+C n nb n (n ∈N +) 二项展开式 的通项公式 T r +1=C r n an -r b r,它表示第r +1项 二项式系数二项展开式中各项的系数C r n (r ∈{0,1,2,…,n })2.二项式系数的性质(1)C 0n =1,C n n =1, C m n +1=C m -1n +C m n . (2)C m n =C n -m n .(3)n 是偶数时,T 12n +项的二项式系数最大;n 是奇数时,T 12n +与T 112n ++项的二项式系数相等且最大.(4)C 0n +C 1n +C 2n +…+C n n=2n . 【知识拓展】二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)C r n an -r b r是二项展开式的第r 项.( × ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( × ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ )(4)在(1-x )9的展开式中系数最大的项是第五、第六两项.( × )(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( × )1.(教材改编)(x -y )n 的二项展开式中,第m 项的系数是( ) A .C m nB .C m +1nC .C m -1nD .(-1)m -1C m -1n答案 D解析 (x -y )n 展开式中第m 项的系数为C m -1n(-1)m -1. 2.已知n =6e 11d x x⎰,那么⎝⎛⎭⎫x -3x n 展开式中含x 2项的系数为( ) A .130 B .135 C .121 D .139答案 B解析 根据题意,n =6e 11d x x⎰=ln x 6e 1=6,则⎝⎛⎭⎫x -3x 6中,由二项式定理得通项公式为T r +1=C r 6(-3)r x 6-2r,令6-2r =2,得r =2,所以系数为C 26×9=135.3.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n等于( ) A .63 B .64 C .31 D .32答案 A解析 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.4.(教材改编)⎝⎛⎭⎫x 2-2x 35展开式中的常数项为________. 答案 40解析 T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫-2x 3r =C r 5(-2)r x10-5r.令10-5r =0,则r =2.∴常数项为T 3=C 25(-2)2=40.5.(1+x )8(1+y )4的展开式中x 2y 2的系数是________. 答案 168解析 ∵(1+x )8的通项为C k 8x k ,(1+y )4的通项为C t 4y t ,∴(1+x )8(1+y )4的通项为C k 8C t 4x k y t ,令k =2,t =2,得x 2y 2的系数为C 28C 24=168.题型一 二项展开式命题点1 求二项展开式中的特定项或指定项的系数例1 (1)(2015·广东)在(x -1)4的展开式中,x 的系数为________. (2)(2015·课标全国Ⅰ)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60答案 (1)6 (2)C解析 (1)由题意可知T r +1=C r 4(x )4-r(-1)r =C r 4(-1)rx42r,令4-r 2=1解得r =2,所以展开式中x 的系数为C 24(-1)2=6.(2)方法一 利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.方法二 利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23=30.故选C.命题点2 已知二项展开式某项的系数求参数例2 (2015·课标全国Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =____________. 答案 3解析 设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5, ① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5. ②①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.思维升华 求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(1)(2014·课标全国Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)(2)(2014·课标全国Ⅱ)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案) 答案 (1)-20 (2)12解析 (1)x 2y 7=x ·(xy 7),其系数为C 78,x 2y 7=y ·(x 2y 6),其系数为-C 68,∴x 2y 7的系数为C 78-C 68=8-28=-20. (2)设通项为T r +1=C r 10x 10-r a r ,令10-r =7, ∴r =3,∴x 7的系数为C 310a 3=15,∴a 3=18,∴a =12.题型二 二项式系数的和或各项系数的和的问题 例3 在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.解 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数的和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10. 由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,② ①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510, ∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.思维升华 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N +)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.解 (1)由已知得C 1m +2C 1n =11,∴m +2n =11,x 2的系数为C 2m +22C 2n =m (m -1)2+2n (n -1) =m 2-m 2+(11-m )⎝⎛⎭⎫11-m 2-1=⎝⎛⎭⎫m -2142+35116. ∵m ∈N +,∴m =5时,x 2的系数取得最小值22,此时n =3. (2)由(1)知,当x 2的系数取得最小值时,m =5,n =3, ∴f (x )=(1+x )5+(1+2x )3. 设这时f (x )的展开式为f (x )=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33=59, 令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1, 两式相减得2(a 1+a 3+a 5)=60,故展开式中x 的奇次幂项的系数之和为30. 题型三 二项式定理的应用例4 (1)已知2n +2·3n +5n -a 能被25整除,求正整数a 的最小值; (2)求1.028的近似值.(精确到小数点后三位) 解 (1)原式=4·6n +5n -a =4(5+1)n +5n -a=4(C 0n 5n +C 1n 5n -1+…+C n -2n 52+C n -1n 5+C n n )+5n -a =4(C 0n 5n +C 1n 5n -1+…+C n -2n52)+25n +4-a , 显然正整数a 的最小值为4.(2)1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172.思维升华 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项,而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87 答案 B解析 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C91088+1,∵前10项均能被88整除,∴余数是1.17.混淆二项展开式的系数与二项式系数致误典例(12分)(1)已知(x+1)6(ax-1)2的展开式中含x3的项的系数是20,求a的值;(2)设(5x-x)n的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,求展开式中二项式系数最大的项.易错分析解答此题时易将二项式系数之和与各项系数和混淆,从而导致计算错误;另外,也要注意项与项的系数,项的系数与项的系数绝对值的区别与联系.规范解答解(1)(x+1)6(ax-1)2的展开式中x3的系数是C36+C26×(-1)×a+C16a2=6a2-15a+20,∵x3的系数为20,∴6a2-15a+20=20,∴a=0,a=52.[4分](2)依题意得,M=4n=(2n)2,N=2n,于是有(2n)2-2n=240,(2n+15)(2n-16)=0,∴2n=16=24,解得n=4.[8分]要使二项式系数C r4最大,只有r=2,[10分]故展开式中二项式系数最大的项为T3=C24(5x)2·(-x)2=150x3.[12分]温馨提醒(1)对于(ax+b)n展开式中,第r+1项的二项式系数是指C r n,第r+1项的系数是C r n a n-r b r. (2)对于(ax+b)n展开式中各项系数之和,令x=1即得:(a+b)n;(ax+b)n展开式的二项式系数之和为C0n+C1n+…+C n n=2n.[方法与技巧]1.通项T r+1=C r n a n-r b r是(a+b)n的展开式的第r+1项,而不是第r项,这里r=0,1,…,n.2.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.3.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.4.运用通项求展开式的一些特殊项,通常都是由题意列方程求出r,再求所需的某项;有时需先求n,计算时要注意n和r的取值范围及它们之间的大小关系.[失误与防范]1.项的系数与a、b有关,二项式系数只与n有关,大于0.2.求二项式所有系数的和,可采用“赋值法”.3.关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法.4.展开式中第r +1项的二项式系数与第r +1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.A 组 专项基础训练 (时间:30分钟)1.(2014·四川)在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .10 答案 C解析 因为(1+x )6的展开式的第r +1项为T r +1=C r 6x r ,x (1+x )6的展开式中含x 3的项为C 26x 3=15x 3,所以系数为15.2.(2015·湖南)已知⎝⎛⎭⎫x -a x 5的展开式中含x 32的项的系数为30,则a 等于( )A. 3 B .- 3 C .6 D .-6 答案 D解析 ⎝⎛⎭⎫x -ax 5的展开式通项T r +1=C r 5x 52r -(-1)r a r·x2r-=(-1)r a r C r 5x52r-,令52-r =32,则r =1,∴T 2=-a C 15x 32,∴-a C 15=30,∴a =-6,故选D. 3.(4x -2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15 D .20答案 C解析 设展开式中的常数项是第r +1项,则T r +1=C r 6·(4x )6-r ·(-2-x )r =C r 6·(-1)r ·212x -2rx·2-rx=C r 6·(-1)r ·212x -3rx,∵12x -3rx =0恒成立,∴r =4, ∴T 5=C 46·(-1)4=15. 4.若在(x +1)4(ax -1)的展开式中,x 4的系数为15,则a 的值为( ) A .-4 B.52 C .4 D.72答案 C解析 ∵(x +1)4(ax -1)=(x 4+4x 3+6x 2+4x +1)(ax -1),∴x 4的系数为4a -1=15,∴a =4.5.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2·(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于( )A.34(3n -1) B.34(3n -2) C.32(3n -2) D.32(3n -1) 答案 D解析 在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)na n =3(1-3n )1-3=32(3n -1). 6.(2015·安徽)⎝⎛⎭⎫x 3+1x 7的展开式中x 5的系数是________(用数字填写答案). 答案 35解析 ⎝⎛⎭⎫x 3+1x 7的展开式的第r +1项为T r +1=C r 7(x 3)7-r ·⎝⎛⎭⎫1x r=C r 7·x 21-4r ,令21-4r =5,得r =4,∴T 5=C 47x 5=35x 5.7.(2015·重庆)⎝⎛⎭⎫x 3+12x 5的展开式中x 8的系数是________(用数字作答).答案 52解析 二项展开式通项为T r +1=C r 5(x 3)5-r ⎝⎛⎭⎫12x r =⎝⎛⎭⎫12r C r 5x 15-7r 2,令15-7r 2=8,解得r =2,因此x 8的系数为⎝⎛⎭⎫122C 25=52.8.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________. 答案 10解析 f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r 5(1+x )5-r ·(-1)r , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =________. 答案 6解析 (x +y )2m 展开式中二项式系数的最大值为C m 2m ,∴a =C m 2m .同理,b =C m +12m +1. ∵13a =7b ,∴13·C m 2m =7·C m +12m +1.∴13·(2m )!m !m !=7·(2m +1)!(m +1)!m !.∴m =6.10.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6; (4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7 =-1.①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)方法一 ∵(1-2x )7展开式中,a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187. 方法二 |a 0|+|a 1|+|a 2|+…+|a 7|,即(1+2x )7展开式中各项的系数和,令x =1, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2 187.B 组 专项能力提升 (时间:25分钟)11.(2015·湖北)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .212 答案 A解析 由题意,C 3n =C 7n ,解得n =10.则奇数项的二项式系数和为2n -1=29.故选A. 12.若(x +a )2(1x -1)5的展开式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或9答案 D解析 由于(x +a )2=x 2+2ax +a 2,而(1x -1)5的展开式通项为T r +1=(-1)r C r 5·x r -5,其中r =0,1,2,…,5.于是(1x -1)5的展开式中x -2的系数为(-1)3C 35=-10,x -1项的系数为(-1)4C 45=5,常数项为-1,因此(x +a )2(1x -1)5的展开式中常数项为1×(-10)+2a ×5+a 2×(-1)=-a 2+10a -10,依题意-a 2+10a -10=-1,解得a 2-10a +9=0,即a =1或a =9.13.(2014·浙江)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)等于( )A .45B .60C .120D .210 答案 C解析 因为f (m ,n )=C m 6C n4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.14.求证:1+2+22+…+25n -1(n ∈N +)能被31整除. 证明∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C n n -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n为整数, ∴原式能被31整除. 15.若(x +124x)n 展开式中前三项的系数成等差数列,求:(1)展开式中所有x 的有理项; (2)展开式中系数最大的项.解 易求得展开式前三项的系数为1,12C 1n ,14C 2n . 据题意得2×12C 1n =1+14C 2n ⇒n =8. (1)设展开式中的有理项为T r +1, 由T r +1=C r 8(x )8-r(124x)r =(12)r C r 8x 1634r -,∴r 为4的倍数,又0≤r ≤8,∴r =0,4,8. 故有理项为T 1=(12)0C 08x16304-⨯=x 4,T 5=(12)4C 48x16344-⨯=358x , T 9=(12)8C 88x16384-⨯=1256x 2. (2)设展开式中T r +1项的系数最大,则:(12)r C r 8≥(12)r +1C r +18且(12)r C r 8≥(12)r -1C r -18⇒r =2或r =3. 故展开式中系数最大的项为 T 3=(12)2C 28x16324-⨯=7x 52, T 4=(12)3C 38x16334-⨯=7x 74.。
高考数学讲义二项式定理.版块二.二项展开式2求展开式中的特定项.教师版
![高考数学讲义二项式定理.版块二.二项展开式2求展开式中的特定项.教师版](https://img.taocdn.com/s3/m/93d4fbae3169a4517623a314.png)
1.二项式定理⑴二项式定理()()011222...nn n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项011222...n n n n nn n n n C a C a b C a b C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b -+=. ⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意①通项1r n r rr nT C a b -+=是()na b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是()na b +这个标准形式下而言的,如()na b -的二项展开式的通项公式是()11rr n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r rr n T C a b -+=是不同的,在这知识内容求展开式中的特定项里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念.⑤设1,a b x ==,则得公式:()12211......nr r n nn n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r rnC a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:()na b +展开式的二项式系数是:012,,,...,nn n n n C C C C ,从函数的角度看r n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n m n n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大; 如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.由于展开式各项的二项式系数顺次是 ()01211,,112n n n n n n C C C -===⋅, ()()312123n n n n C --=⋅⋅,..., ()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1knn n n n k n k C k k---+-+=⋅⋅⋅-,...,1nn C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间. 当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n nC .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1122n n nnCC-+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.二项展开式2求展开式中的特定项(常数项,有理项,系数最大项等.) 常数项【例1】 在()2043x +展开式中,系数为有理数的项共有 项.【考点】求展开式中的特定项 【难度】3星典例分析【题型】填空【关键字】2010年,湖北高考 【解析】略 【答案】6;【例2】 100的展开式中共有_____项是有理项.【考点】求展开式中的特定项 【难度】3星 【题型】填空 【关键字】无【解析】展开式的第r 项为50100321100100C C23r r r rrr r T --+==⋅⋅,要使第r 项为有理项,需要r 为2与3的倍数,从而6r k =,k ∈Z , 又0100r ≤≤,故01216k =L ,,,,,共有17项.【答案】17;【例3】 610(1(1++展开式中的常数项为_______(用数字作答). 【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2008年,江西高考【解析】两个二项式的通项公式分别为3416110C (06)C (010)i j ij i j T x i S x j -++==≤≤,≤≤, 3411610C C (06010)i j i j i j T S x x i j -++⋅=≤≤,≤≤,当034i j-=即43i j =时,有3种情况:0i j ==;34i j ==,;68i j ==,.因此常数项为34686106101C C C C 4246++=.【答案】4246;【例4】 ()6211x x x x ⎛⎫++- ⎪⎝⎭的展开式中的常数项为_________.【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,辽宁高考 【解析】略 【答案】5-【例5】 二项式42x +x ⎛⎫ ⎪⎝⎭的展开式中的常数项为_____________,展开式中各项系数和为 .(用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,石景山一模 【解析】通项公式4421442C 2C rrrr r rr T xx x --+⎛⎫== ⎪⎝⎭,2r =时,可得常数项2242C 24=;令1x =即可得各项系数和为4381=.【答案】24,81;【例6】 若123a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为220-,则实数a =___________.【考点】求展开式中的特定项 【难度】3星【题型】填空【关键字】2010年,崇文1模 【解析】由二项式定理4124311212CC rrr r r r r a T a x x --+⎛⎫== ⎪⎝⎭.令44033r r -=⇒=. 于是有3312C 2201a a =-⇒=-. 【答案】1-;【例7】 在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是10-,则实数a 的值为 .【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,海淀一模 【解析】由二项式定理,()()5210355C C rrr rr rr a T xa xx --⎛⎫=-=-⋅ ⎪⎝⎭. 当1031r -=时,3r =,于是x 的系数为()3335C 10a a -=-,从而1a =.【答案】1;【例8】 在621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项是______.(结果用数值表示)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,西城2模【解析】容易知道26C 15=为所求. 【答案】15;【例9】 如果1nx x ⎛⎫+ ⎪⎝⎭展开式中,第四项与第六项的系数相等,则n = ,展开式中的常数项的值等于 .【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,朝阳2模【解析】由题意有35C C 8n n n =⇒=;展开式的常数项的值为48C 70=.【答案】8,70;【例10】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2007年,全国高考【解析】281(12)()x x x+-的展开式中常数项为4338812(1)42C C ⋅+⋅⋅-=-.【答案】42-;【例11】 若1()n x x+展开式的二项式系数之和为64,则展开式的常数项为_______(用数字作答).【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2007年,重庆高考【解析】由题意,2646n n =⇒=.于是通项662166r r r r r r T C x x C x ---+=⋅=当620r -=时,3r =.常数项为34620T C ==.【答案】20;【例12】 若3(2n x的展开式中含有常数项,则最小的正整数n 等于 .【考点】求展开式中的特定项 【难度】3星 【题型】填空 【关键字】无 【解析】若3(2n x的展开式中含有常数项,31(2)rn r r r n T C x -+=⋅为常数项,则7302rn -=, 即67n r =,所以n 被7整除,当76n r ==,时成立,最小的正整数n 等于7.【答案】7;【例13】 在2)n x+的二项展开式中,若常数项为60,则n 等于 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2006年,江西高考【解析】通项公式为3212C =2C n rr n rr r r r nn x x--+T =(),由已知条件有30n r -=时,2C 60r r n =.容易验证当3n =时,不满足条件;6n =时满足条件.【答案】6;【例14】 21()n x x-的展开式中,常数项为15,则n = .【考点】求展开式中的特定项【难度】3星 【题型】填空【关键字】2007年,全国高考【解析】21()n x x -的展开式中,通项公式22311C ()()(1)C r n r r r r n rr n n T x xx --+=-=-,常数项为15,则:230(1)C 15r r n n r -=-=,.所以n 可以被3整除.容易验证当3n =时,不满足条件;当6n =时,4r =,常数项446(1)C 15-=,故6n =.【答案】6;【例15】 已知231(1)()nx x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【考点】求展开式中的特定项 【难度】4星 【题型】填空【关键字】2008年,辽宁高考 【解析】31()n x x +的通项公式为4131C ()C r n r r r n rr n n T x x x--+==. 如果题目中的多项式展开后没有常数项,则:40120n r r n -≠--,,,≤≤. 所以n 被4除只能余1.当28n ≤≤时,5n =.【答案】5;【例16】 12(x -展开式中的常数项为_______(用数字作答). 【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2008年,山东高考【解析】用通项公式1212311212C ((1)C r r r r rr r r T xxx---+==-,当1203rr --=时,9r =, 常数项为912C 220-=-. 【答案】220-;【例17】 已知2(n x的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2006年,山东高考【解析】第三项的系数为2C n -,第五项的系数为4C n ,由第三项与第五项的系数之比为314-,可解得10n =,则通项210110()(rrr r T C x -+==405210()r rr i C x--,当4050r -=,解得8r =,故所求的常数项为8810()C 45i -=. 【答案】45;【例18】 已知10()n n ∈N ≤,若nxx )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无【解析】通项335121()()(1)C C rn r r r r n rr n n T x x x--+=-=-,存在常数项,则350n r -=, n 能被5整除,所以n 只有两种选择.选B .【答案】B ;【例19】 610(1(1++展开式中的常数项为_______(用数字作答). 【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2008年,江西高考【解析】两个二项式的通项公式分别为3416110C (06)C (010)i j ij i j T x i S x j -++==≤≤,≤≤, 3411610C C (06010)i j ij i j T S x x i j -++⋅=≤≤,≤≤,当034i j-=即43i j =时,有3种情况:0i j ==;34i j ==,;68i j ==,.因此常数项为34686106101C C C C 4246++=.【答案】4246;【例20】 51(2x x+的展开式中整理后的常数项为 (用数字作答). 【考点】求展开式中的特定项 【难度】4星 【题型】填空【关键字】2005年,湖北高考【解析】注意到21055512((()22(2)x x x x x x +++==,所以要求10(x +的5x 的系数,10(x 的通项公式为:101011010C C r r r rr r r T x x --+==当5r =时,可求得10(x 的5x 的系数,所以所求常数项为55105C 2=.当然也可以直接将原多项式变为10,然后用通项公式求常数项.【例21】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2007年,全国高考【解析】281(12)()x x x+-的展开式中常数项为4338812(1)42C C ⋅+⋅⋅-=-.【答案】42-;【例22】 已知312nx x ⎛⎫+ ⎪⎝⎭的展开式的常数项是第7项,则n 的值为( )A .7B .8C .9D .10【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无 【解析】略; 【答案】B ;【例23】 在2)n x+的二项展开式中,若常数项为60,则n 等于 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2006年,江西高考【解析】通项公式为3212C =2C n rr n rr r r r nn x x--+T =(),由已知条件有30n r -=时,2C 60r r n =.容易验证当3n =时,不满足条件;6n =时满足条件.【答案】6;【例24】 21()n x x-的展开式中,常数项为15,则n = .【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2007年,全国高考【解析】21()n x x -的展开式中,通项公式22311C ()()(1)C r n r r r r n rr n n T x xx--+=-=-, 常数项为15,则:230(1)C 15r r n n r -=-=,.所以n 可以被3整除.容易验证当3n =时,不满足条件;当6n =时,4r =,常数项446(1)C 15-=,故6n =.【答案】6;【例25】 12(x -展开式中的常数项为_______(用数字作答). 【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2008年,山东高考 【解析】用通项公式1212311212C ((1)C r r rr rr r r T xxx---+==-,当1203rr --=时,9r =, 常数项为912C 220-=-. 【答案】220-;【例26】 已知2(n x的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2006年,山东高考【解析】第三项的系数为2C n -,第五项的系数为4C n ,由第三项与第五项的系数之比为314-,可解得10n =,则通项210110()(rrr r T C x -+==405210()r rr i C x--,当4050r -=,解得8r =,故所求的常数项为8810()C 45i -= 【答案】45;【例27】 已知10()n n ∈N ≤,若nx x )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无【解析】通项335121()()(1)C C rn r r r r n rr n n T x x x--+=-=-,存在常数项, 则350n r -=,n 能被5整除,所以n 只有两种选择.选B .【答案】B ;【例28】 12x ⎛- ⎝展开式中的常数项为( )A .1320-B .1320C .220-D .220【考点】求展开式中的特定项 【难度】3星 【题型】选择【关键字】2008年,山东高考 【解析】41212311212C C (1)rr r r r r r T xx--+⎛==- ⎝, 412093r r -=⇒=,9912121110C (1)22032⨯⨯-=-=-⨯.【答案】C ;【例29】 求612x x ⎛⎫++ ⎪⎝⎭展开式中的常数项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】212xx ++= 12612xx ⎛⎫++= ⎪⎝⎭. 由12展开式的通项公式12611212rr r rr T x --+==C C ,可得展开式的常数项为612924=C .【例30】 6122x x ⎛⎫- ⎪⎝⎭的展开式的常数项是 (用数字作答)【考点】求展开式中的特定项【难度】3星 【题型】填空【关键字】2009年,四川高考 【解析】通项公式662621661C (2)(1)C 22rr rr r r rr T x x x ---+⎛⎫=-=- ⎪⎝⎭,令620r -=,得3r =, 故常数项为336(1)C 20-=-.【答案】-20【例31】 在2nx ⎫+⎪⎭的二项展开式中,若常数项为60,则n 等于( )A.3 B.6 C.9 D.12【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无【解析】通项公式3212C 2C rn r rn rr r r nn T x x --+⎛⎫== ⎪⎝⎭,令3023n r nr -=⇒=,且n 为3的倍数. 常数项为2332C 60215nn n==⨯,从而6n ≤,故3n =或6,验证可知6n =.【答案】B ;【例32】 1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .【考点】求展开式中的特定项 【难度】4星 【题型】填空【关键字】2007年,四川高考 【解析】8n =;44448411C C n n nn T xx x --+⎛⎫=-= ⎪⎝⎭为常数项,故80n -=.【答案】8;【例33】 若nx x ⎪⎪⎭⎫⎝⎛+31的展开式中存在常数项,则n 的值可以是( ) A .10 B .11 C .12 D .14【考点】求展开式中的特定项 【难度】3星 【题型】选择【关键字】2009年,东城区一模 【解析】通项公式3561C C rn rr n r rr n n T x --+==,由题设知存在r n ≤,使得350n r -=,即35n r =,因此n 应是5的倍数,只有A 选项符合要求,验证可知满足要求.【答案】A ;【例34】 在261(2)x x-的展开式中常数项是 ,中间项是________.【考点】求展开式中的特定项 【难度】3星 【题型】填空 【关键字】无 【解析】略【答案】360160x -,.35460160T T x ==-,.【例35】 已知231(1)()nx x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【考点】求展开式中的特定项【题型】填空【关键字】2008年,辽宁高考 【解析】31()n x x +的通项公式为4131C ()C r n r r r n rr n n T x x x--+==. 如果题目中的多项式展开后没有常数项,则:40120n r r n -≠--,,,≤≤. 所以n 被4除只能余1.当28n ≤≤时,5n =.【答案】5;【例36】 若3(2n x的展开式中含有常数项,则最小的正整数n 等于 .【考点】求展开式中的特定项 【难度】4星 【题型】填空 【关键字】无 【解析】若3(2n x的展开式中含有常数项,31(2)rn r r r n T C x -+=⋅为常数项,则7302rn -=, 即67n r =,所以n 被7整除,当76n r ==,时成立,最小的正整数n 等于7.【答案】7;【例37】 已知2nx⎛- ⎝的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( )A .1-B .1C .45-D .45【考点】求展开式中的特定项 【难度】3星 【题型】选择【解析】通项公式52221C ()(1)C rn r r n rr r r nn T x x --+⎛==- ⎝,由题设2244(1)C 310(1)C 14n nn -=⇒=-. 令52082n r r -=⇒=,故常数项为8810(1)C 45-=. 【答案】D ;【例38】 若21nx x ⎛⎫+ ⎪⎝⎭展开式中的二项式系数和为512,则n 等于________;该展开式中的常数项为_________.【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2009年朝阳区一模【解析】由题设25129nn =⇒=,通项公式291831991C ()C rrrr rr T x xx --+⎛⎫== ⎪⎝⎭, 令1830r -=,得6r =,故常数项为69C 84=. 【答案】9;84;【例39】 若921ax x ⎛⎫- ⎪⎝⎭的展开式中常数项为84,则a =_____,其展开式中二项式系数之和为_________.【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2009年,西城区二模 【解析】通项公式2991831991C ()(1)C rrrr r r rr T ax a xx ---+⎛⎫=-=- ⎪⎝⎭,令1830r -=,得6r =, 常数项6639(1)C 841a a -=⇒=,展开式中二项式系数之和为92512=.【答案】1512,;【例40】 若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120【考点】求展开式中的特定项 【难度】2星 【题型】选择 【关键字】无 【解析】略 【答案】B ;有理项【例41】 求二项式15的展开式中:⑴常数项;⑵有几个有理项(只需求出个数即可); ⑶有几个整式项(只需求出个数即可).【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】展开式的通项为:30515611515(1)C (1)2C rrrr rr r r r T x--+=-=-. ⑴设1r T +项为常数项,则30506r -=,得6r =,即常数项为667152C T =; ⑵设1r T +项为有理项,则3055566r r -=-为整数,∴r 为6的倍数,又∵015r ≤≤,∴r 可取0,6,12三个数, 故共有3个有理项.⑶556r -为非负整数,得0r =或6,∴有两个整式项.【例42】100的展开式中共有_______项是有理项. 【考点】求展开式中的特定项 【难度】3星 【题型】填空 【关键字】无【解析】展开式的第r 项为50100321100100C C23r r rrrr r T --+==⋅⋅,要使第r 项为有理项,需要r 为2与3的倍数,从而6r k =,k ∈Z , 又0100r ≤≤,故01216k =L ,,,,,共有17项.【答案】17;【例43】 二项式15的展开式中:⑴求常数项;⑵有几个有理项; ⑶有几个整式项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】展开式的通项为:30515611515(1)C (1)2C r rr rr r rr r T x--+=-=-.⑴1r T +项为常数项,则30506r -=,得6r =,即常数项为667152C T =;⑵设1r T +项为有理项,则3055566r r -=-为整数,∴r 为6的倍数, 又∵015r ≤≤,∴r 可取0612,,三个数.⑶556r -为非负整数,得0r =或6,∴有两个整式项.【例44】 已知在n的展开式中,前三项的系数成等差数列①求n ;②求展开式中的有理项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】①通项公式2341C C 2rn rr r n rn r nr T x--+==, 由题设2102C C C 2822nn nn +=⨯⇒=(1n =舍去).②34841C 2r rr r T x -+=,1r T +为有理项的充要条件为344r -∈Z ,所以r 是4的倍数,048r =,,.因此所有有理项为415923518256T x T x T x ===,,.【例45】 二项展开式15中,有理项的项数是( )A .3B .4C .5D .6【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无【解析】45515611515C C rrrrrr T x --+=⋅=⋅(r = 0,1,2,…,14 ), 当3915r =,,时,为有理项,选A .【答案】A ;【例46】 在(1132的展开式中任取一项,设所取项为有理项的概率为p ,则1p x dx =⎰A .1B .67 C .76 D .1113【考点】求展开式中的特定项 【难度】4星 【题型】选择【关键字】2009届高考数学二轮冲刺专题测试【解析】B ;11111111323211111C 3232C rrr rr r r r r T x x x --+-+⎛⎫⎛⎫=⋅⋅=⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭于是r 可取3,9, 则21126P ==,1711660066|77x dx x ⎰== 【答案】B ;【例47】12的展开式中,含x 的正整数次幂的项共有( ) A .4项 B .3项 C .2项 D .1项【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无 【解析】略 【答案】B ;【例48】若(51a +=+a ,b 为有理数),则a b +=( ) A .45B .55C .70D .80【考点】求展开式中的特定项 【难度】3星 【题型】选择【关键字】2009年,北京高考【解析】(523451141+=++++=+【答案】C ;系数最大的项【例49】 已知(n x +的展开式中前三项的系数成等差数列.⑴求n 的值;⑵求展开式中系数最大的项.【考点】求展开式中的特定项 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】⑴由题设,得02111C C 2C 42n nn +=⨯,即2980n n -+=,解得8n =或1n =(舍去). ⑵设第1r +项的系数最大,则1881188111C C 2211C C 22rr r r r r r r ++--⎧⎪⎪⎨⎪⎪⎩≥≥,即1182(1)1129r r r r⎧⎪-+⎪⎨⎪⎪-⎩≥≥解得2r =或3r =.所以系数最大的项为7523477T x T x ==,.【例50】 20(23)x +展开式中系数最大的项是第几项?【考点】求展开式中的特定项 【难度】2星 【题型】解答 【关键字】无【解析】通项公式为20120C 2(3)rr r r T x -+=⋅⋅. 若第1r +项最大,设第1r +项的系数为1r t +,则11211r r r rt tt t +++≥,≥. 将通项公式系数代入化简得:2(1)3(21)113(20)2r r r r+--≥,≥.解出586355r ≤≤.∴12r =因此系数最大的项是第13项.【答案】13;【例51】 已知(13)n x +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.【考点】求展开式中的特定项 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】由已知有21C C C 121n n n n n n --++=,即22400n n +-=,解得15n =或16n =-(舍去) 设第第1r +项的系数最大,则111515111515C 3C 3C 3C 3r r r r r r r r ++--⎧⋅⋅⎪⎨⋅⋅⎪⎩≥≥,即133115116r r r r -+-≥,≥ 解得1112r =,所以系数最大的项为1111111215C 3T x =⋅和1212121315C 3T x =⋅.【例52】 在132nx x -⎛⎫- ⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中常数项是____.A .7-B .7C .28-D .28【考点】求展开式中的特定项 【难度】3星 【题型】选择【关键字】2009届高考数学二轮冲刺专题测试【解析】于是8n =⨯,展开式的常数项为6216378C 72x T x -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.【答案】B ;【例53】 已知lg 8(2)x x x +的展开式中,二项式系数最大的项的值等于1120,求x . 【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无【解析】由题设,44lg 48C (2)()1120x x x =,即44lg 1x x +=,0x >. 故44lg 0x +=或1x =,解得x 的值为1或110. 【答案】x 的值为1或110.【例54】 求10的展开式中,系数绝对值最大的项以及系数最大的项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】展开式的通项公式为:3056110C (1)2r rrrr T x--+=-⋅⋅,系数的绝对值为10C 2rr -⋅,记为1r t +.用前后两项系数的绝对值作商得:1(1)12101011010C 2C 10!!(10)!10C 22C (1)!(9)!210!2(1)r r r r r r rr t r r r t r r r +-+++-+⋅--===⋅=⋅+⋅-⋅+. 令1012(1)r r -+≥得:83r ≤,即012r =,,时,上述不等式成立. 所以,系数的绝对值从第1项到第4项增加,以后逐项减小. 系数绝对值最大的项为第4项,5533322410C (1)215T x x -=-=-.从系数绝对值的变化情况及系数的正负交替,只要比较第3项与第5项的系数,记它们的系数分别为3t 与5t ,224431051045210105C 2C 24168t t --=⋅==⋅==,. 所以,系数最大的项为第5项,5351058T x =.【例55】 已知n展开式中的倒数第三项的系数为45,求: ⑴含3x 的项; ⑵系数最大的项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】⑴ 由题设知2C 45n n-=,解得10n =. 21113010341211010C ()()C r rrrr r T x x x---+==,令11303612r r -=⇒=, 因此含3x 的项为633710C 210T x x ==. ⑵ 系数最大的项为中间项,即55302551212610C 252T xx -==.【例56】 设m n +∈N ,,1m n ,≥,()(1)(1)m n f x x x =+++的展开式中,x 的系数为19.⑴求()f x 展开式中2x 的系数的最大、最小值;⑵对于使()f x 中2x 的系数取最小值时的m 、n 的值,求7x 的系数.【考点】求展开式中的特定项【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】11C C 19m n +=,即19m n +=.∴19m n =-.⑴设2x 的系数为222221919C C 1917117124mnT n n n ⎛⎫=+=-+=-+- ⎪⎝⎭.∵n +∈N ,1n ≥,∴当1n =或18n =时,max 163T =;当9n =或10时,min 81T =. ⑵对于使()f x 中2x 的系数取最小值时的m n ,的值,即98()(1)(1)f x x x =+++从而7x 的系数为77109C C 156+=.【例57】 已知:223(3)n x x +的展开式中,各项系数和比它的二项式系数和大992.⑴求展开式中二项式系数最大的项;⑵求展开式中系数最大的项.【考点】求展开式中的特定项 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】令1x =,则展开式中各项系数和为2(13)2n n +=,又展开式中二项式系数和为2n ,∴222992n n -=,5n =.⑴ ∵5n =,展开式共6项,二项式系数最大的项为第三、四两项, ∴223226335C ()(3)90T x x x ==,22232233345C ()(3)270T x x x ==, ⑵ 设展开式中第1r +项系数最大,则21045233155C ()(3)3C r rrr rr r T x x x+-+==,∴115511553C 3C 79223C 3C r r r r r r r r r --++⎧⎪⇒⎨⎪⎩≥≤≤≥,∴4r =, 即展开式中第5项系数最大,2264243355C ()(3)405T x x x ==.【例58】20(23)x +展开式中系数最大的项是第几项?【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无【解析】通项公式为20120C 2(3)rr r r T x -+=⋅⋅. 若第1r +项最大,设第1r +项的系数为1r t +,则11211r r r rt tt t +++≥,≥. 将通项公式系数代入化简得:2(1)3(21)113(20)2r r r r+--≥,≥.解出586355r ≤≤.∴12r =因此系数最大的项是第13项.【答案】13;【例59】 关于二项式2005(1)x -有下列命题:①该二项展开式中非常数项的系数和是1:②该二项展开式中第六项为619992005C x; ③该二项展开式中系数最大的项是第1003项与第1004项; ④当2006x =时,2005(1)x -除以2006的余数是2005. 其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)【考点】求展开式中的特定项 【难度】4星 【题型】填空 【关键字】无【解析】二项式2005(1)x -所有项的系数和为0,其常数项为1-,非常数项的系数和是1,得①正确;二项展开式的第六项为520002005C x,即得②错误; 二项展开式中系数绝对值最大的项为第1003项(系数为10022005C )与第1004项(系数为10032005C -),得系数最大的项是第1003项,即③错误; 当2006x =时,2005(1)x -除以2006的余数是20052006(1)2005+-=,即④正确.故应填①④.【答案】①④;【例60】 在2nx ⎛ ⎝的展开式,只有第5项的二项式系数最大,则展开式中常数项为 .(用数字作答)【考点】求展开式中的特定项 【难度】4星 【题型】填空 【关键字】无【解析】7;根据第5项的二项式系数最大可求出n .常数项为7。
求二项展开式特定项的简便方法
![求二项展开式特定项的简便方法](https://img.taocdn.com/s3/m/b0f71769ec630b1c59eef8c75fbfc77da2699731.png)
求二项展开式特定项的简便方法二项展开式(也称为二次展开式或二项式定理)是将两个数的幂次幂表示为多个二项式之和的公式。
它是数学中一个重要的工具,被广泛地应用于代数、组合数学和数论等领域。
二项展开式的一般形式为:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n-1)*a^1*b^(n-1)+C(n,n)*a^0*b^n其中,C(n,k)表示从n个对象中选择k个对象的组合数,即C(n,k)=n!/(k!*(n-k)!),其中n!表示n的阶乘。
为了寻找二项展开式中的特定项,我们可以使用组合数的性质和二项式系数的对称性质来简化问题。
首先,由于二项式系数的对称性质,我们有C(n,k)=C(n,n-k)。
因此,如果我们要寻找展开式中的第k项,我们可以只计算C(n,k)的值,而不必计算C(n,n-k)。
其次,我们可以利用组合数的递推关系简化计算。
根据组合数的递推关系,我们有C(n,k)=C(n-1,k-1)+C(n-1,k)。
这意味着,可以通过计算前一行的两个组合数的和来得到当前行的组合数。
利用这一递推关系,我们可以仅通过少量的计算来找到特定项。
下面是一个例子,演示如何使用这些方法来找到二项展开式中的特定项。
假设我们要找到展开式(2x-3y)^5中的第3项。
根据二项展开式的一般形式,我们需要计算C(5,3)*(2x)^2*(-3y)^3首先,计算C(5,3):C(5,3)=5!/(3!*(5-3)!)=5!/(3!*2!)=5*4/2=10。
然后,计算(2x)^2=4x^2最后,计算(-3y)^3=-27y^3将上述结果带入展开式,我们得到第3项为:10*4x^2*(-27y^3)=-1080x^2y^3通过这种方法,我们可以快速准确地找到二项展开式中的特定项。
除了上述方法,还有其他一些方法可以简化计算,如使用二项式定理的一些特殊情况(如平方差公式或立方和公式)、使用多项式乘法的分配律等。
二项式定理 课件
![二项式定理 课件](https://img.taocdn.com/s3/m/e09e52bd9f3143323968011ca300a6c30d22f16b.png)
0
90
91
1
又 992=(10-1)92=C92
·1092-C92
·1091+…+C92
·102-C92
·10+1,
前 91 项均能被 100 整除,后两项和为-919,因余数为正,可从前
面的数中分离出 1 000,结果为 1 000-919=81,故 9192 被 100 除所得
余数为 81.
用1110=(10+1)10的展开式进行证明,第(2)小题则可利用9192=(1009)92的展开式,或利用(90+1)92的展开式进行求解.
9
1
(1)证明 ∵1110-1=(10+1)10-1=(1010+C10
·109+…+C10
·10+1)-1
1
2
=1010+C10
·109+C10
·108+…+102
答案:-56
1.如何正确区分二项展开式中某一项的系数与二项式系数
剖析两者是不同的概念. C (r=0,1,2,…,n)叫做二项式系数,而某
一项的系数是指此项中除字母外的部分.如(1+2x)7 的二项展开式的
第 4 项的二项式系数为C73 =35,而其第 4 项的系数为C73 ·23=280.
2.如何用组合的知识理解二项式定理
二项式定理
1.二项式定理
二项展开式:(a+b)n=C0 + C1 − 1 + ⋯ + C − +
⋯ + C (n∈N*)叫做二项式定理,其中各项的系数C (k∈
{0,1,2,…,n})叫做二项式系数.
二项式定理+课件-2024-2025学年高二上学期数学湘教版(2019)选择性必修第一册
![二项式定理+课件-2024-2025学年高二上学期数学湘教版(2019)选择性必修第一册](https://img.taocdn.com/s3/m/9b6f4ffd0129bd64783e0912a216147916117e4d.png)
a7 .
解:
在展开式中取 x 0 ,则 a0 1 .
再在展开式中取 x 1,得 1 a0 a1 a2
于是 a1 a2
a7 1 a0 2
a7 ,
课堂巩固
A 1.已知
x2 2
1 x
n
的展开式中第
9
项为常数项,则展开式中的各项系数之和为(
)
1 A. 210
B.
1 210
C. 210
D. 210
解析:
Tr 1 Crnan rbr
在二项式定理中,如果设 a 1,b x ,则得到公式:
(1 x)n C0n C1n x C2n x2
Crn xr
Cnn xn
例题来了
例 1 求 (3 x 1 )4 的展开式. x
解:
(3 x 1 )4 (3x 1)4
x
x2
1 x2
[C40 (3x)4
C41 (3x)3
解析:由于 x5 y2 x2 2 x y2 , 所以 2x2 x y 5 的展开式中含 x5 y2 的项为 C52 2x2 2 C13x1 C22 y 2 120x5 y2 , 所以 2x2 x y 5 的展开式中 x5 y2 的系数为 120.
7.
2
x
1 x
作黑球.考虑 n 个均放有一个红球和一个黑球的盒子.现从每个盒子中取一个球,有选
红球或选黑球两利选择,其结果可分为 n 1类:
第
1
类,取出的
n
个球中,有
n
个红球,即
0
个黑球,共有
C
0 n
种取法,所以展开式
中一共有 C0n 项 an .
第 2 类,取出的 n 个球中,有 n 1 个红球,即 1 个黑球,共有C1n 种取法,所以
高三数学二项式定理通用版知识精讲
![高三数学二项式定理通用版知识精讲](https://img.taocdn.com/s3/m/7eda48b31b37f111f18583d049649b6648d70991.png)
高三数学二项式定理通用版知识精讲【本讲主要内容】二项式定理二项式定理和二项展开式性质及其应用【知识掌握】 【知识点精析】1. 二项式定理:对任意的正整数n ,有)N n (b C ......b a C ......b a C a C )b a (*n n n r r -n r n 1-n 1n n 0n n ∈+++++=+这个公式所表示的定理叫做二项式定理,右边的多项式叫做n )b a (+的二项展开式,各项系数rn C ……(r =0,1,2,……,n )叫做二项式系数。
特例:在二项展开式中令a =1,b =x ,则有公式:()= (111)22+++++x C x C x C x nn n n n n2. 通项公式:二项展开式中的第r+1项r r-n rn b aC 叫做通项,记做)n r 0,N n (b a C T *r r -n r n 1r ≤≤∈=+。
注意:(1)它表示二项展开式中的任意项,只要n 和r 确定,该项也随之确定。
(2)通项公式表示的是第r+1项,而不是第r 项。
(3)公式中a ,b 的位置不能颠倒,它们的指数和一定为n 。
3. 二项式系数的性质:(1)二项式系数的对称性在二项展开式中,与首末两端“等距离”的两项的二项式系数相等; (2)二项式系数的大小规律如果二项式幂指数是偶数,中间一项12n T +的二项式系数最大;如果二项式幂指数是奇数,中间两项121n T ++和121n T +-的二项式系数相等并且最大。
(3)二项式系数的和:nn n 2n 1n 0n 2C ......C C C =++++ 当n 为偶数时C C C C C C C C n n n n n n n n n n n 024135112++++=++++=--…………当n 为奇数时C C C C C C C C n n n n n n n n n n n 024113512++++=++++=--…………(4)二项式系数与项的系数的区别:如n)bx a (+的展开式中,第r+1项的二项式系数为r n C ,第r+1项的系数为r r-n r n b aC 。
展开式公式 二项式定理
![展开式公式 二项式定理](https://img.taocdn.com/s3/m/ea0f9ce2970590c69ec3d5bbfd0a79563c1ed4d3.png)
展开式公式二项式定理一、二项式定理内容。
1. 二项式定理表达式。
- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中n∈ N^*。
- 这里C_n^k=(n!)/(k!(n - k)!),C_n^k也被称为二项式系数。
2. 展开式的特点。
- 项数:展开式共有n+1项。
- 次数:各项中a与b的次数之和为n,其中第k + 1项T_k+1=C_n^ka^n -kb^k中a的次数为n - k,b的次数为k。
二、二项式系数的性质。
1. 对称性。
- 二项式系数C_n^k = C_n^n - k,这反映在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等。
2. 增减性与最大值。
- 当n是偶数时,中间一项(第(n)/(2)+1项)的二项式系数C_n^(n)/(2)最大;- 当n是奇数时,中间两项(第(n + 1)/(2)项和第(n+3)/(2)项)的二项式系数C_n^(n - 1)/(2)=C_n^(n + 1)/(2)最大。
- 二项式系数先增大后减小,由C_n^k=(n(n - 1)·s(n - k + 1))/(k!),随着k的增大,当frac{C_n^k+1}{C_n^k}=(n - k)/(k + 1)>1时,二项式系数增大;当(n - k)/(k+1)<1时,二项式系数减小。
3. 二项式系数之和。
- ∑_k = 0^nC_n^k=2^n,即(1 + 1)^n = 2^n。
- 奇数项的二项式系数之和等于偶数项的二项式系数之和,且都等于2^n-1,即∑_k = 0^⌊(n)/(2)⌋C_n^2k=∑_k = 0^⌊(n - 1)/(2)⌋C_n^2k + 1=2^n-1。
三、二项式定理的应用。
1. 求二项展开式中的特定项。
- 求指定项:例如求(x+(1)/(x))^10的展开式中的常数项。
- 首先写出通项公式T_k + 1=C_10^kx^10 - k((1)/(x))^k=C_10^kx^10 - 2k。
高中数学求展开式中的特定项
![高中数学求展开式中的特定项](https://img.taocdn.com/s3/m/f55b54062b160b4e767fcf55.png)
高中数学求展开式中的特定项1.二项式定理⑴二项式定理()()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理.⑵二项式系数、二项式的通项011222...n n n n n n n n n C a C a b C a b C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=.⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .⑷几点注意①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是()11rr n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r nT C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念.知识内容⑤设1,a b x ==,则得公式:()12211......nr r n n n n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r r n C a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素,只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.”⑵二项式系数的性质:()n a b +展开式的二项式系数是:012,,,...,n n n n n C C C C ,从函数的角度看r n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n .当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质.①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n m n n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.由于展开式各项的二项式系数顺次是()01211,,112n n n n n n C C C -===⋅,()()312123n n n n C --=⋅⋅,...,()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1k n n n n n k n k C k k ---+-+=⋅⋅⋅-,...,1n n C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间.当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n n C .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项.这两项的二项式系数相等并且最大,最大为1122n n n n C C -+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.二项展开式2求展开式中的特定项(常数项,有理项,系数最大项等.)常数项【例1】 在()2043x +展开式中,系数为有理数的项共有 项.【例2】 1003(23)的展开式中共有_____项是有理项.典例分析【例3】 61034(1)(1)x x ++展开式中的常数项为_______(用数字作答).【例4】 ()6211x x x x ⎛⎫++- ⎪⎝⎭的展开式中的常数项为_________.【例5】 二项式42x +x ⎛⎫ ⎪⎝⎭的展开式中的常数项为_____________,展开式中各项系数和为 .(用数字作答)【例6】 若123a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为220-,则实数a =___________.【例7】 在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是10-,则实数a 的值为 .【例8】 在621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项是______.(结果用数值表示)【例9】 如果1nx x ⎛⎫+ ⎪⎝⎭展开式中,第四项与第六项的系数相等,则n = ,展开式中的常数项的值等于 .【例10】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【例11】 若1()n x x+展开式的二项式系数之和为64,则展开式的常数项为_______(用数字作答).【例12】 若3(2n x的展开式中含有常数项,则最小的正整数n 等于 .【例13】 在2)n x的二项展开式中,若常数项为60,则n 等于 (用数字作答)【例14】 21()n x x-的展开式中,常数项为15,则n = .【例15】 已知231(1)()n x x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【例16】 12(x -展开式中的常数项为_______(用数字作答).【例17】 已知2(n x的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【例18】 已知10()n n ∈N ≤,若n xx )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【例19】 610(1(1++展开式中的常数项为_______(用数字作答).【例20】 51(2x x+的展开式中整理后的常数项为 (用数字作答).【例21】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【例22】 已知312nx x ⎛⎫+ ⎪⎝⎭的展开式的常数项是第7项,则n 的值为( ) A .7B .8C .9D .10【例23】 在2)n x的二项展开式中,若常数项为60,则n 等于 (用数字作答)【例24】 21()n x x-的展开式中,常数项为15,则n = .【例25】 12(x -展开式中的常数项为_______(用数字作答).【例26】 已知2(n x的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【例27】 已知10()n n ∈N ≤,若n x x )1(23-的展开式中含有常数项,则这样的n 有()A .3个B .2C .1D .0【例28】 12x ⎛- ⎝展开式中的常数项为( )A .1320-B .1320C .220-D .220【例29】 求612x x ⎛⎫++ ⎪⎝⎭展开式中的常数项.【例30】 6122x x ⎛⎫- ⎪⎝⎭的展开式的常数项是 (用数字作答)【例31】 在2nx ⎫+⎪⎭的二项展开式中,若常数项为60,则n 等于( ) A.3 B.6 C.9 D.12【例32】 1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .【例33】 若nx x ⎪⎪⎭⎫ ⎝⎛+31的展开式中存在常数项,则n 的值可以是( ) A .10 B .11 C .12 D .14【例34】 在261(2)x x -的展开式中常数项是 ,中间项是________.【例35】 已知231(1)()n x x x x +++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【例36】 若3(2n x的展开式中含有常数项,则最小的正整数n 等于 .【例37】 已知2nx⎛- ⎝的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( ) A .1- B .1 C .45- D .45【例38】 若21nx x ⎛⎫+ ⎪⎝⎭展开式中的二项式系数和为512,则n 等于________;该展开式中的常数项为_________.【例39】 若921ax x ⎛⎫- ⎪⎝⎭的展开式中常数项为84,则a =_____,其展开式中二项式系数之和为_________.【例40】 若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20 C .30 D .120有理项【例41】 求二项式15的展开式中: ⑴常数项;⑵有几个有理项(只需求出个数即可);⑶有几个整式项(只需求出个数即可).【例42】100的展开式中共有_______项是有理项.【例43】二项式15的展开式中:⑴求常数项;⑵有几个有理项;⑶有几个整式项.【例44】已知在n的展开式中,前三项的系数成等差数列①求n;②求展开式中的有理项.【例45】二项展开式15中,有理项的项数是()A.3B.4C.5D.6【例46】在(1132的展开式中任取一项,设所取项为有理项的概率为p,则1px dx=⎰A.1 B.67C.76D.1113【例47】12的展开式中,含x的正整数次幂的项共有()A.4项B.3项C.2项D.1项【例48】若(51a+=+a,b为有理数),则a b+=()A.45B.55C.70D.80系数最大的项【例49】已知(nx+的展开式中前三项的系数成等差数列.⑴求n的值;⑵求展开式中系数最大的项.【例50】20(23)x+展开式中系数最大的项是第几项?【例51】已知(13)nx+的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.【例52】在132nxx-⎛⎫-⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中常数项是____.A.7-B.7C.28-D.28【例53】已知lg8(2)xx x+的展开式中,二项式系数最大的项的值等于1120,求x.【例54】求10的展开式中,系数绝对值最大的项以及系数最大的项.【例55】已知n展开式中的倒数第三项的系数为45,求:⑴含3x的项;⑵系数最大的项.【例56】 设m n +∈N ,,1m n ,≥,()(1)(1)m n f x x x =+++的展开式中,x 的系数为19.⑴求()f x 展开式中2x 的系数的最大、最小值;⑵对于使()f x 中2x 的系数取最小值时的m 、n 的值,求7x 的系数.【例57】 已知:223(3)n x x +的展开式中,各项系数和比它的二项式系数和大992. ⑴求展开式中二项式系数最大的项;⑵求展开式中系数最大的项.【例58】20(23)x +展开式中系数最大的项是第几项?【例59】 关于二项式2005(1)x -有下列命题:①该二项展开式中非常数项的系数和是1:②该二项展开式中第六项为619992005C x; ③该二项展开式中系数最大的项是第1003项与第1004项;④当2006x =时,2005(1)x -除以2006的余数是2005.其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)【例60】 在2nx ⎛ ⎝的展开式,只有第5项的二项式系数最大,则展开式中常数项为 .(用数字作答)【例61】 设)()21*4n n +∈N 的整数部分和小数部分分别为n M 与n m ,则()n n n m M m +的值为 .【例62】 12()m n ax bx +中,a b ,为正实数,且200m n mn +=≠,,它的展开式中系数最大的项是常数项,求a b的取值范围.【例63】 二项式(1sin )n x +的展开式中,末尾两项的系数之和为7,且二项式系数最大的一项的值为52,则x 在(0,2π)内的值为___________.【例64】 如果232(3)n x x -的展开式中含有非零常数项,则正整数n 的最小值为_______(用数字作答).【例65】 在二项式()1n x +的展开式中,存在着系数之比为57∶的相邻两项,则指数()*n n ∈N 的最小值为 .。
高考培优课程秋季数学讲义:二项式定理—二项展开式【讲师版】
![高考培优课程秋季数学讲义:二项式定理—二项展开式【讲师版】](https://img.taocdn.com/s3/m/5797f903af1ffc4fff47ac1d.png)
高考培优 数学“二项式定理—二项展开式”学生姓名 授课日期 教师姓名唐茂钢授课时长1h(1)掌握二项式定理展开式、通项公式、二项式系数性质,会用它们进行赋值运算以及简单的证明。
(2)二项式定理是高考的常考知识点之一,每年一道题,常以选择或填空形式出现,利用通项公式求展开式的特定项或某一项的系数较多。
利用二项式定理求多项式的系数或二项式的系数和,或者赋值运算是高考命题的常见题型。
少有综合性的大题。
1. 二项式定理的内容:()n n n n r r n r n n n n n b ab C b a C b a C a b a ++++++=+----1111通项公式:rr n r n r ba C T -+=1注意:区分二项式系数与某一项的系数,二项式系数是),,2,1,0(n r C rn =,而系数既包括二项式系数也包括二项式中系数和符号展出部分。
2. 二项展开式系数的性质:(1)rn n r n C C -= (2)rn r n r n C C C =+---111(3)nn n n n n n C C C C 2110=++++-(4)112312202--=++++=++++n k nn n k n n n C C C C C C【新课标数学解析(控江中学)】【例1】 (1)化简:3353433n C C C C ++++(2)求⎪⎪⎭⎫⎝⎛++++∞→43435434433lim n P n P n P n P n n 【解答】:(1)原式=41335453353444+==+++=++++n n n C C C C C C C C(2)原式=()()()4124211lim 6lim 6lim 44414335343333=--+==⎪⎪⎭⎫ ⎝⎛++++∞→+∞→∞→n n n n n n C n C C C C P n n n n n 【知识点】二项展开式系数的性质 【适用场合】当堂例题 【难度系数】2【新课标数学解析(控江中学)】【例2】 在二项式12312⎪⎭⎫ ⎝⎛+x x 的展开式中,求(1)第3项;(2)二项展开式中排在最中间的项; (3)二项展开式中4x 项; (4)二项展开式中系数最大的项. 【解答】:(1)28367584x T =;(2)共有13项,中间项为第7项12759136x T =;(3)k k k k x C T 436121212--+=,4436=-k ,8=k ,所以二项展开式中4x 项497920x T =(4)设二项展开式中系数最大的项为第1+k 项,其系数设为k kC C a a C a k k kk k k k kk 213222112131212112121-==⋅=---+-+ ①当4≤k 时,k k a a >+1,所以5a 为最大;②当5≥k 时,k k a a <+1,所以5a 为最大;所以二项展开式中系数最大的项为第5项205126720x T =.【知识点】求展开式中指定项和特定项以及系数最大的项。
高二数学最新教案-巧求二项展开式中某一特定项 精品
![高二数学最新教案-巧求二项展开式中某一特定项 精品](https://img.taocdn.com/s3/m/f48acd76561252d380eb6e7a.png)
巧求二项展开式中某一特定项求二项展开式中某一特定项是《排列组合二项式定理》一章中常见题型之一.它的一般解法是应用二项展开式的通项,这已为大家所熟知.本文要介绍的是另一种解法,这种解法能使某些直接应用二项展开式的通项不易解决的问题迎刃而解.例1.求1995)(d c b a +++展开式中959008002000d c b a 项的系数.解:),())(()(1995d c b a d c b a d c b a d c b a +++++++++=+++ 一共1995个因式相乘,等号右边的积的展开式的每一项是从1995个因式的每一因式中任取一个字母的乘积.显然959008002000d c b a 项的系数应为.C C C C 959590099580017952001995例2. (1984年理科高考题)求3)21(-+xx 展开式中的常数项. 解:.)1()21(63xx x x -=-+ 展开式中第.C )1(C )1(:136)2()6(2161r r r r r rr r x x T r --+-+-=-=+项为当且仅当r =3时,T r +1为常数,所以,所求常数项为T 4=-20.例3.求62)1(x x -+展开式中的x 5项.分析:21x x -+不是完全平方式,若不用本文所给方法,则要两次应用二项式定理,若用本文所给新解法,则化繁为简.解:62)1(x x -+展开中,n m x 2+项,其中m ,n 都是自然数且m +2n 6≤,是.C C )1(266n m n m m n x +--已知m +2n =5,方程解有以下几种:1.若n =1,则m =3,得项55133660C C x x -=-;2.若n =2,则m =1,得项.60C C 552516x x =3.若n =0,则m =5,得项.6C C 550156x x =以上3种合计得项是.6660605555x x x x =++-练习题:(1992年理科高考题)求52)23(++x x 展开式中x 的系数.。
(完整word版)高中数学知识点总结---二项式定理精选全文
![(完整word版)高中数学知识点总结---二项式定理精选全文](https://img.taocdn.com/s3/m/61b501f06aec0975f46527d3240c844768eaa00c.png)
可编辑修改精选全文完整版高中数学知识点总结---二项式定理1. ⑴二项式定理:n n n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n n n n C C 最大.③系数和:1314201022-=++=+++=+++n n n n n n n n n n n C C C C C C C C附:一般来说b a by ax n ,()(+为常数)在求系数最大的项或最小的项...........时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组11111(,+-+-+⎩⎨⎧≤≤⎩⎨⎧≥≥k k k k k k k k k k T A A A A A A A A A 为或的系数或系数的绝对值)的办法来求解.⑷如何来求n c b a )(++展开式中含r q p c b a 的系数呢?其中,,,N r q p ∈且n r q p =++把n n c b a c b a ])[()(++=++视为二项式,先找出含有r C 的项r r n r n C b a C -+)(,另一方面在r n b a -+)(中含有q b 的项为q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为r q p q r n r n c b a C C -.其系数为r r q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!. 2. 近似计算的处理方法.当a 的绝对值与1相比很小且n 不大时,常用近似公式na a n +≈+1)1(,因为这时展开式的后面部分n n n n na C a C a C +++ 3322很小,可以忽略不计。
高中数学完整讲义——二项式定理1.二项展开式1求展开式中的指定项
![高中数学完整讲义——二项式定理1.二项展开式1求展开式中的指定项](https://img.taocdn.com/s3/m/2c9a6501e97101f69e3143323968011ca300f7b7.png)
求睁开式中的指定项知识内容1.二项式定理⑴二项式定理an0 n 1 n 1 2 n 2 2n nN b C n a C n a b C n a b... C n b n这个公式表示的定理叫做二项式定理.⑵二项式系数、二项式的通项0 n1n 1 2 n 2 2n nrn C n r 0, 1, 2, ..., n叫做二C n a C n a b C n a b ...C n b 叫做 a b的二项睁开式,此中的系数项式系数,式中的C n r a n r b r叫做二项睁开式的通项,用T r 1表示,即通项为睁开式的第r 1 项:T r 1C n r a n r b r.⑶二项式睁开式的各项幂指数二项式 a b nn 1 项,各项的幂指数情况是的睁开式项数为①各项的次数都等于二项式的幂指数n .②字母 a 的按降幂摆列,从第一项开始,次数由n 逐项减 1 直到零,字母b按升幂摆列,从第一项起,次数由零逐项增 1 直到 n .⑷几点注意①通项 T rr n r r是 a bn1 项,这里 r0, 1, 2,..., n .1C n a b的睁开式的第 ran1项和nr a r是有区其他,应用二项式定理时,其②二项式b的 r b a 的睁开式的第r 1项 C n r b n中的 a 和b是不可以随意互换的.③注意二项式系数(C n r)与睁开式中对应项的系数不必定相等,二项式系数必定为正,而项的系数有时可为负.④通项公式是n这个标准形式下而言的,如 a bna b的二项睁开式的通项公式是r r n r rb 当作 b 代入二项式定理)这与T r 1r n r rT r 11C n a b (只须把C n a b 是不一样的,在这里对应项的C n r r二项式系数是相等的都是,但项的系数一个是 1 C n r,一个是 C n r,可看出,二项式系数与项的系思想的挖掘能力的飞腾1数是不一样的观点.⑤设 a 1, b x ,则得公式:n...C n r x r... x n.1 x1 C n1 x C n2 x2⑥通项是 T r 1C n r a n r b r r0, 1, 2, ..., n 中含有 T r 1, a , b , n , r 五个元素,只需知道此中四个即可求第五个元素.⑦当 n 不是很大, x 比较小时能够用睁开式的前几项求(1x)n的近似值.2.二项式系数的性质⑴杨辉三角形:关于 n 是较小的正整数时,能够直接写出各项系数而不去套用二项式定理,二项式系数也能够直接用杨辉三角计算.杨辉三角有以下规律:“左、右两边斜行各数都是 1.其他各数都等于它肩上两个数字的和.”⑵二项式系数的性质:an睁开式的二项式系数是:012n,从函数的角度看r能够当作是r 为自变量的函数b C n, C n , C n , ..., C n C nf r,其定义域是: 0, 1, 2,3, ...,n.当n6时, f r 的图象为下列图:这样我们利用“杨辉三角”和n 6 时f r的图象的直观来帮助我们研究二项式系数的性质.①对称性:与首末两头“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式C n m C n n m获得.②增减性与最大值假如二项式的幂指数是偶数,中间一项的二项式系数最大;假如二项式的幂指数是奇数,中间两项的二项式系数相等而且最大.因为睁开式各项的二项式系数按序是C n01, C n1n, C n2n n 1,1 1 22思想的挖掘能力的飞腾C n3n n1n2,...,1 23C n k 1n n 12n2... n k 2 ,C n k n n 1 n 2 ... n k2n k 1,...,1 3 ....k112 3...k 1 kC n n 1 .此中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小 1 的数(如n, n1, n 2,... ),分母是乘以逐次增大的数(如1, 2, 3,).因为,一个自然数乘以一个大于 1 的数则变大,而乘以一个小于 1 的数则变小,进而当k 挨次取1,2,3,等值时,r的值转变为不递加而递减了.又因为C n与首末两头“等距离”的两项的式系数相等,因此二项式系数增大到某一项时就渐渐减小,且二项式系数最大的项必在中间.当 n 是偶数时,n1是奇数,睁开式共有 n 1 项,因此睁开式有中间一项,而且这一项的二项式系数n最大,最大为C n2.当 n 是奇数时,n 1 是偶数,睁开式共有n 1项,因此有中间两项.n 1n1这两项的二项式系数相等而且最大,最大为C n2C n2.③二项式系数的和为012r...n n.2n,即C n C n C n ...C n C n2④奇数项的二项式系数的和等于偶数项的二项式系数的和,即024135n1C n C n C n ...C n C n C n... 2.常有题型有:求睁开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.典例剖析16【例1】 2的睁开式中的第四项是.x3x y 6【例 2】的睁开式中,x3的系数等于____.y x35【例 3】 1 2 x13 x 的睁开式中 x 的系数是A .4B .2C. 2 D .4思想的挖掘能力的飞腾3a 9【例 4】若 x的睁开式中 x3的系数是84 ,则a.xa 5【例 5】 x( x R ) 睁开式中 x3的系数为10,则实数 a 等于xA .1B .1C.1D. 2 2【例 6】若 (1 2 x)n a0a1 x a2 x2L a n x n,则 a2的值是()A.84B.84C.280D.280【例 7】862项的系数是()( x2 y) 的睁开式中x yA.56 B .56C.28D.28【例8】若5a4 x4a1x a0,则 a2的值为(3x 1a5 x5)A .270B. 270 x2C. 90D. 90 x2【例 9】(1x )6 (1x)4的睁开式中x 的系数是_______(用数字作答).【例 10】在 (x2 4 x 2)5的睁开式中,x 的系数为_______(用数字作答).4思想的挖掘能力的飞腾【例 11】在 ( x24x 2)5的睁开式中,x2的系数为 _______(用数字作答).【例 12】在 ( x24x 2)5的睁开式中,x3的系数为 _______(用数字作答).294睁开式中含 x2项系数.【例 13】求 ( x3x 1) (2 x1)【例 14】在 (1 x) (1 x)2L(1 x)6的睁开式中,x2项的系数是.(用数字作答)【例 15】 ( x 1) (x 1)2( x 1)3( x 1)4(x 1)5的睁开式中x2的系数等于 ________.(用数字作答)1 )9睁开式中x9的系数是_______(用数字作答).【例 16】 (x22x【例 17】在 ( x 1)(x 1)8的睁开式中x5的系数是()思想的挖掘能力的飞腾5A .-14B. 14C. -28 D . 28【例 18】在 (x1)(x2)( x 3)( x4)( x 5) 的睁开式中,含x4的项的系数是()A .15B.85C.120 D .274【例 19】在 (1 x)5(1 x) 6(1 x)7(1 x)8(1 x)9的睁开式中,含x3 项的系数是(用数字作答)【例 20】求 (1 x x2 ) 6睁开式中x5的系数.【例 21】 (1x )6 (1x)4的睁开式中x 的系数是_______(用数字作答).【例 22】在 (x2 4 x 2)5的睁开式中,x 的系数为_______(用数字作答).【例 23】在 (x2 4 x 2)5的睁开式中,x2的系数为 _______(用数字作答).6思想的挖掘能力的飞腾【例 24】在 ( x 24x 2)5的睁开式中,3的系数为 _______(用数字作答).x【例 25】求 ( x23x 1)9 (2 x 1)4睁开式中含x2项系数.【例 26】在 (1 x) (1 x)2L(1 x)6的睁开式中,x2项的系数是.(用数字作答)【例 27】 ( x 1) (x 1)2( x 1)3( x 1)4(x 1)5的睁开式中x2的系数等于 ________.(用数字作答)【例 28】 (x21)9睁开式中 x9的系数是 _______(用数字作答).2x思想的挖掘能力的飞腾7【例 29】在 (x 1)(x 1)8的睁开式中x5的系数是()A .-14B. 14C. -28 D . 28【例 30】在 (x1)(x2)( x 3)( x 4)( x5) 的睁开式中,含x4的项的系数是()( A )15(B) 85( C)120( D )274【例 31】在 (1 x)5(1 x)6(1 x)7(1 x)8(1 x)9 的睁开式中,含x3项的系数是(用数字作答)【例 32】求 (1 x x2 ) 6睁开式中x5的系数.15【例 33】在二项式 x2的睁开式中,含x4的项的系数是()xA. 10B. 10C. 5 D . 5【例 34】 (1 2 x)3 (1 x)4的睁开式中x 的系数是______,x2的系数为______.8思想的挖掘能力的飞腾【例 35】 11(1x)4的睁开中含 x2的项的系数为()xA .4B . 6C. 10D.1264【例 36】 1x 1x 的睁开式中x的系数是()A .4B . 3C. 3 D . 4【例 37】求 1 x 3 1x 10睁开式中 x5的系数;【例 38】在二项式 x215的睁开式中,含x4的项的系数是()xA. 10B. 10C. 5D. 5【例 39】 (x 2)6的睁开式中x3 的系数是()A. 20B. 40C. 80D. 160【例 40】在 (1x)4的睁开式中,x 的系数为(用数字作答)思想的挖掘能力的飞腾9【例 41】在 (1 x)3313_____ (用数字作答)1x3 x 的睁开式中,x的系数为9【例 42】 x1的二项睁开式中含x3的项的系数为()xA .36B.84C.36D.84【例 43】若 (x216的二项睁开式中3的系数为5.(用数字作答)ax)x, 则a2【例 44】设常数 a2143的系数为3,则 a =_____.0 , (axx)睁开式中 x2【例 45】已知 (1 kx2 )6( k 是正整数)的睁开式中,x8的系数小于120,则 k.10思想的挖掘能力的飞腾【例 46】已知 ( xcos1)5 的睁开式中 x 2 的系数与 ( x 5 )4 的睁开式中 x 3 的系数相等4cos.1 10【例 47】的二项睁开式的第 6 项的系数为()xxA . 210B . 252C . 210D . 252【例 48】若 ( x 21 )6 的二项睁开式中 x 3 的系数为 5 , 则 a __________.(用数字作答)ax2【例 49】 若 ( x 2n 1 与 (mx 2 n0) 的睁开式中含 xn的系数相等,则实数 m 的取值范围m)1) (n N * ,m是()A . 1,22 , C . (,0)D . (0, )(B . [1)2 331 6【例 50】已知 a0πsin x cos x dx ,则二项式 a x睁开式中含 x 2 项的系数是.x【例 51】在 ( ax7的睁开式中,x 3 的系数是 x 2 的系数与 x 4 的系数的等差中项,若实数a 1 ,那么1) a _______ .【例 52】已知 (1 kx2 )6( k 是正整数)的睁开式中,x8的系数小于 120 ,则 k ______.【例 53】 ( x y y x)4的睁开式中x3 y3的系数为.【例 54】若 (1 x)n的睁开式中,x3的系数是x的系数的 7 倍,求n;【例 55】 ( x y)10的睁开式中,x7 y3的系数与x3 y7的系数之和等于__________ .【例 56】已知a为实数, ( x a)10睁开式中 x7的系数是15 ,则a_______.121n【例 57】二项式的睁开式中第三项系数比第二项系数大44,求第4项的系数.x x4x19【例 58】求 x的二项睁开式中含x3的项的二项式系数与系数.x1n【例 59】若 x的睁开式中前三项的系数成等差数列,则睁开式中x4项的系数为 _______.2x【例 60】令 a n为 f n (x)(1 x)n 1的睁开式中含x n 1项的系数,则数列{1} 的前 2009 项和为______.a n【例 61】在 (ax 1)7 (a 1) 的睁开式中,x3的系数是 x2的系数与 x4的系数的等差中项,求 a 的值.【例 62】已知 1 ax 52L a5 x5,则 b.1 10 x bx【例 63】在 1 x n的系数分别为 a ,b ,假如a3 ,那么 b 的值为()睁开式中, x3与 x2bA.70B.60C.55D.40【例 64】若 (ax 1)5的睁开式中x3的系数是80 ,则实数a的值是_______.142143【例 65】设常数 a0 , ax睁开式中 x3 的系数为,则 a.x21n12项的系数与含14项的系数之比为【例 66】若 2x睁开式中含 5 ,则n等于()x x xA . 4B.6C.8D.10【例 67】设 a n为 f n (x) (1 x)n 1的睁开式中含n 1项的系数,则数列1x的前 n 项和为_____a n1n【例 68】已知 x睁开式的第二项与第三项的系数比是1: 2 ,则n ________.2x【例 69】在 (1 x2 ) 20的睁开式中,假如第4r 项和第 r 2 项的二项式系数相等,则第4r 项为 ______【例 70】若在二项式 ( x 1)10的睁开式中任取一项,则该项的系数为奇数的概率是_____ .【例 71】已知 (2 x lg x lg21)n睁开式中最后三项的系数的和是方程lg( y272 y 72) 0 的正数解,它的中间项是 1042lg2,求 x 的值.【例 72】设数列 { a n } 是等比数列,3m1,公比是14的睁开式的第二项.1C2m3 m2q( x2 )aΑ4x⑴用 n,x 表示通项a n与前n项和S n;⑵若 A C1 S C2S L C n S 用n ,x 表示 An n 1n 2n n n 16。
2024年高考数学复习培优讲义专题40---二项式定理(含解析)
![2024年高考数学复习培优讲义专题40---二项式定理(含解析)](https://img.taocdn.com/s3/m/15f09e57fd4ffe4733687e21af45b307e871f9b2.png)
专题8-2 二项式定理16类常考问题汇总题型1 求展开式中的指定项 题型2 求指定项的系数 题型3 二项式系数最大的项 题型4 展开式所有项系数和 题型5 展开式二项式系数和 题型6 三项展开式问题题型7 两个二项式乘积展开式的系数问题 题型8 由项的系数或系数和确定参数 题型9 奇次项与偶次项的系数和 题型10 等式两边求导后求和 题型11 展开式系数最大的项题型12 等式两边不一致时需要换元或配凑 题型13 赋值求系数和 题型14 整除和余数问题 题型15 二项式定理与杨辉三角 题型16 二项式定理与数列1、定义一般地,对于任意正整数n ,都有:()011*()n n n r n r r n nn n n n a b C a C a b C a b C b n N −−+=+++++∈这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式.式中的r n r r n C a b −做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b −+=,其中的系数(0,1,2,,)rnC r n =⋯叫做二项式系数 2、二项式()n a b +的展开式的特点:(1)项数:共有1n +项,比二项式的次数大1;(2)二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中; (3)次数:a ,b 次数和均为n(4)对称性:二项展开式中,与首末两端“等距离"的两项的二项式系数相等,即r n rn nC C −= (5)增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2nn C 最大;当n 为奇数时,二项展开式中间两项的二项式系数1122,n n nnCC−+相等,且最大3、二项展开式的通项:1(0,1,2,,)r n r rr n T C a b r n −+==公式特点:(1)它表示二项展开式的第1r +项,该项的二项式系数是r n C ; (2)字母b 的次数和组合数的上标相同;4、二顶式系数和与所有项系数和,以及奇数项项与偶数项 例:对于()n x a +(1)二项式系数之和为2n ,即012342n n nn n n n n C C C C C C ++++++=;(2)所有展开式系数和为(1)n b +,展开式为:()011*()n n n r n r rn nn n n n x b C x C x b C x b C b n N −−+=+++++∈,可以表示为:()1*01()n n n x b a a x a x n N +=+++∈,令1x =即可得出所有项系数和(3)二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即02413512n n n n n n n C C C C C C −+++=+++=.知识点诠释:(1)二项式系数与展开式的系数的区别二项展开式中,第1r +项r n r r n C a b −的二项式系数是组合数r n C ,展开式的系数是单项式r n r r n C a b −的系数,二者不一定相等.(2)()n a b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且)p q r n ++=()[()]()n n r n r r r q n r q q r n n n r a b c a b c C a b c C C a b c −−−−++=++=+=(3)求解二项展开式中系数的最值策略①求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二项式系数的性质求解.②求展开式中项的系数的最大值,由于展开式中项的系数是离散型变量,设展开式各项的系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,因此在系数均为正值的前提下,求展开式中项的系数的最大值只需解不等式组⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1即得结果.题型1 求展开式中的指定项1.式子12(1)x −二项式定理展开中的第6项为 .2.二项式5312x x ⎛⎫− ⎪⎝⎭的展开式中的第3项为( )A .160B .80x −C .380x D .740x −3.533x x ⎛⎫+ ⎪⎝⎭的展开式中,有理项是第 项.4.6232x x −⎛⎫− ⎪⎝⎭的展开式中有理项的个数为 .题型2 求指定项的系数5.二项式5(2)x y −的展开式中,含2y 项的系数为 .6.在7(3)x −的展开式中,3x 的系数为( ) A .21− B .21C .189D .189−7.⎝ ⎛⎭⎪⎫x -2x 6的展开式中的常数项为( )A .-150 B.150 C.-240 D.240重点题型·归类精练8.在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.题型3 二项式系数最大的项9.已知二项式()21nx −的展开式中仅有第4项的二项式系数最大,则n = . 10.()32+nx 展开式中,只有第4项的二项式系数最大,则n 的值为( ) A .8B .7C .6D .511.1nx x ⎫⎪⎭的展开式中只有第六项的二项式系数最大,则第四项为 .12.在()1nx +的展开式中,若第7项系数最大,则n 的值可能等于 .题型4 展开式所有项系数和13.若32nx x 的展开式中的第4项为常数项,则展开式的各项系数的和为( )A .112B .124C .116D .13214.在54(1)(12)x x ++−的展开式中,所有项的系数和等于 ,含3x 的项的系数是 .15.若8231x a x ⎛⎫+ ⎪⎝⎭展开式中所有项的系数和为 256 ,其中a 为常数,则该展开式中4x −项的系数为16.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答)题型5 展开式二项式系数和17.(多选)已知3241nx x ⎛⎫+ ⎪ ⎪⎝⎭展开式中的第三项的系数为45,则( )A .9n =B .展开式中所有系数和为1024C .二项式系数最大的项为中间项D .含3x 的项是第7项18.在32nx x ⎛ ⎝的二项展开式中,各项的二项式系数之和为128,则展开式中7x 的系数为 (用数字填写答案);19.若31nx x ⎛⎫− ⎪⎝⎭的展开式的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中41x 的系数为 .20.(多选)在()521x −的展开式中,则( ) A .二项式系数最大的项为第3项和第4项 B .所有项的系数和为0 C .常数项为1−D .所有项的二项式系数和为6421.若2na x x ⎛⎫+ ⎪⎝⎭的二项展开式的第一项为532x ,最后一项为51x −,则下列结论正确的是( )A .5n =B .展开式的第四项的二项式系数等于40−C .展开式中不含常数项D .展开式中所有项的系数之和等于3222.若()*31N nx n x ⎛⎫−∈ ⎪⎝⎭的展开式中所有项的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为( ) A .6B .8C .28D .5623.在322nx x ⎛⎫+ ⎪⎝⎭的二项展开式中,各二项式系数之和为n a ,各项系数之和为n b ,若1056n n a b +=,则n =( )A .4B .5C .6D .7题型6 三项展开式问题24.若0m ≠,且()622312112312x x m a a x a x a x a x −+=++++⋅⋅⋅+,则m 的值为 .25.6(21)x y −+展开式中含2x y 项的系数为 . 26.()()6211x xx ++−的展开式中2x 的系数为( ) A .9B .10C .24D .2527.3212x x ⎛⎫−+ ⎪⎝⎭中常数项是 .(写出数字)28.()52x y z −+的展开式中,3x yz 的系数为 .29.已知()22121nx x x x ⎛⎫−++ ⎪⎝⎭的展开式中各项系数和为27,则4x 项的系数为( )A .3B .6C .9D .1530.若()522100121022x x a a x a x a x −+=++++,则5a = .2x 2x − 2题型7 两个二项式乘积展开式的系数问题31.()()4212x x −+的展开式中2x 的系数为 (用数字作答).32.81()y x y x ⎛⎫−+ ⎪⎝⎭的展开式中26x y 的系数为 (用数字作答).33.712(1)x x ⎛⎫+− ⎪⎝⎭的展开式中2x 的系数为( )A .7−B .7C .77D .77−34.6211(2)2x x ⎛⎫+− ⎪⎝⎭展开式中2x 的系数为( )A .270B .240C .210D .18035.6(2)(2)x y x y −+的展开式中25x y 的系数是 .(用数字填写答案)36.()3532()x x a −+的展开式中的各项系数和为243,则该展开式中4x 的系数为( )A .130−B .46C .61D .19037.将多项式26576510a x a x a x a x a +++++分解因式得25(2)(1)x x −+,则5a =( )A .16B .14C .6−D .10−题型8 由项的系数或系数和确定参数 38.设()2340123412nn n x a a x a x a x a x a x −=++++++,若0417a a +=.则n = .39.()5223x x a −+的展开式的各项系数之和为1,则该展开式中含7x 项的系数是( ) A .600−B .840−C .1080−D .2040−40.已知()12nx +的展开式中前3项的二项式系数之和为29,则3123nx x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中1x 的系数为( ) A .294−B .826−C .840−D .854−41.若()421ax x −+的展开式中5x 的系数为56−,则实数=a .42.42x x ⎛⎫ ⎪⎝⎭−的展开式中的常数项与321x a x ⎛⎫−+ ⎪⎝⎭展开式中的常数项相等,则a 的值为( )A .3−B .2−C .2D .343.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答)44.5122a x x x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为3,则该展开式中常数项为( )A .40B .160C .0D .32045.(多选)在()()5312x x a −−的展开式中,各项系数的和为1,则( )A .3a =B .展开式中的常数项为32−C .展开式中4x 的系数为160D .展开式中无理项的系数之和为242−46.已知()2nx y −的展开式中第4项与第5项的二项式系数相等,则展开式中的52x y 项的系数为( ) A .―4 B .84C .―280D .56047.(多选)已知()31nx n x *⎛⎫−∈ ⎪⎝⎭N 的展开式中含有常数项,则n 的可能取值为( )A .4B .6C .8D .10题型9 奇次项与偶次项的系数和48.若()62345601234561x a a x a x a x a x a x a x −=++++++,则246a a a ++=( ) A .64B .33C .32D .3149.若()()522701273321x x x a a x a x a x −−−=++++,则0246a a a a +++= .50.()()41a x x ++的展开式中x 的奇数次幂项的系数之和为32,则=a ( ) A .2− B .2C .3−D .3 51.若()()()()20232202301220231111x m a a x a x a x ++=+++++++,且()()2220230220221320233a a a a a a +++−+++=,则实数m 的值为 .题型10 等式两边求导后求和52.(多选)若()()()()102100121021111x a a x a x a x −=+−+−++−,x ∈R ,则( )A .01a =B .1012103a a a +++=C .2180a =D .9123102310103a a a a ++++=⨯53.(多选)已知多项式220121(12)(13),19m nn x x a a x a x a x a −−=+++⋅⋅⋅+=−,则( )A .12m n +=B .12324n a a a a +++⋅⋅⋅+=C .24a =−D .12323368n a a a na +++⋅⋅⋅+=−题型11 展开式系数最大的项54.在822x x ⎫⎪⎭的展开式中,①求二项式系数最大的项; ②系数的绝对值最大的项是第几项;55.212n x x ⎛⎫− ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则212nx x ⎛⎫− ⎪⎝⎭的展开式中系数最大的项的系数为 .题型12 等式两边不一致时需要换元或配凑56.已知()()()()21001210101111a a a x x x a x =+−+−+⋅⋅⋅+−+,则8a =________. 57.已知多项式()()()()10210012101111x a a x a x a x −=+++++++,则7a =( )A .-960B .960C .-480D .48058.(多选)已知923901239(25)(2)(2)(2)(2)x a a x a x a x a x −=+−+−+−++− ,则下列结论成立的是A .0191a a a +++=B .876012382226256a a a a a +++++=C .9012393a a a a a −+−+−= D .123923918a a a a ++++=题型13 赋值求系数和59.若()42340123421x a a x a x a x a x −=++++,1234a a a a +++=________.60.若52345012345(12)(1)(1)(1)(1)(1)x a a x a x a x a x a x −=+−+−+−+−+−,则下列结论中正确的是( )A .01a =B .480a =C .50123453a a a a a a +++++= D .()()10024135134a a a a a a −++++=61.(多选)若202123202101232021(12)(R)x a a x a x a x a x x −=+++++∈,则( )A .01220211a a a a ++++=−B .20211352021312a a a a +++++=C .20210242020132a a a a −++++= D .123202123202112222a a a a ++++=− 62.已知5250125())(1)(1)(1)(x m a a x a x a x m R +=+−+−++−∈,若225024135()()3a a a a a a ++−++=则m =_________或_________.63.已知2323122202222312a a a a a x x x x x⎛⎫−=+++++ ⎪⎝⎭,则0121222221222a a a a ++++= A .-1B .0C .1D .2广东省二模T7改 64.已知2023220230122023(1)x a a x a x a x −=++++,(1)展开式中的二项式系数为________, (2)122023a a a =+++________,(3)2023202220210122023222a a a a =++++________,(赋值)(4)122023111a a a +++=________.(对称性)题型14 整除和余数问题 65.20233被8除的余数为( )A .1B .3C .5D .766.二项式()20235x +展开式的各项系数之和被7除所得余数为 .67.108除以49所得的余数是 . 68.20242023被4除的余数为 .69.若2022n =,则1122155C 5C 5C n n n n n n n −−−++++除以7的余数是 .70.()2023678−除以17所得的余数为 .71.(多选)若()54325101051f x x x x x x =−+−+−,则( )A .()f x 可以被()31x −整除B .()1f x y ++可以被()4x y +整除C .()30f 被27除的余数为6D .()29f 的个位数为6题型15 二项式定理与杨辉三角72.如图,在由二项式系数所构成的杨辉三角形中,第10行中最大的数与第二大的数的数值之比为(用最简分数表示).73.如图,在“杨辉三角”中从第2行右边的1开始按箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,,则此数列的前30项的和为( )A .680B .679C .816D .81574.“杨辉三角”是中国古代数学文化的瑰宝之一,它揭示了二项式展开式中的组合数在三角形数表中的一种几何排列规律,如图所示,则下列关于“杨辉三角”的结论错误的是( )A .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于第9行的第8个数B .第2023行中第1012个数和第1013个数相等C .记“杨辉三角”第n 行的第i 个数为i a ,则()11123n i ni i a +−==∑D .第34行中第15个数与第16个数之比为2:3题型16 二项式定理与数列75.设数列{}n a 的前n 项和为n S ,且满足()*21N n n S a n =−∈.(1)求数列{}n a 的通项公式;(2)解关于n 的不等式:012312341C C C C C 2023nn n n n n n a a a a a +++++⋅⋅⋅+<.76.已知数列{}n a 的通项公式为121n n a −=+.求0121231C C C C nn n n n n a a a a +++++的值.77.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=−,514a =,426S =. (1)求数列{}n a 的通项公式;(2)已知011221C 3C 3C 3C 3C n n n n n n n n n n n b −−−=⋅+⋅+⋅++⋅+,求数列{}n n a b ⋅的前n 项和n T .78.(2023·黑龙江哈尔滨·哈师大附中统考三模)已知数列{}n b 的前n 项和为n S ,满足()231n n S b =−,等差数列{}n c 中1123,5,27c c c c =++=. (1)求{}n b 和{}n c 的通项公式;(2)数列{}n b 与{}n c 的共同项由小到大排列组成新数列{}n a ,求数列}{n a 的前20的积20T . 79.已知数列{}n a 前n 项和232n n n S +=,{}n b 的前n 项之积()(1)*22N n n n T n +=∈. (1)求{}n a 与{}n b 的通项公式.(2)把数列{}n a 和{}n b 的公共项由小到大排成的数列为{}n c ,求1220c c c ++⋅⋅⋅+的值. 80.(多选)已知当0x >时,111ln 11x x x ⎛⎫<+< ⎪+⎝⎭,则( ) A .188e 7>B .1111ln8237++++> C .111ln8238+++< D .018888018C C C e 888+++<81.已知()20032001C 62nnnn a −⎛⎫=⋅⋅ ⎪⎝⎭(1n =,2,⋯,95),则数列{}n a 中整数项的个数为( ) A .13 B .14C .15D .16专题8-2 二项式定理16类常考问题汇总题型1 求展开式中的指定项 题型2 求指定项的系数 题型3 二项式系数最大的项 题型4 展开式所有项系数和 题型5 展开式二项式系数和 题型6 三项展开式问题题型7 两个二项式乘积展开式的系数问题 题型8 由项的系数或系数和确定参数 题型9 奇次项与偶次项的系数和 题型10 等式两边求导后求和 题型11 展开式系数最大的项题型12 等式两边不一致时需要换元或配凑 题型13 赋值求系数和 题型14 整除和余数问题 题型15 二项式定理与杨辉三角 题型16 二项式定理与数列1、定义一般地,对于任意正整数n ,都有:()011*()n n n r n r r n nn n n n a b C a C a b C a b C b n N −−+=+++++∈这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式.式中的r n r r n C a b −做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b −+=,其中的系数(0,1,2,,)rnC r n =⋯叫做二项式系数 2、二项式()n a b +的展开式的特点:(1)项数:共有1n +项,比二项式的次数大1;(2)二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中; (3)次数:a ,b 次数和均为n(4)对称性:二项展开式中,与首末两端“等距离"的两项的二项式系数相等,即r n rn nC C −= (5)增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2nn C 最大;当n 为奇数时,二项展开式中间两项的二项式系数1122,n n nnCC−+相等,且最大3、二项展开式的通项:1(0,1,2,,)r n r rr n T C a br n −+==公式特点:(1)它表示二项展开式的第1r +项,该项的二项式系数是r n C ; (2)字母b 的次数和组合数的上标相同;4、二顶式系数和与所有项系数和,以及奇数项项与偶数项 例:对于()n x a +(1)二项式系数之和为2n ,即012342n n nn n n n n C C C C C C ++++++=;(2)所有展开式系数和为(1)n b +,展开式为:()011*()n n n r n r rn nn n n n x b C x C x b C x b C b n N −−+=+++++∈,可以表示为:()1*01()n n n x b a a x a x n N +=+++∈,令1x =即可得出所有项系数和(3)二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即02413512n n n n n n n C C C C C C −+++=+++=.知识点诠释:(1)二项式系数与展开式的系数的区别二项展开式中,第1r +项r n r r n C a b −的二项式系数是组合数r n C ,展开式的系数是单项式r n r r n C a b −的系数,二者不一定相等.(2)()n a b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且)p q r n ++=()[()]()n n r n r r r qn r q q r n n n r a b c a b c C a b c C C a b c −−−−++=++=+=(3)求解二项展开式中系数的最值策略①求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二项式系数的性质求解.②求展开式中项的系数的最大值,由于展开式中项的系数是离散型变量,设展开式各项的系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,因此在系数均为正值的前提下,求展开式中项的系数的最大值只需解不等式组⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1即得结果.题型1 求展开式中的指定项1.式子12(1)x −二项式定理展开中的第6项为 . 【答案】7792x −【解析】由()121x −,所以二项展开式的通项公式()121211C rr rr T x −+=⋅−⋅,012r ≤≤,r ∈Z , 令=5r ,可得展开式的第六项为()5775121792C x x ⋅−⋅=−. 2.二项式5312x x ⎛⎫− ⎪⎝⎭的展开式中的第3项为( )A .160B .80x −C .380x D .740x −【解析】【答案】C 【分析】根据二项式展开式公式即可求解. 【详解】因为()51531C 2kkkk T x x −+⎛⎫=⋅− ⎪⎝⎭,所以()2323533180C 2T x x x ⎛⎫=⋅−=⎪⎝⎭,故C 项正确. 3.533x x ⎛⎫+ ⎪⎝⎭的展开式中,有理项是第 项.【解析】【答案】3 【分析】求出二项式展开式的通项公式,根据有理项的含义,确定参数的值,即可得答案.【详解】533x x ⎛⎫+ ⎪⎝⎭的展开式的通项511051362155C 3C 3kkkk k k k T x x x−−−+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⋅, 其中0,1,2,3,4,5k =, 当1k T +为有理项时,1056k−为整数,结合0,1,2,3,4,5k =, 所以2k =,即有理项是展开式中的第3项4.6232x x −⎛⎫− ⎪⎝⎭的展开式中有理项的个数为 .重点题型·归类精练【答案】3【解析】展开式的通项为()2566633166C (2)(1)2C 0,1,2,,6rrr r r r rr T x x x r −−−−+⎛⎫=−=−= ⎪⎝⎭,要为有理项,则563r −为整数,故r 可取03,6,,共有3项有理项.题型2 求指定项的系数5.二项式5(2)x y −的展开式中,含2y 项的系数为 . 【答案】40【解析】二项展开式的通项为515C (2)r rr r T x y −+=−,令2r =,则2323235C (2)40T x y x y =−=.故答案为:40.6.在7(3)x −的展开式中,3x 的系数为( ) A .21− B .21 C .189 D .189−【解析】【答案】B 【分析】利用二项展开式的通项公式可得解.【详解】由二项展开式的通项公式得11772277C 3()C 3(1)r r r r r r r x x −−−=−,令132r =得6r =,所以3x 的系数为667C 3(1)21−=.7.⎝ ⎛⎭⎪⎫x -2x 6的展开式中的常数项为( )A .-150B.150C.-240D.240【答案】D【解析】 (1)⎝⎛⎭⎫x -2x 6的二项展开式的通项为T k +1=C k 6x 6-k ·⎝⎛⎭⎫-2x k =C k 6x 6-k ·(-2)k ·x -k2=(-2)k C k 6x 6-32k .令6-32k =0,解得k =4,故所求的常数项为T 5=(-2)4·C 46=240.8.在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.【答案】162 5【解析】该二项展开式的第k +1项为T k +1=C k 9(2)9-k x k ,当k =0时,第1项为常数项,所以常数项为(2)9=162;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5. 【答案】162 5题型3 二项式系数最大的项9.已知二项式()21nx −的展开式中仅有第4项的二项式系数最大,则n = . 【答案】6【解析】因为二项式()21nx −的展开式中仅有第4项的二项式系数最大,根据二项展开式的性质,可得中间项的二项式系数最大,所以展开式一共有7项, 所以n 为偶数且32n=,可得6n =. 10.()32+nx 展开式中,只有第4项的二项式系数最大,则n 的值为( ) A .8B .7C .6D .5【解析】【答案】C【分析】根据二项式系数的性质知中间一项第4项二项式系数最大即可得解 【详解】因为只有一项二项式系数最大,所以n 为偶数,故142n+=,得6n =.故选:C11.1nx x ⎫⎪⎭的展开式中只有第六项的二项式系数最大,则第四项为 .【答案】12120x【解析】因为展开式中只有第六项的二项式系数最大,即162n+=,所以10n =,所以317324101C 120T x x x ⎛⎫== ⎪⎝⎭.12.在()1nx +的展开式中,若第7项系数最大,则n 的值可能等于 . 【答案】11、12、13【解析】在()1nx +的展开式中,每项的系数等于其二项式系数, ①当只有第7项系数最大时,即只有6C n 最大时,则n =12;②当第6项和第7项的系数相等且最大时,即56n n C C =最大时,则n =11;③当第7项和第8项的系数相等且最大时,即67C C n n =最大时则n =13,综合①②③可得n 的值可能等于11、12、13, 故答案为:11、12、13.题型4 展开式所有项系数和13.若32nx x 的展开式中的第4项为常数项,则展开式的各项系数的和为( )A .112B .124C .116D .132【答案】D【解析】32nx x 的第4项为:())3353133223111C C 22n n n nT x x x −−−+⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭. 因其为常数项,则5n =.令1x =,可得展开式的各项系数的和为5111232⎛⎫−=⎪⎝⎭. 14.在54(1)(12)x x ++−的展开式中,所有项的系数和等于 ,含3x 的项的系数是 . 【分析】用赋值法,令1x =求所有项的系数和;分析含3x 的项的构成,直接求得.【详解】解:423450123455(1)(12)a a x a x a x a x a x x x =+++++++−所以令1x =代入得:401235554(11)(12)2133a a a a a a =++++−+++=+=; 而333333354(2)22a C x C x x x =+−=−故答案为:33;22−.15.若8231x a x ⎛⎫+ ⎪⎝⎭展开式中所有项的系数和为 256 ,其中a 为常数,则该展开式中4x −项的系数为【分析】由1x =结合所有项的系数和得出1a =,再由二项展开式的通项求解即可.【详解】因为 8231x a x ⎫⎪⎭展开式中所有项的系数和为 256 ,所以)81256a =,解得1a =,由题意得 82311x x ⎛⎫+ ⎪⎝⎭展开式中4x −项的系数与8311x ⎛⎫+ ⎪⎝⎭展开式中的6x −项的系数相同.8311x ⎛⎫+ ⎪⎝⎭展开式的通项()318C 0,1,2,,8r r r T x r −+==,令36r −=−,得2r =,所以展开式中 4x −项的系数为28C 28=. 16.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答) 【分析】令1x =,则()()3112a +−即为展开式中所有项的系数和,可计算出a 的值,结合二项展开式的通项公式计算即可得.【详解】令1x =,则()()31120a +−=,即1a =−,则对31x x ⎛⎫−+ ⎪⎝⎭,有()()33321331C C 1kk k k kk k T x x x −−−+⎛⎫=−=− ⎪⎝⎭, 令321k −=,即1k =,有()21123C 13T x x =−=,即有223T x x ⨯=, 令322k −=,则12k =,舍去; 故展开式中2x 的系数为3.题型5 展开式二项式系数和17.(多选)已知3241nx x ⎛⎫+ ⎪ ⎪⎝⎭展开式中的第三项的系数为45,则( ) A .9n =B .展开式中所有系数和为1024C .二项式系数最大的项为中间项D .含3x 的项是第7项【解析】【答案】BCD 【分析】由二项式定理相关知识逐项判断即可.【详解】3241n x x 展开式的第三项为:2422232232223412431C C C n n n n nnT x xx xx −−−==⋅=,所以第三项的系数为:2C 45n =,所以10n =,故A 错误;所以103241x x ,所以令1x =得展开式中所有系数和为1021024=,故B 正确; 展开式总共有11项,则二项式系数最大的项为中间项,故C 正确;通项公式为(102101130323412411010101C CC rr r r rr rr r T x xxxx −−−+==⋅=,令1130312r −=,解得6r =,所以含3x 的项是第7项.故D 正确; 故选:BCD.18.在32nx x ⎛ ⎝的二项展开式中,各项的二项式系数之和为128,则展开式中7x 的系数为 (用数字填写答案); 【答案】280【解析】依题意可得2128n =,则7n =,所以732x x ⎛ ⎝展开式的通项为()()()7217732177C 2C 21rr r r r r r r T x xx −−−+⎛==− ⎝(07r ≤≤且N r ∈), 令72172r −=,解得4r =,所以()4437757C 21280T x x =⨯⨯−=,所以展开式中7x 的系数为280.19.若31nx x ⎛⎫− ⎪⎝⎭的展开式的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中41x 的系数为 .【答案】56 【分析】通过二项式系数和求出4n =,然后求出831x x ⎫⎪⎭展开式的通项公式,最后求出指定项的系数即可.【详解】由31nx x ⎫⎪⎭的展开式的二项式系数之和为16,得216n =,所以4n =,则831x x ⎫⎪⎭的展开式的通项公式为848331881C C rr rrrr T x x x −−+⎛⎫== ⎪⎝⎭,令8443r −=−,解得=5r ,故231nx x ⎫⎪⎭的展开式中41x 的系数为58C 56=. 故答案为:5620.(多选)在()521x −的展开式中,则( ) A .二项式系数最大的项为第3项和第4项 B .所有项的系数和为0 C .常数项为1−D .所有项的二项式系数和为64 【分析】根据二项式系数015555C ,C ,,C 的性质即可判断AD ;根据项的系数之和为(1)f 即可判断B ;根据二项式展开式的通项公式即可判断C.【详解】A :所有项的二项式系数为015555C ,C ,,C ,最大的为25C 和35C ,对应的是第3项和第4项,故A 正确;B :设5()(21)f x x =−,所有项的系数为015,,,a a a , 所以5015(1)(211)1a a a f +++==⨯−=,故B 错误;C :二项式展开式的通项公式为55C (2)(1)(0,1,2,3,4,5)rr r x r −−=, 令50r −=,解得=5r ,所以常数项为5055C 2(1)1⋅⋅−=−,故C 正确; D :所有项的系数之和为0155555C +C C 232++==,所以D 错误.故选:AC21.若2na x x ⎛⎫+ ⎪⎝⎭的二项展开式的第一项为532x ,最后一项为51x −,则下列结论正确的是( )A .5n =B .展开式的第四项的二项式系数等于40−C .展开式中不含常数项D .展开式中所有项的系数之和等于32【解析】【答案】AC 【分析】通过()551C 232,C nnnnna x x x x ⎛⎫==− ⎪⎝⎭计算可判断A ;直接求第四项的二项式系数可判断B ;求出展开式的通项,观察后可判断C ;令1x =,计算可判断D. 【详解】选项A :依题意有()0551C 232,C nnnnna x x x x ⎛⎫==− ⎪⎝⎭,解得5,1n a ==−,所以A 正确;选项B :展开式的第四项的二项式系数应为35C 10=,故B 错误;选项C :512x x ⎛⎫− ⎪⎝⎭的展开式的通项()()55521551C 21C 2rr r r r r rr T x x x −−−+⎛⎫=⋅−=− ⎪⎝⎭, 由于r ∈N ,所以520r −≠,因此展开式中不含常数项,故C 正确;选项D :令1x =,可得展开式中所有项的系数之和等于512111⎛⎫⨯−= ⎪⎝⎭,故D 错误.故选:AC.22.若()*31N nx n x ⎛⎫−∈ ⎪⎝⎭的展开式中所有项的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为( ) A .6B .8C .28D .56【解析】【答案】C 【分析】根据31nx x ⎫⎪⎭的展开式中所有项的二项式系数之和求出n 的值,从而写出231nx x ⎫⎪⎭的展开式的通项公式,再令x 的指数为0,即可求解常数项.【详解】由()*31N nx n x ⎫∈⎪⎭的展开式中所有项的二项式系数之和为16,得216n =,所以4n =,则二项式831x x ⎫⎪⎭的展开式的通项公式为(848331881C C rr rrrr T x x x −−+⎛⎫== ⎪⎝⎭(08r ≤≤且N r ∈),令8403r−=,解得2r =, 所以238C 28T ==,故831x x ⎫⎪⎭的展开式中的常数项为2823.在322nx x ⎛⎫+ ⎪⎝⎭的二项展开式中,各二项式系数之和为n a ,各项系数之和为n b ,若1056n n a b +=,则n =( ) A .4B .5C .6D .7【解析】【答案】B 【分析】依题意可得2n n a =,令1x =得到4n n b ,从而求出n .【详解】由32nx x ⎛⎫+ ⎪⎝⎭,令1x =可得各项系数之和为4n n b ,又各二项式系数之和为2n n a =,因为1056n n a b +=,则421056n n +=,解得232n =或233n =−(舍去), 所以5n =.题型6 三项展开式问题24.若0m ≠,且()622312112312x x m a a x a x a x a x −+=++++⋅⋅⋅+,则m 的值为 .【答案】6−【解析】由题意得()62x x m −+的展开式中的常数项与一次项系数相等,则()6156C 1m m =−,解得6m =−或0(舍去).25.6(21)x y −+展开式中含2x y 项的系数为 . 【解析】6(21)x y −+展开式中,含2x y 的项是:()221264C C 2120x y x y −=−.故答案为:120−26.()()6211x x x ++−的展开式中2x 的系数为( )A .9B .10C .24D .25【答案】B 解析:()()()()()66662211111x xx x x x x x ++−=−+−+−,所以2x 的系数为()()22106661110C C C −+−+=;故选B27.3212x x ⎛⎫−+ ⎪⎝⎭中常数项是 .(写出数字)【答案】11【解析】3212x x ⎛⎫−+ ⎪⎝⎭的展开式中当2x ,1x −,2对应的次数分别为0,0,3和1,2,0时即为常数,所以常数项为212331C 23811x x ⎛⎫−+=+= ⎪⎝⎭.28.()52x y z −+的展开式中,3x yz 的系数为 . 【答案】40−【解析】()52x y z −+的展开式通项为()515C 2rr rr A x y z −+=−+, ()2ry z −+的展开式通项为()()1C 2C 2r kr kkk k r k k k rr B y z y z −−−+=⋅−=⋅−,其中05k r ≤≤≤,k 、N r ∈,所以,()52x y z −+的展开式通项为()51,15C C 2r kr kr r k k r k r T x y z −−−++=−,由题意可得5311r r k k −=⎧⎪−=⎨⎪=⎩,解得21r k =⎧⎨=⎩,因此,()52x y z −+的展开式中3x yz 的系数为()2152C C 240⨯−=−.29.已知()22121nx x x x ⎛⎫−++ ⎪⎝⎭的展开式中各项系数和为27,则4x 项的系数为( )A .3B .6C .9D .15【分析】先由展开式中各项系数和为27,求出3n =,直接求出展开式,得到4x 项的系数.【详解】由题意可得:令x =1可得()12111271n ⎛⎫−++= ⎪⎝⎭,解得:3n =.所以原式为()()()333222221121211x x x x x x x x x x ⎛⎫−++=⨯++−++ ⎪⎝⎭.要求4x 项,只需求出()321x x ++展开式中2x 和5x 项.()()()()()()()()()312332120212223233331C 1C 1C 1C 1x x x x x x x x x x ++=+++++++()()()3224613131x x x x x x =++++++ 65432367631x x x x x x =++++++所以()322121x x x x ⎛⎫−++ ⎪⎝⎭的展开式中,4x 项为45411239x x x x −⨯=.30.若()522100121022x x a a x a x a x −+=++++,则5a = .【解析】【答案】592− 【分析】由组合数以及分类加法和分步乘法计数原理即可得解.【详解】()5222x x −+表示5个因数()222x x −+的乘积.而5a 为展开式中5x 的系数,设这5个因数()222x x −+中分别取2x 、2x −、2这三项分别取,,i j k 个,所以5i j k ++=,若要得到含5x 的项,则由计数原理知,,i j k的取值情况如下表:2x 2x − 2i 个j 个k 个 0 5 0 1 3 1 212由上表可知)()()()()531132143315554532222232320240592C C C C C a −−=−+⋅−⋅+⋅−⋅=−+−+−=−.故答案为:592−.题型7 两个二项式乘积展开式的系数问题31.()()4212x x −+的展开式中2x 的系数为 (用数字作答).【答案】8−【解析】由题意得:()42x +展开式的通项为:414C 2rrr r T x−+=,当42r −=时,即:2r =,得:222234C 224T x x ==, 当40r −=时;即:4r =,得:40454C 216T x ==,所以得:()()4212x x −+展开式中含2x 项为:22216248x x x −=−,所以2x 的系数为:8−.32.81()y x y x ⎛⎫−+ ⎪⎝⎭的展开式中26x y 的系数为 (用数字作答).【答案】-28【分析】()81y x y x ⎛⎫−+ ⎪⎝⎭可化为()()88y x y x y x +−+,结合二项式展开式的通项公式求解.【详解】因为()()()8881=y y x y x y x y x x ⎛⎫−++−+ ⎪⎝⎭,所以()81y x y x ⎛⎫−+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x −=−,()81y x y x ⎛⎫−+ ⎪⎝⎭的展开式中26x y 的系数为-28故答案为:-2833.712(1)x x ⎛⎫+− ⎪⎝⎭的展开式中2x 的系数为( )A .7−B .7C .77D .77−【答案】B【解析】()71x −的展开式通项为()()177C 1C rrr rr r T x x +=⋅−=−⋅,故()7121x x ⎛⎫+− ⎪⎝⎭的展开式中2x 的系数为()()23237721C 1C 7⨯−+−= 34.6211(2)2x x ⎛⎫+− ⎪⎝⎭展开式中2x 的系数为( )A .270B .240C .210D .180【解析】【答案】A 【分析】由题意可得所求的展开式中2x 的系数为6(2)x −展开式二次项系数与四次项系数的一半的和.【详解】6(2)x −展开式的通项公式为()61612C rr r rr T x −+=−, 则原展开式中2x 的系数为()()24422466112C 12C 2702−⨯+⨯−⨯=.35.6(2)(2)x y x y −+的展开式中25x y 的系数是 .(用数字填写答案) 【答案】108−【解析】666(2)(2)(2)22()x y x y x x y y y x −++=−+,所以展开式中含25x y 的项有556C 2x xy 和()24462C 2y x y −, 所以25x y 的系数为542662C 2C 212120108−⨯=−=−,故答案为:108−36.()3532()x x a −+的展开式中的各项系数和为243,则该展开式中4x 的系数为( )A .130−B .46C .61D .190【答案】A【解析】令1x =,则5(1)243a +=,解得2a =.所以()3532(2)x x −+展开式中4x 的系数是:414553C 2(2)C 2130⨯⨯+−⨯⨯=−. 37.将多项式26576510a x a x a x a x a +++++分解因式得25(2)(1)x x −+,则5a =( )A .16B .14C .6−D .10−【解析】【答案】C 【分析】将()51x +展开,观察345,x x x , 的系数,对应()22x −的展开相乘,相加得到答案.【详解】解析:由题意,()()()()255221441x x x x x −+=−++,52232551a x x C x =⋅⋅14541x C x −⋅⋅055546C x x +⨯=−,所以56a =−,故选:C.题型8 由项的系数或系数和确定参数 38.设()2340123412nn n x a a x a x a x a x a x −=++++++,若0417a a +=.则n = .【答案】4【解析】()12nx −展开式的通项公式为:()C 2rr n x −,分别令0,4r r ==,01a ∴=,4416C n a =, 则0417a a +=,即4116C 17n +=,解得:4n =.故答案为:4.39.()5223x x a −+的展开式的各项系数之和为1,则该展开式中含7x 项的系数是( ) A .600− B .840− C .1080− D .2040−【答案】D【分析】利用赋值法令1x =由各项系数之和为1可求得2a =,由通项可得展开式中含7x 项的系数是2040−. 【详解】因为()5223x x a −+的展开式的各项系数之和为1, 令1x =,得5(1)1a −+=,解得2a =,所以()52232x x −+的展开式中含7x 项为()()()()32332122375253C 2C 32C 2C 32040x x x x x −⨯+−=−,所以该展开式中含7x 项的系数是2040−.40.已知()12nx +的展开式中前3项的二项式系数之和为29,则3123nx x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中1x 的系数为( ) A .294− B .826− C .840− D .854−【答案】D【分析】第一步:根据已知求得n ,第二步:分类求展开式中1x的系数,第三步:求和即可得解. 【详解】由题知,121C C 29n n ++=,解得7n =或8n =−(舍去).则72x x ⎫⎪⎭的展开式的通项()73721772C 2C rr r r rr r T x x x −−+⎛⎫=−=− ⎪⎝⎭,当313x +中取3时,72x x ⎫⎪⎭的展开式中取含1x 的项,令7312−=−r ,解得3r =,()37332C 840⨯−=−; 当313x +中取31x 时,72x x ⎫⎪⎭的展开式中取含2x 的项,令7322r −=,解得1r =,()172C 14−=−. 所以3123nx x x ⎛⎫+ ⎪⎝⎭的展开式中1x 的系数为84014854−−=−. 故选:D .41.若()421ax x −+的展开式中5x 的系数为56−,则实数=a .【答案】2【解析】()()442211ax x x ax ⎡⎤−+=+−⎣⎦,所以()421x ax ⎡⎤+−⎣⎦的展开式的通项为:()()()()2221444C C C C C rr tttrr t r t r tr r r T x ax x ax a x−−+=−=−=−, 其中0,1,2,3,4;0,1,r t r ==,令25r t −=,所以1,3t r =⎧⎨=⎩或34t r =⎧⎨=⎩, 当13t r =⎧⎨=⎩时,5x 的系数为()3143C C 12a a ⋅⋅−=−, 当34t r =⎧⎨=⎩时,5x 的系数为()343344C C 4a a ⋅⋅−=−, 因为5x 的系数为56−,所以312456a a −−=−,即33140a a +−=,即()()22270a a a −++=,所以2a =.42.42x x ⎛⎫⎪⎝⎭−的展开式中的常数项与321x a x ⎛⎫−+ ⎪⎝⎭展开式中的常数项相等,则a 的值为( )A .3−B .2−C .2D .3【解析】【答案】D【分析】计算出两个二项式的常数项,从而得到关于a 的方程,解出即可. 【详解】42x x ⎛⎫ ⎪⎝⎭−的展开式中的常数项为22424C ()24x x −=,321x a x ⎛⎫−+ ⎪⎝⎭展开式中的常数项032233321C C 3a x a x ⎛⎫+−=− ⎪⎝⎭, 所以3324a −=,即3a =43.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答) 【答案】3− 【分析】令1x =,则()()3112a +−即为展开式中所有项的系数和,可计算出a 的值,结合二项展开式的通项公式计算即可得.【详解】令1x =,则()()31120a +−=,即1a =−,则对31x x ⎛⎫−+ ⎪⎝⎭,有()()33321331C C 1kk k k kk k T x xx −−−+⎛⎫=−=− ⎪⎝⎭, 令321k −=,即1k =,有()21123C 13T x x =−=−,即有223T x x ⨯=−,令322k −=,则12k =,舍去; 故展开式中2x 的系数为3−.44.5122a x x x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为3,则该展开式中常数项为( )A .40B .160C .0D .320【解析】【答案】C 【分析】取1x =代入计算得到1a =,确定512x x ⎛⎫− ⎪⎝⎭展开式的通项,分别取3r =和2r =计算得到答案.【详解】5122a x x x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为3,令1x =,可知23a +=,1a =,故5551111221222x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+−=−+− ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,512x x ⎛⎫− ⎪⎝⎭展开式的通项为()()55521551C 2C 21rr r r r rr r T x xx −−−+⎛⎫=⋅⋅−=⋅⋅− ⎪⎝⎭, 分别取3r =和2r =得到常数项为:()()32353252552C 21C 210−−⨯⋅⋅−+⋅⋅−= 45.(多选)在()()5312x x a −−的展开式中,各项系数的和为1,则( )A .3a =B .展开式中的常数项为32−C .展开式中4x 的系数为160D .展开式中无理项的系数之和为242−【解析】【答案】BC【分析】先根据各项系数和结赋值法得2a =判断A ,然后结合二项式展开式的通项公式求解常数项、含4x 的系数及无理项系数之和判断BCD. 【详解】根据题意令1x =,得())5312x x a −的展开式中各项系数和为()511a −−=,则2a =,A 错误;则())()()553312122x x ax x −=−⋅,又)52x 的展开式的通项为()52152C k k k k T x −+=−,0,1,,5k =,所以展开式中的常数项为()55512C 32⨯−=−,B 正确;含4x 的项为()3334522C 160x x x −=⋅−,其系数为160,C 正确;展开式中无理项的系数之和为()()()()()024*********C 2C 2C 14080121⎡⎤−−+−+−=−++=−⎣⎦,D 错误. 故选:BC.46.已知()2nx y −的展开式中第4项与第5项的二项式系数相等,则展开式中的52x y 项的系数为( )。
第02讲二项式定理讲义-2024届高三数学一轮复习
![第02讲二项式定理讲义-2024届高三数学一轮复习](https://img.taocdn.com/s3/m/99a241e50129bd64783e0912a216147917117ee6.png)
第02讲 二项式定理【必备知识】1.二项式定理二项式定理:(a +b )n =C 0n a n b 0+C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式的通项公式:T r +1=C r n a n -r b r ,它表示第r +1项 2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n (2)增减性:二项式系数C k n ,当k <n +12(n ∈N *)时,是递增的,当k >n +12(n ∈N *)时,是递减的 (3)最大值:当n 为偶数时,中间的一项2n n C 取得最大值当n 为奇数时,中间的两项21-n n C 和21+n nC 取得最大值;(4)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n特别提醒:1.二项式定理中,通项公式T k +1=C k n an -k b k 是展开式的第k +1项,不是第k 项. 2.(1)二项式系数与展开式中项的系数是两个不同的概念,在T k +1=C k n a n -k b k 中,C k n 是该项的二项式系数,该项的系数还与a ,b 有关.(2)二项式系数的最值和增减性与指数n 的奇偶性有关.当n 为偶数时,中间一项的二项式系数最大;当n 为奇数时,中间两项的二项式系数相等,且同时取得最大值.考点05二项展开式中的项【常用方法】求二项展开式中的特定项或其系数,一般是写出通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出r ,代回通项公式即可.【典例分析05】角度01 求二项展开式中的特定项或特定项的系数1、62)2(x x +的展开式中常数项是____(用数字作答).2、(1+2x 2)(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .243、(x 2+x +y )5的展开式中,x 5y 2的系数为( )A .10B .20C .30D .60角度02 二项展开式中的含参问题4、若52)1(xax +的展开式中的常数项为-52,则实数a 的值为__ __.5、5)12(x x -的展开式中x 3的系数为-80,则a =__ __.6、已知二项式n xx )12(-的展开式中第2项与第3项的二项式系数之比是2∶5,则x 3的系数为__ __. 考点06 二项展开式中的系数和问题【常用方法】赋值法的应用(1)形如(ax +b )n 、(ax 2+bx +c )m (a 、b 、c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2, 偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. *又f ′(x )=a 1+2a 2x +3a 3x 2+…+na n x n -1, 所以a 1+2a 2+3a 3+…+na n =f ′(1).【典例分析06】1、在n xx )3(+的展开式中,各项系数和与二项式系数和之比为64,则x 3的系数为( ) A .15 B .45 C .135 D .4052、若(1-2x )2 021=a 0+a 1x +a 2x 2+a 3x 3+…+a 2 021x 2 021(x ∈R ),则下列结论中正确的个数为( )①a 0=1 ②a 1+a 3+a 5+…+a 2 021=32 021+12③a 0+a 2+a 4+…+a 2 020=32 021-12 ④a 12+a 222+a 323+…+a 2 02122 021=-1 A .1 B .2 C .3 D .4考点07 二项展开式中的系数最值问题【常用方法】 二项式系数最大项的确定方法:当n 为偶数时,展开式中第n 2+1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,展开式中第n +12 项和第n +32 项的二项式系数最大,最大值为21-n n C 或21+n n C .【典例分析07】1、在(1-2x )n 的展开式中,偶数项的二项式系数之和为128,则展开式二项式系数最大的项为________.2、已知n x x )21( 的展开式中前三项的系数成等差数列.①求n 的值;②求展开式中系数最大的项.。
数学一轮复习讲义第10章§10-3二项式定理2023年新高考
![数学一轮复习讲义第10章§10-3二项式定理2023年新高考](https://img.taocdn.com/s3/m/5c7bb53f640e52ea551810a6f524ccbff121ca0d.png)
§10.3 二项式定理考试要求 能用多项式运算法则和计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题.知识梳理1.二项式定理二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n b n (n ∈N *)二项展开式的通项T k +1=C k n a n -k b k ,它表示展开式的第k +1项二项式系数C k n(k =0,1,…,n )2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.(2)增减性与最大值:当n 是偶数时,中间的一项2C n n 取得最大值;当n 是奇数时,中间的两项12C n n -与12C n n +相等,且同时取得最大值.(3)各二项式系数的和:(a +b )n 的展开式的各二项式系数的和等于2n .常用结论1.两个常用公式(1)C 0n +C 1n +C 2n +…+C n =2n .(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.2.二项展开式的三个重要特征(1)字母a 的指数按降幂排列由n 到0.(2)字母b 的指数按升幂排列由0到n .(3)每一项字母a 的指数与字母b 的指数的和等于n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k na n -kb k 是(a +b )n 的展开式的第k 项.( × )(2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ )(3)二项展开式中,系数最大的项为中间一项或中间两项.( × )(4)(a +b )n 的展开式中,某项的系数与该项的二项式系数不同.( × )教材改编题1.(x -1)10的展开式的第6项的系数是( )A .C 610B .-C 610C .C 510D .-C 510答案 D解析 T 6=C 510x 5(-1)5,所以第6项的系数是-C 510.2.(多选)已知(a +b )n 的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10答案 ABC解析 ∵(a +b )n 的展开式中第5项的二项式系数C 4n 最大,∴n =7或n =8或n =9.3.在(1-2x )10的展开式中,各项系数的和是________.答案 1解析 令x =1可得各项系数的和为(1-2)10=1.题型一 通项公式的应用命题点1 形如(a +b )n (n ∈N *)的展开式的特定项例1 (1)(2022·烟台模拟)(1-2x )8展开式中x 项的系数为( )A .28B .-28C .112D .-112答案 C解析 (1-2x )8展开式的通项公式为T k +1=C k 8(-2x )k =28(-2)C k k kx .要求x 项的系数,只需k 2=1,解得k =2,所以x 项系数为(-2)2C 28=4×8×72×1=112.(2)(2022·德州模拟)若n ∈Z ,且3≤n ≤6,则(x +1x 3)n 的展开式中的常数项为______.答案 4解析 (x +1x 3)n 的通项公式为T k +1=C k n x n -k (1x 3)k =C k n x n -4k ,因为3≤n ≤6,令n -4k =0,解得n =4,k =1,所以(x +1x 3)n 的展开式中的常数项为4.命题点2 形如(a +b )m (c +d )n (m ,n ∈N *)的展开式问题例2 (1)(2022·泰安模拟)(x 3-2)(x +1x )6的展开式中x 6的系数为( )A .6 B .10 C .13 D .15答案 C解析 由于(x +1x )6的展开式的通项为T k +1=36-26C k kx ,令6-3k 2=3,求得k =2;令6-3k 2=6,求得k =0,故(x 3-2)(x +1x )6的展开式中x 6的系数为C 26-2C 06=15-2=13.(2)(2022·合肥模拟)二项式(2-x a )(1-2x )4的展开式中x 3项的系数是-70,则实数a 的值为( )A .-2B .2C .-4D .4答案 D解析 因为(2-x a )(1-2x )4=2×(1-2x )4-x a×(1-2x )4,(1-2x )4的展开式的通项公式为T k +1=C k 4(-2x )k =(-2)k C k 4x k ,k =0,1,2,3,4,所以2×(1-2x )4展开式中x 3项的系数是2×(-2)3C 34=-64,x a×(1-2x )4展开式中x 3项的系数是1a ×(-2)2C 24=24a ,所以-64-24a=-70,解得a =4.教师备选1.(2022·菏泽模拟)已知正整数n ≥7,若(x -1x )(1-x )n 的展开式中不含x 5的项,则n 的值为( )A .7B .8C .9D .10答案 D 解析 (1-x )n 的二项展开式中第k +1项为T k +1=C k n(-1)k x k ,又因为(x -1x )(1-x )n =x (1-x )n -1x(1-x )n 的展开式不含x 5的项,所以x C 4n (-1)4x 4-1xC 6n (-1)6x 6=0,C 4n x 5-C 6n x 5=0,即C 4n =C 6n ,所以n =10.2.(2022·烟台模拟)在(x 2+2x +y )5的展开式中,x 5y 2的系数为( )A .60B .30C .15D .12答案 A解析 由(x 2+2x +y )5=[(x 2+2x )+y ]5,由通项公式可得T k +1=C k 5(x 2+2x )5-k y k ,∵要求x 5y 2的系数,故k =2,此时(x 2+2x )3=x 3·(x +2)3,其对应x 5的系数为C 1321=6.∴x 5y 2的系数为C 25×6=60.思维升华 (1)求二项展开式中的特定项,一般是化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.跟踪训练1 (1)(2021·北京)(x 3-1x )4的展开式中常数项为________.答案 -4解析 (x 3-1x )4的展开式的通项T k +1=C k 4(x 3)4-k ·(-1x )k =(-1)k C k 4x 12-4k ,令k =3得常数项为T 4=(-1)3C 34=-4.(2)(2022·攀枝花模拟)(1-1x 2)(1+2x )5的展开式中,含x 3的项的系数是( )A .-112B .-48C .48D .112答案 C解析 由(1-1x 2)(1+2x )5=(1+2x )5-1x 2(1+2x )5,(1+2x )5展开式的通项公式为T k +1=C k 5(2x )k =2k C k 5x k ,其中k =0,1,2,3,4,5,(1+2x )5展开式中含x 3项的系数为23C 35=80,1x 2(1+2x )5展开式中含x 3项的系数为25C 5=32,所以(1-1x 2)(1+2x )5的展开式中,含x 3的项的系数为80-32=48.题型二 二项式系数与项的系数的问题命题点1 二项式系数和与系数和例3 (1)(多选)(2022·十堰调研)在(3x -1x )n 的展开式中,各项系数和与二项式系数和之和为128,则( )A .二项式系数和为64B .各项系数和为64C .常数项为-135D .常数项为135答案 ABD解析 在(3x -1x )n 的展开式中,各项系数和与二项式系数和之和为128,令x =1,得各项系数和为2n ,二项式系数和为2n ,则2×2n =128,得n =6,即二项式系数和为64,各项系数和也为64,故A ,B 正确;(3x -1x )6展开式的通项为T k +1=C k 6·(3x )6-k ·(-1x)k =36-626C (-1)3k kk k x -⋅⋅,令6-32k =0,得k =4,因此展开式中的常数项为T 5=C 46·(-1)4·32=135.故D 正确.(2)已知多项式(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,则a 1=______,a 2+a 3+a 4+a 5+a 6=______.答案 1 23解析 根据题意,令x =1,则(1-2)+(1+1+1)3=a 0+a 1+a 2+…+a 6=26,令x =0,a 0=1+1=2,由于(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,a 1为展开式中x 项的系数,考虑一次项系数a 1=-2+C 13C 2×12=1,所以a 2+a 3+a 4+a 5+a 6=26-1-2=23.命题点2 系数与二项式系数的最值问题例4 (y -2x 2)6的展开式中二项式系数最大的项为第________项,系数最大的项为________.答案 4 240x -8y 2解析 因为(y -2x2)6的展开式中二项式系数的最大值为C 36,所以二项式系数最大的项为第4项.因为(y -2x 2)6的展开式的通项为T k +1=C k 6·y 6-k (-2x 2)k =C k 6·(-2)k x -2k y 6-k ,所以展开式中系数最大的项为奇数项.展开式中第1,3,5,7项的系数分别为C 06·(-2)0,C 26·(-2)2,C 46·(-2)4,C 6·(-2)6,即1,60,240,64,所以展开式中系数最大的项为240x -8y 2.教师备选1.(多选)已知(1-2x )2 022=a 0+a 1x +a 2x 2+…+a 2 022x 2 022,下列命题中正确的是( )A .展开式中所有项的二项式系数的和为22 022B .展开式中所有奇次项系数的和为32 022-12C .展开式中所有偶次项系数的和为32 022+12D.a 12+a 222+a 323+…+a 2 02222 022=-1答案 ACD解析 选项A ,由二项式知,C 02 022+C 12 022+…+C 2 022=(1+1)2 022=22 022,A 正确;当x =1时,有a 0+a 1+a 2+…+a 2 022=1,当x =-1时,有a 0-a 1+a 2-a 3+…-a 2 021+a 2 022=32 022,选项B ,由上可得a 1+a 3+a 5+…+a 2 021=1-32 0222,B 错误;选项C ,由上可得a 0+a 2+a 4+…+a 2 022=32 022+12,C 正确;选项D ,令x =12可得a 0+a 12+a 222+a 323+…+a 2 02222 022=0,又a 0=1,所以a 12+a 222+a 323+…+a 2 02222 022=-1,D 正确.2.(多选)已知(x -3)8=a 0+a 1(x -2)+a 2(x -2)2+…+a 8(x -2)8,则下列结论正确的有( )A .a 0=1B .a 6=-28C.a 12+a 222+…+a 828=-255256D .a 0+a 2+a 4+a 6+a 8=128答案 ACD解析 对于A ,取x =2,得a 0=1,A 正确;对于B ,(x -3)8=[-1+(x -2)]8展开式中第7项为C 68(-1)2(x -2)6=28(x -2)6,即a 6=28,B 不正确;对于C ,取x =52,得a 0+a 12+a 222+…+a 828=(52-3)8=1256,则a12+a222+…+a828=1256-a0=-255256,C正确;对于D,取x=3,得a0+a1+a2+a3+…+a7+a8=0,取x=1,得a0-a1+a2-a3+…-a7+a8=(-2)8=256,两式相加得2(a0+a2+a4+a6+a8)=256,即a0+a2+a4+a6+a8=128,D正确.思维升华 赋值法的应用一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+a n x n,令g(x)=(a+bx)n,则(a+bx)n的展开式中各项的系数和为g(1),(a+bx)n的展开式中奇数项的系数和为12[g(1)+g(-1)],(a+bx)n的展开式中偶数项的系数和为12[g(1)-g(-1)].跟踪训练2 (1)已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|等于( )A.1 B.243C.121 D.122答案 B解析 令x=1,得a5+a4+a3+a2+a1+a0=1,①令x=-1,得-a5+a4-a3+a2-a1+a0=-243,②①+②,得2(a4+a2+a0)=-242,即a4+a2+a0=-121.①-②,得2(a5+a3+a1)=244,即a5+a3+a1=122.所以|a0|+|a1|+…+|a5|=122+121=243.(2)(多选)(2022·济南模拟)在(2x-x)6的展开式中,下列说法正确的是( )A.常数项为160B.第4项的二项式系数最大C.第3项的系数最大D.所有项的系数和为64答案 BC解析 展开式的通项为T k+1=C k6·(2x)6-k·(-x)k=26-k(-1)k·C k6x2k-6,由2k-6=0,得k=3,所以常数项为23(-1)3C36=-160,A错误;展开式共有7项,所以第4项二项式系数最大,B正确;第3项的系数最大,C正确;令x=1,得(2x-x)6=1,所有项的系数和为1,D 错误.题型三 二项式定理的综合应用例5 (1)设a∈Z,且0≤a≤13,若512 021+a能被13整除,则a等于( )A.0 B.1 C.11 D.12答案 B解析 因为a∈Z,且0≤a≤13,所以512 021+a=(52-1)2 021+a,2 02152-C2 021+a,=C02 021522 021-C12 021522 020+C22 021522 019-…+C2 020因为512 021+a能被13整除,结合选项,所以-C2 021+a=-1+a能被13整除,所以a=1.(2)利用二项式定理计算1.056,则其结果精确到0.01的近似值是( )A.1.23 B.1.24C.1.33 D.1.34答案 D解析 1.056=(1+0.05)6=C06+C16×0.05+C26×0.052+C36×0.053+…+C6×0.056=1+0.3+0.037 5+0.002 5+…+0.056≈1.34.教师备选已知n为满足S=n+C127+C227+C327+…+C27(n≥3)能被9整除的正数n的最小值,则(x-1x)n 的展开式中,系数最大的项为( )A.第6项B.第7项C.第11项D.第6项和第7项答案 B解析 S=n+C127+C227+C327+…+C27=n+(1+1)27-C027=(9-1)9+n-1=9(98-C1997+…+C89)+n-2,∵n≥3,∴S能被9整除的正数n的最小值是n-2=9,∴n=11.∴(x-1x)11的展开式中的通项公式为T k+1=C k11x11-k(-1x)k=(-1)k C k11x11-2k,只考虑k为偶数的情况,由T5=C411x3,T7=C611x-1,T9=C811x-5,可知系数最大的项为第7项.思维升华 二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(2)二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,(1+x)n≈1+nx.跟踪训练3 (1)设n为奇数,那么11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是( )A.-3 B.2C.10 D.11答案 C解析 11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1=C0n·11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11+C n-2=(11+1)n-2=12n-2=(13-1)n-2=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13+(-1)n·C n-2,因为n为奇数,则上式=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-3=[C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-13]+10,所以11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是10.(2)0.996的计算结果精确到0.001的近似值是( )A.0.940 B.0.941C.0.942 D.0.943答案 B解析 (0.99)6=(1-0.01)6=C06×1-C16×0.01+C26×0.012-C36×0.013+…+C6×0.016=1-0.06+0.001 5-0.000 02+…+0.016≈0.941.课时精练1.(2022·济南模拟)(x +1x)6的展开式中,含x 4项的系数为( )A .4B .6C .10D .15答案 B 解析 (x +1x)6的展开式通项为T k +1=C k 6·x 6-k ·(1x)k =C k 6·x 6-2k ,令6-2k =4,解得k =1,因此,展开式中含x 4项的系数为C 16=6.2.(2022·武汉部分重点中学联考)在(x 2-1x)n 的展开式中,只有第7项的二项式系数最大,则展开式常数项是( )A.552B .-552C .-28 D .28答案 B解析 展开式中,只有第7项的二项式系数最大,可得展开式有13项,所以n =12,展开式的通项为T k +1=C k 12(x 2)12-k ·(-1x)k=12-412-3121C (-1) 2kk k k x⎛⎫⎪⎝⎭,若为常数项,则12-43k =0,所以k =9 ,得常数项为T 10=C 912(-1)9(12)12-9=-2208=-552.3.(2022·邯郸模拟)(x 2-x )(1+x )6的展开式中x 3项的系数为( )A .-9 B .9C .-21D .21答案 A解析 展开式中x3项的系数为C16-C26=-9.4.(2022·芜湖质检)已知(x-m)(x+2)5=a0+a1x+a2x2+…+a6x6,其中m为常数,若a4=30,则a0等于( )A.-32 B.32C.64 D.-64答案 A解析 由多项式乘法知,第一个因式中x乘以(x+2)5展开式中的x3项得一个x4项,第一个因式中的常数-m乘以(x+2)5展开式中的x4项得另一个x4项,两项合并同类项得系数即为a4,所以a4=C25×22-m×C15×2=30,解得m=1,再令x=0,得a0=-25=-32.5.(2022·大连模拟)(ax-y)(x+y)4的展开式中x3y2的系数为-2,则实数a的值为( )A.-13B.-1 C.1 D.13答案 D解析 化简得(ax-y)(x+y)4=ax·(x+y)4-y·(x+y)4,∵(x+y)4的展开式的通项公式T k+1=C k4x4-k y k,当k=2时,ax·(x+y)4的展开式中x3y2的系数为C24a=6a,当k=1时,-y·(x+y)4的展开式中x3y2的系数为-C14=-4,综上,(ax-y)(x+y)4的展开式中x3y2的系数为6a-4=-2,∴a=1 3 .6.已知在(2x-1)n的二项展开式中,奇次项系数的和比偶次项系数的和小38,则C1n+C2n+C 3n+…+C n的值为( )A.28B.28-1C.27D.27-1答案 B解析 设(2x-1)n=a0+a1x+a2x2+…+a n x n,且奇次项的系数和为A,偶次项的系数和为B.则A=a1+a3+a5+…,B=a0+a2+a4+a6+….由已知得,B-A=38,令x=-1,得a0-a1+a2-a3+…+a n(-1)n=(-3)n,即(a0+a2+a4+a6+…)-(a1+a3+a5+a7+…)=(-3)n,即B-A=(-3)n,∴(-3)n=38=(-3)8,∴n=8,由二项式系数性质可得C1n+C2n+C3n+…+C n=2n-C0n=28-1.7.(多选)(2022·邯郸模拟)已知(5x-3x)n的展开式中,二项式系数之和为64,下列说法正确的是( )A.2,n,10成等差数列B.各项系数之和为64C.展开式中二项式系数最大的项是第3项D.展开式中第5项为常数项答案 ABD解析 由(5x-3x)n的二项式系数之和为2n=64,得n=6,得2,6,10成等差数列,A正确;令x=1,(5x-3x)6=26=64,则(5x-3x)6的各项系数之和为64,B正确;(5x-3x)6的展开式共有7项,则二项式系数最大的项是第4项,C不正确;(5x-3x)6的展开式中的第5项为C46(5x)2(-3x)4=15×25×81为常数项,D正确.8.(多选)(2022·烟台模拟)已知(2-3x)6=a0+a1x+a2x2+…+a6x6,则下列选项正确的是( ) A.a3=-360B.(a0+a2+a4+a6)2-(a1+a3+a5)2=1C.a1+a2+…+a6=(2-3)6D.展开式中系数最大的为a2答案 BD解析 (2-3x)6的展开式通项为T k+1=C k6·26-k·(-3x)k=C k6·(-3)k·26-k·x k,对于A,令k=3,则a3=C36×23×(-3)3=-4803,A错误;对于B,令x=1,则a0+a1+…+a6=(2-3)6;令x=-1,则a0-a1+a2-…+a6=(2+3)6,∴(a0+a2+a4+a6)2-(a1+a3+a5)2=(a0+a1+a2+…+a6)(a0-a1+a2-…+a6)=[(2-3)×(2+3)]6=1,B正确;对于C,令x=0,得a0=26,∴a1+a2+…+a6=(2-3)6-26,C错误;对于D,∵a0,a2,a4,a6为正数,a1,a3,a5为负数,又a0=26=64,a2=C26×24×3=720,a4=C46×22×32=540,a6=33=27,∴展开式中系数最大的为a2,D正确.9.(2021·天津)在(2x3+1x)6的展开式中,x6的系数是________.答案 160解析 (2x3+1x)6的展开式的通项为T k+1=C k6(2x3)6-k·(1x)k=26-k C k6·x18-4k,令18-4k=6,解得k=3,所以x6的系数是23C36=160.10.(2022·济宁模拟)已知(x-2x)n的展开式中各项的二项式系数的和为128,则这个展开式中x3项的系数是________.答案 84解析 依题意,2n=128,解得n=7,(x-2x)7的展开式的通项为T k+1=C k7x7-k·(-2x)k=(-2)k C k7x7-2k(k∈N,k≤7),由7-2k=3得k=2,所以所求展开式中x3项的系数是(-2)2C27=4×7×62×1=84.11.(2022·温州模拟)若(x +2x)n 的展开式中共有7项,则常数项为________(用数字作答).答案 240解析 因为(x +2x)n 的展开式中共有7项,所以n +1=7,可得n =6,所以(x +2x)6展开式的通项为T k +1=1626C 2k k kkxx--=3626C 2k k kx-令6-32k =0,可得k =4,所以常数项为C 4624=15×16=240.12.(2021·浙江)已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.答案 5 10解析 (x -1)3展开式的通项T r +1=C r 3x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4x 4-k ,则a 1=C 03+C 14=1+4=5;a 2=C 13(-1)1+C 24=3;a 3=C 23(-1)2+C 34=7;a 4=C 3(-1)3+C 4=0.所以a 2+a 3+a 4=3+7+0=10.13.已知n 为正整数,若1.1510∈[n ,n +1),则n 的值为( )A .2 B .3 C .4 D .5答案 C解析 因为1.155=(1+320)5=C 05·(320)0+C 15·(320)1+C 25·(320)2+C 35·(320)3+C 45·(320)4+C 5·(320)5=1+34+940+27800+(5×320+9400)(320)3=2+7800+309400×(320)3,而2<2+7800+309400×(320)3<2+7800+278 000<2+7800+308 000=2+180<2.1,所以2<1.155<2.1,因此4<1.1510<4.41,又n 为正整数,1.1510∈[n ,n +1),所以n =4.14.(2022·浙江Z20名校联盟联考)设(x -1)(2+x )3=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 1=________,2a 2+3a 3+4a 4=________.答案 -4 31解析 因为x ·C 03·23·x 0-C 13·22·x 1=-4x ,所以a 1=-4,对所给等式,两边对x 求导,可得(2+x )3+3(x -1)(2+x )2=a 1+2a 2x +3a 3x 2+4a 4x 3,令x =1,得27=a 1+2a 2+3a 3+4a 4,所以2a 2+3a 3+4a 4=31.15.已知S n 是数列{a n }的前n 项和,若(1-2x )2 022=b 0+b 1x +b 2x 2+…+b 2 022x 2 022,数列{a n }的首项a 1=b 12+b 222+…+b 2 02222 022,a n +1=S n ·S n +1,则S 2 022等于( )A .-12 022B.12 022C .2 022 D .-2 022答案 A解析 令x =12,得(1-2×12)2 022=b 0+b 12+b 222+…+b2 02222 022=0.又因为b 0=1,所以a 1=b 12+b 222+…+b 2 02222 022=-1.由a n +1=S n S n +1=S n +1-S n ,得S n +1-S n S n S n +1=1S n -1S n +1=1,所以1S n +1-1S n =-1,所以数列{1S n}是首项为1S1=-1,公差为-1的等差数列,所以1Sn =-1+(n -1)·(-1)=-n ,n n所以S2 022=-12 022.16.(多选)(2022·南京模拟)已知n∈N*,n≥2,p,q>0,p+q=1,设f(k)=C k2n p k q2n-k,其中k∈N,k≤2n,则( )A.2n∑k=0f(k)=1 B.2n∑k=0k f(k)=2npqC.若np=4,则f(k)≤f(8) D.n∑k=0f(2k)<12<n∑k=1f(2k-1)答案 AC解析 2n∑k=0f(k)=2n∑k=0C k2n p k q2n-k=(q+p)2n=1,A正确;k C k2n=k(2n)!k!(2n-k)!=2n×(2n-1)!(k-1)![(2n-1)-(k-1)]!=2n C k-12n-1,所以2n∑k=0k f(k)=2n∑k=1k C k2n p k q2n-k=2n∑k=12n C k-12n-1p k q2n-k=2npq2n∑k=1C k-12n-1p k-1q2n-1-k=2np 2n-1∑k=0C k2n-1p k q2n-1-k=2np(q+p)2n-1=2np≠2npq(除非p=0),B错;设f(m)是f(k)中最大项,Error!即Error!注意到C m2nC m-12n=(2n)!m!(2n-m)!(2n)!(m-1)!(2n-m+1)!mC m2n C m+12n =m+12n-m,又np=4,不等式组可解为8-q≤m≤8+p,所以m=8,所以f(k)≤f(8),C正确;例如n=2时,p=13,q=23,n∑k=0f(2k)=(13)4+6(13)2(23)2+(23)4=4181,n∑k=1f(2k-1)=4081,D错误.。
高中数学(人教选修2-3)配套课件第一章 1.3.1 二项式定理与二项展开式
![高中数学(人教选修2-3)配套课件第一章 1.3.1 二项式定理与二项展开式](https://img.taocdn.com/s3/m/3804c18ebb4cf7ec4afed087.png)
栏 目 链
接
(2)S=C40(x-1)4+C41(x-1)3×21+C42(x-1)2×22+C34(x-
1)×23+C4424=[(x-1)+2]4=(x+1)4.故选 D.
答案:(1)1+4x+x62+x43+x14 (2)D
点评:解决这一问题的关键是弄清二项式展开式左右两边的结 构特征,这样我们就能够将一个二项式展开,若一个多项式符合二项 展开式右边的结构特征,我们也能够将它表示成左边的形式.
(1)展开式的第四项的二项式系数为 =120.
(2)展开式的第四项的系数为 ·37-323=-77 760. 点评:根据二项展开式的通项公式,即可求展开式中的特定项.
变式 训练
2.(2013·揭阳一模)若二项式x+21xn 的展开式中,第 4 项与第
7 项的二项式系数相等,则展开式中 x6 的系数为________(用数字作
基础 梳理
(3)其中各项的系数_____C__rn_(r=0,1,2,…,n)叫做
_________二__项_式__系__数____.
(4)式中的______________叫做二项展开式的通项,用Tr+1
表示.
Crnan-rbr
栏
(5)通项是展开式的第________项.
目
链
2.二项式定理的应用.
10-(2)2 40 .
答案: C
栏 目 链 接
题型一 二项式定理的正用、逆用
例 1 (1)用二项式定理展开1+1x4=________;
(2)设 S=(x-1)4+4×2(x-1)3+6×4(x-1)2+4×8(x-1)+16,
根据二项式定理得 S=( )
接
r+1 例如:(1)(x+1)4的展开式中常数项是________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.二项式定理⑴二项式定理()()011222...nn n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理.⑵二项式系数、二项式的通项011222...nn n n n nnnnC a C a b C ab C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r rnC a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr n T C a b -+=.⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意①通项1r n r rr nT C a b -+=是()na b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r rnC b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是()na b +这个标准形式下而言的,如()na b -的二项展开式的通项公式是()11rr n r rr n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系知识内容求展开式中的指定项数是不同的概念.⑤设1,a b x ==,则得公式:()12211......nr r n nn n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r rnC a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:()na b +展开式的二项式系数是:012,,,...,n n n n n C C C C ,从函数的角度看r n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n m n n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大. 由于展开式各项的二项式系数顺次是 ()01211,,112n n n n n n C C C -===⋅,()()312123n n n n C --=⋅⋅,...,()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1knn n n n k n k C k k---+-+=⋅⋅⋅-,...,1n n C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间.当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n nC .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1122n n nnCC-+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.【例1】62⎛⎝的展开式中的第四项是 .【例2】6⎛⎫的展开式中,3x 的系数等于_ ___.【例3】((3511+-的展开式中x 的系数是A .4-B .2-C .2D .4典例分析【例4】 若9a x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数是84-,则a = .【例5】 5a x x ⎛⎫+ ⎪⎝⎭()x ∈R 展开式中3x 的系数为10,则实数a 等于A .1-B .12C .1D .2【例6】 若2012(12)n n n x a a x a x a x -=++++L ,则2a 的值是( )A .84B .84-C .280D .280-【例7】8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【例8】 若()554541031x a x a x a x a +=++⋅⋅⋅++,则2a 的值为( )A .270B .2702xC . 90D .902x【例9】 的展开式中的系数是_______(用数字作答).【例10】 在的展开式中,的系数为_______(用数字作答).64(1(1+x 25(42)x x ++x【例11】 在的展开式中,的系数为_______(用数字作答).【例12】 在的展开式中,的系数为_______(用数字作答).【例13】 求展开式中含项系数.【例14】 在的展开式中,项的系数是 .(用数字作答)【例15】 的展开式中的系数等于________.(用数字作答)【例16】展开式中的系数是_______(用数字作答).【例17】 在的展开式中的系数是( )25(42)x x ++2x 25(42)x x ++3x 294(31)(21)x x x +-+2x 26(1)(1)(1)x x x ++++++L 2x 2345(1)(1)(1)(1)(1)x x x x x ---+---+-2x 291()2x x-9x 8(1)(1)x x -+5xA .−14B .14C .−28D .28【例18】 在的展开式中,含的项的系数是( )A .15-B .85C .120-D .274【例19】 在的展开式中,含项的系数是 (用数字作答)【例20】 求展开式中的系数.【例21】 的展开式中的系数是_______(用数字作答).【例22】 在的展开式中,的系数为_______(用数字作答).【例23】 在的展开式中,的系数为_______(用数字作答).(1)(2)(3)(4)(5)x x x x x -----4x 56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-3x 26(1)x x +-5x 64(1(1+x 25(42)x x ++x 25(42)x x ++2x【例24】 在的展开式中,的系数为_______(用数字作答).【例25】 求展开式中含项系数.【例26】 在的展开式中,项的系数是 .(用数字作答)【例27】 的展开式中的系数等于________.(用数字作答)【例28】展开式中的系数是_______(用数字作答).25(42)x x ++3x 294(31)(21)x x x +-+2x 26(1)(1)(1)x x x ++++++L 2x 2345(1)(1)(1)(1)(1)x x x x x ---+---+-2x 291()2x x-9x【例29】 在的展开式中的系数是( )A .−14B .14C .−28D .28【例30】 在的展开式中,含的项的系数是( )(A )15- (B )85 (C )120- (D )274【例31】 在的展开式中,含项的系数是 (用数字作答)【例32】 求展开式中的系数.【例33】 在二项式的展开式中,含的项的系数是( )A .B .C .D .【例34】的展开式中的系数是______,的系数为______.8(1)(1)x x -+5x (1)(2)(3)(4)(5)x x x x x -----4x 56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-3x 26(1)x x +-5x 521x x ⎛⎫- ⎪⎝⎭4x 10-105-534(12)(1)x x +-x 2x【例35】 的展开中含的项的系数为( )A .B .C .D .【例36】 的展开式中的系数是( )A .B .C .3D . 4【例37】 求展开式中的系数;【例38】 在二项式的展开式中,含的项的系数是( )A .B .C .D .【例39】的展开式中的系数是( ) A .B .C .D .【例40】 在的展开式中,的系数为 (用数字作答)411(1)x x ⎛⎫++ ⎪⎝⎭2x 461012((6411+x 4-3-()()31011x x -+5x 521x x ⎛⎫- ⎪⎝⎭4x 10-105-56(2)x +3x 2040801604(1x【例41】 在的展开式中,的系数为 _____ (用数字作答)【例42】 的二项展开式中含的项的系数为( ) A .B .C .D .【例43】 若的二项展开式中的系数为则 .(用数字作答)【例44】 设常数,展开式中的系数为,则=_____.【例45】 已知(是正整数)的展开式中,的系数小于120,则 .((333(1)11x +++++x 91x x ⎛⎫- ⎪⎝⎭3x 36-84-3684261()x ax +3x 5,2a =0a>24(ax 3x 32a 26(1)kx +k 8x k =【例46】 已知的展开式中的系数与的展开式中的系数相等 .【例47】的二项展开式的第项的系数为() A .B .C .D .【例48】 若的二项展开式中的系数为则.(用数字作答)【例49】 若与的展开式中含的系数相等,则实数的取值范围是( )A .B .C .D .【例50】 已知,则二项式 展开式中含项的系数是 .【例51】 在的展开式中,的系数是的系数与的系数的等差中项,若实数,那么.5(cos 1)x θ+2x 45()4x +3x cos θ=106210-252-210252261()x ax +3x 5,2a =__________21()n x m ++2(1)(*0)n mx n m +∈≠N ,n x m 12(]23,2[1)3,(0)-∞,(0)+∞,()π0sin cos a x x dx =+⎰6⎛ ⎝2x 7(1)ax +3x 2x 4x 1a >_______a =【例52】 已知(是正整数)的展开式中,的系数小于,则______.【例53】的展开式中的系数为 .【例54】 若的展开式中,的系数是的系数的倍,求;【例55】的展开式中,的系数与的系数之和等于__________.【例56】 已知为实数,展开式中的系数是,则_______.26(1)kx +k 8x 120k=4(33x y (1)n x +3x x 7n 10()x y -73x y 37x y a 10()x a +7x 15-a =【例57】 二项式的展开式中第三项系数比第二项系数大,求第项的系数.【例58】 求的二项展开式中含的项的二项式系数与系数.【例59】 若的展开式中前三项的系数成等差数列,则展开式中项的系数为_______.【例60】 令为的展开式中含项的系数,则数列的前项和为.41nx ⎛⎫ ⎪⎝⎭44491x x ⎛⎫- ⎪⎝⎭3x 12nx x ⎛⎫+ ⎪⎝⎭4x n a 1()(1)n n f x x +=+1n x -1{}na 2009______【例61】 在的展开式中,的系数是的系数与的系数的等差中项,求的值.【例62】 已知,则 .【例63】 在展开式中,与的系数分别为,如果3ab =,那么的值为() A . B . C . D .【例64】 若的展开式中的系数是, 则实数的值是_______.7(1)ax +(1)a >3x 2x 4x a ()52551110ax x bx a x +=++++L b =()1n x +3x 2x a b ,b 706055405(1)ax -3x 80-a【例65】 设常数,展开式中的系数为,则 .【例66】 若展开式中含项的系数与含项的系数之比为,则等于( ) A .B .C .D .【例67】 设为的展开式中含项的系数,则数列的前项和为_____【例68】 已知展开式的第二项与第三项的系数比是,则________.【例69】 在的展开式中,如果第项和第项的二项式系数相等,则第项为______0a>42ax ⎛ ⎝3x 32a =12nx x ⎛⎫- ⎪⎝⎭21x 41x 5-n 46810n a 1()(1)n n f x x +=+1n x -1n a ⎧⎫⎨⎬⎩⎭n 12nx x ⎛⎫+ ⎪⎝⎭1:2n =220(1)x -4r 2r +4r【例70】 若在二项式的展开式中任取一项,则该项的系数为奇数的概率是.【例71】 已知展开式中最后三项的系数的和是方程的正数解,它的中间项是,求的值.【例72】 设数列是等比数列,,公比是的展开式的第二项. ⑴用表示通项与前项和;⑵若用表示10(1)x +_____lg lg 2(21)x n x ++2lg(7272)0y y --=410+x {}n a 311232C m m m a +-=Αq 421()4x x +n x ,n a n n S 1212C C C n n n n n n A S S S =+++L n x ,n A。