北师大版数学:八年级上册教案4.4一次函数的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.4一次函数的应用(1)

一、教学分析

【教材分析】

“一次函数的应用”是北师大版数学八年级上册第四章第四节,学生在七年级上册“整式及其加减”一章,让学生结合具体情境列出相应的代数式,实际上就是函数思想的初步渗透。在八年级有学习了平面直角坐标系、一次函数的概念、一次函数的图象。学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.

【教学目标分析】

根据《课程标准》的要求,结合本节课确定教学目标为:

知识技能:

1、经历分析实际问题中两个变量之间关系,并解决有关问题的过程,发展应用意识。

2、进一步发展数形结合的思想,发展数形结合解决问题的能力。

3、利用一次函数图象分析、解决简单的实际问题,发展几何直观。

4、初步体会函数与方程的联系。

数学思考:

体会数形结合的思想,解决实际问题,体会几何直观。

问题解决:

由现实背景确定一次函数,关注图象特征确定一次函数表达式。

情感态度:

积极参与数学活动,养成独立思考的能力,培养合作交流的意识

【教学重点难点】

教学重点:一次函数图像的应用。注重提高学生的数形结合的思想。

教学难点:从函数图像中正确读取信息,解决实际问题。

帮助学生建立转化的思想方法。

【我的思考】

本节课是北师大版义务教育教科书八年级上第四章《一次函数》第四节的第一课时,主要内容是利用图象、表格等信息,确定一次函数的表达式.与原教材相比,新教材更注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问题虽然简单,但它涉及数学对象的一个本质概念---基本量.值得一提的是确定一次函数表达式,需要根据两个条件列出关于k、b的方程组,而二元一次方程组是下一章的学习内容,因此本节所研究的

一次函数,某个参数应较易于从所给条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.

二、教学过程设计

第一环节:复习旧知

画出y=-2x-4的图象,根据图象回答下列问题:

(1)y的值随x值的增大而________;

(2)图象与x轴的交点坐标是_______,与y轴

的交点坐标是_______;

(3)判断下列各点是否在函数y=-2x-4的图象上.

A (1,-6)B(-3,1)

分析:将x的值代入函数表达式,如果等于y的值,这个点就在函数的图象上;否则,这个点不在函数的图象上.

完成以上问题之后,和同学们一同复习一下关于一次函数的知识:

提问:(1)什么是一次函数?

(2)一次函数的图象是什么?

(3)一次函数具有什么性质?

目的:学生回顾一次函数相关知识,温故而知新.

第二环节:探索新知

展示实际情境1:图片展示,从学生所体验过的冰滑梯开始。

某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.

(1)写出v与t之间的关系式;

(2)下滑3秒时物体的速度是多少?

分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.

设计意图:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景中学生更可能更易写出函数关系式.教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.

想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?

目的:在实践的基础上学生加以归纳总结。这个问题涉及到数学对象的一个本质概念——基本量.由于一次函数有两个基本量k 、b ,所以需要两个条件来确定. 第三环节、深入探究

例1 、在弹性限度内,弹簧的长度y (厘米)是所挂物体的质量x (千克)的一次函数,一根弹簧不挂物体

时长14.5cm ;当所挂物体的质量为3kg 时,弹簧长16cm 。写出y 与x 之间的关系式,并求所挂物体的质量为4kg 时弹簧的长度. 解:设b kx y +=,根据题意,得

14.5=b , 16=3k +b , 解得5.0=k .

所以关系式为:5.145.0+=x y .

当4=x 时,5.165.1445.0=+⨯=y (厘米). 即物体的质量为4千克时,弹簧长度为5.16厘米.

设计意图:引例中设置的是利用函数图象求函数表达式,这个例子选取的是弹簧的一个物理现象,目的在于让学生从不同的情景中获取信息求一次函数表达式,进一步体会函数表达式是刻画现实世界的一个很好的数学模型.这道例题关键在于求一次函数表达式,在求出一般情况后,第二个问题就是求函数值的问题可迎刃而解. 教学注意事项:

学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到y 与x 间的关系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不同.

想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤.

求函数表达式的步骤有: 1.设一次函数表达式. 2.根据已知条件列出有关方程. 3.解方程.

4.把求出的k ,b 值代回到表达式中即可.

设计目的:对求一次函数表达式方法的归纳和提升。在此基础上,教师可指出这种先将表达式中未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法.

相关文档
最新文档