[初中数学]因式分解教案9 人教版
21.2.3.解一元二次方程—因式分解法 初中九年级数学教案教学设计课后反思 人教版
21.2.3.解一元二次方程—因式分解法
解:
【强调】将原方程变形为一边是0,这一步很重要,因为只有当一边是0,即两个因式的积是0,两个因式才分别是0,从而得到两个一元一次方程。
【小结】因式分解法解一元二次方程的步骤:
①将一元二次方程化成一般形式,即方程右边为0。
②将方程左边进行因式分解,由一元二次方程转化成两个一元一次方程。
③对两个一元一次方程分别求解。
【例2】解方程:
⑴x(x-2)+x-2=0⑵3x(x+2)=5(x+2)
(3
⑶x+1)2-5=0⑷x2-6x+9=(5-2x)2
【分析】这几个方程可以展开整理成一元二次方程的一般形式,然后再用公式法或因式分解法来解,但这样做比较麻烦,根据这两个方程的特点,直接应用因式分解法较简便。
解:
【说明】用因式分解法解一元二次方程时,要根据情况灵活选用学过的因式分解的几种方法,不能出现失根的情况。
如解方程x2-3x=0时,方程两边同除以x得x-3=0,解得x=3,这样就失掉了x=0这一个根。
【练习】Р40 1 2创新,培养学生的应用意识和创新能力.
四、自主总结 拓展新知
1、用因式分解法解方程的根据由ab=0得 a=0或b=0,即“二次降为一次”。
2、正确的因式分解是解题的关键。
五、课堂作业 P43 6 (《课堂内外》对应练习)
教学理念/教学反思。
九年级上册数学人教版21.2.3 解一元二次方程-因式分解法
学科
初中数学
主备人
节次
第 周
第 节
课题
21.2.3 解一元二次方程-因式分解法
课时
1
课型
新授课
教学目标
1.能用因式分解法解一些一元二次方程;
2.能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的多样性。
教学重点
能用因式分解法解一些一元二次方程.
教学难点
能根据具体一元二次方程的特征,灵活选择方程的解法.
3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程.
4.分别解这两个一元一次方程,它们的根就是原方程的根.
第五步:
师友反馈
环节1:师友检测
1.用公式法解下列方程:
环节2:教师评价
一、本节课最佳师友是…
二、
二、课后作业
必做:
选做:
板书设计
教学后记
课 堂 教 学 设 计
教学环节
教学过程
二次备课
第一步:
交流预习
环节1:教师提问
1、什么是一元二次方程
2、一元二次方程的一般形式是什么吗?
3、二次项、一次项、常数项分别是什么?
环节2:师友释疑
问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么物体经过x s离地面的高度(单位:m)为10x-4.9x2.根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?
(1)解:设物体经过x s落回地面,这时它离地面的高度为0m,
即10x-4.9x2=0.
思考:除了配方法或公式法之外,能找到更简单的方法吗?
第二步:
互助探究
环节1:师友探究
因式分解教案5篇
式分解教案5篇因式分解教案篇一教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc二m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2-x=x(x-l),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。
(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a 化成-(a-b),然后再提取公因式。
初中数学因式分解教案
初中数学因式分解教案一、教学目标:1. 知识与技能:学生能够理解因式分解的概念,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力,提高学生解决数学问题的能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的价值和魅力。
二、教学重难点:1. 教学重点:掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2. 教学难点:如何正确找出多项式各项的公因式,以及如何确定提公因式后的另外一个因式。
三、教学过程:1. 引入新课:通过复习多项式乘法,引导学生思考:如何将一个多项式化为几个整式的积的形式?从而引出因式分解的概念。
2. 探索新知:(1) 提公因式法:引导学生观察两个多项式的乘积,找出它们之间的公因式,并将公因式提出来。
例如,分解因式:x^2 - 4x + 4,我们可以先提出公因式x,得到x(x - 4),然后再利用平方差公式进行进一步分解。
(2) 公式法:引导学生掌握平方差公式和完全平方公式,并能够运用这两个公式进行因式分解。
例如,分解因式:x^2 - 9,我们可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行分解,得到(x + 3)(x - 3)。
3. 巩固练习:提供一些练习题,让学生运用所学的因式分解方法进行解答,巩固所学知识。
4. 课堂小结:总结本节课所学的因式分解方法,强调提公因式法和公式法在因式分解中的应用,以及正确找出多项式各项的公因式和确定提公因式后的另外一个因式的方法。
四、课后作业:1. 完成教材后的相关练习题。
2. 总结因式分解的方法和技巧,写一篇关于因式分解的心得体会。
通过以上教学设计,希望能够帮助学生掌握因式分解的基本方法,提高学生解决数学问题的能力,激发学生学习数学的兴趣。
初中数学人教版九年级上册:因式分解法 教案
21.2.3因式分解法【教学目标】知识技能1.了解因式分解的概念2.会利用因式分解法解某些简单数字系数的一元二次方程情感态度1.学会和他人合作,并能与他人交流思维的过程和结果2.积极探索不同的解法,并和同伴交流,勇于发表自己的观点,从交流中发现最优方法,在学习活动中获得成功的体验,建立学好数学的自信心重点难点重点应用因式分解法解一元二次方程难点将方程化为一般形式后,对方程左侧二次三项式进行因式分解活动1复习引入问题(学生活动)解下列方程.(1)220x x (用配方法),(2)2360x x (用公式法).(3)要使一块矩形场地的长比宽多3m ,并且面积为228m ,场地的长和宽应各是多少?(4)如何设未知数并根据题目的等量关系列出方程?(5)所列方程和以前我们学习的方程2692x x 有何联系和区别?(6)你能由方程2692x x 的解法联想到怎样解方程23280x x 吗?活动2实验发现思考:(1)210x x (),(2)320x x ().问题:(1)你能观察出这两题的特点吗?(2)你知道方程的解吗?说说你的理由.因式分解的理论依据是:两个因式的积等于零,那么这两个因式的值就至少有一个等于零。
即:若ab=0,则a=0或b=0.由上述过程我们知道:当方程的一边能够分解成两个一次因式的乘积而另一边等于0时,即可解之。
这种方法叫做因式分解法.(3)因式分解法解一元二次方程的步骤:①移项,使方程的右边为零;②将方程的分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解都是原方程的解.活动3用因式分解法解决问题教材第14页例3.补充例题解方程(1)238x x ,(2)24312x x ().分析:(1)移项提取公因式x ;(2)等号右侧移项到左侧得312x -,提取因式-3,即34x -(),再提取公因式x-4,便可达到分解因式的目的,一边为两个一次因式的乘积,另一边为0的形式.解:(1)移项,得2380x x ,因式分解,得380x x (),于是,得0380x x ,或,12803x x,(2)移项,得243120x x (),24340x x ()()因式分解,得4430x x ()()整理,得470x x ()()于是,得4070x x 或1247x x ,活动5课堂小结小结:(1)用因式分解法,即用提取公因式法、平方差公式、完全平方公式等解一元二次方程.(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系:①降次,它们的解题的基本思想是:将二次方程化为一次方程,即降次。
初中数学教学课件:21.2.3 因式分解法(人教版九年级上)
2.解下列方程: (1)(x+2)(x-4)=0 【解析】(1) (2)4x(2x+1)-3(2x+1)=0
x 2 0或x 4 0
x1 2,x 2 4.
24x2x 1 32x 1 0,
2x 14x - 3 0,
2x 1 0或4x 3 0.
即ax2+bx+c=a(x-x1)(x-x2)
4.(惠安·中考)解方程:x2-25=0 【解析】(x+5)(x-5)=0 ∴x+5=0或x-5=0
∴x1= -5,x2=5.
通过本课时的学习,需要我们掌握: 1.因式分解法解一元二次方程的步骤是:
(1)化方程为一般形式;
(2)将方程左边因式分解; (3)根据“至少有一个因式为零”,得到两个一元一次方程;
2. 关键是熟练掌握因式分解的知识;
3.理论依旧是“如果两个因式的积等于零,那么至少 有一个因式等于零.”
例 题
【例1】用分解因式法解方程:
(1)5x2=4x;(2)x-2=x(x-2). 【解析】
解 : 1 5x 2 4x 0,
x5x 4 0.
2 x 2 x x 2 0, x 21 x 0.
1.x1 5; x2 2.
x 2 (5 2 ) x 5 2 0
2. x 2 ( 3 5 ) x 15 0 2.x1 5; x2 3.
3. x 2 (3 2)x 18 0
4. (4 x 2) x(2 x 1)
2
3.x1 3; x2
b b 2 4ac (a 0, b 2 4ac 0) 公式法 x 2a
9 人教初中数学八上 因式分解教案2 【2023,最新经典教案】
因式分解教学目标1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系.2.使学生理解提公因式法并能熟练地运用提公因式法分解因式.3.通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.教学重点及难点教学重点:因式分解的概念及提公因式法.教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系.教学过程设计:一、复习提问乘法对加法的分配律.二、新课1.新课引入:用类比的方法引入课题.在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把15分解成3×5,把42分解成2×3×7.在前面我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.2.因式分解的概念:请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果.(老师按学生所说在黑板写出几个.)如:m(a+b+c)=ma+mb+mc2xy(x-2xy+1)=2x2y-4x2y2+2xy(a+b)(a-b)=a2-b2(a+b)(m+n)=am+an+bm+bn(x-5)(2-x)=-x2+7x-10等等.再请学生观察它们有什么共同的特点?特点:左边,整式×整式;右边,是多项式.可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.如:因式分解:ma+mb+mc=m(a+b+c).整式乘法:m(a+b+c)=ma+mb+mc.让学生说出因式分解与整式乘法的联系与区别.联系:同样是由几个相同的整式组成的等式.区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式.例1下列各式从左到右哪些是因式分解?(投影)(1)x2-x=x(x-1)(√)(2)a(a-b)=a2-ab (×)(3)(a+3)(a-3)=a2-9(×)(4)a2-2a+1=a(a-2)+1 (×)(5)x2-4x+4=(x-2)2(√)下面我们学习几种常见的因式分解方法.3.提公因式法:我们看多项式:ma+mb+mc请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式.注意:公因式是各项都含有的公共的因式.又如:a是多项式a2-a各项的公因式.ab是多项式5a2b-ab2各项的公因式.2mn是多项式4m2np-2mn2q各项的公因式.根据乘法的分配律,可得m(a+b+c)=ma+mb+mc,逆变形,便得到多项式ma+mb+mc的因式分解形式ma+mb+mc=m(a+b+c).这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式ma +mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法.定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式:(1)ax+ay+a(a)(2)3mx-6mx2(3mx)(3)4a2+10ah (2a)(4)x2y+xy2 (xy)(5)12xyz-9x2y2 (3xy)例3 把8a3b2-12ab3c分解因式.分析:分两步:第一步,找出公因式;第二步,提公因式.先引导学生按确定公因式的方法找出多项式的公因式4ab2.解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc).说明:(1)应特别强调确定公因式的两个条件以免漏取.(2)开始讲提公因式法时,最好把公因式单独写出.①以显提醒;③强调提公因式;③强调因式分解.例4 把3x2-6xy+x 分解因式.分析:先引导学生找出公因式x,强调多项式中x=x·1.解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1).说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,这类题常常有些学生犯下面的错误,3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因.还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项.课堂练习:(投影)把下列各式分解因式:(l)2πR+2πr;(2)(3)3x3+6x2;(4)21a2+7a;(5)15a2+25ab2;(6)x2y+xy2-xy.例5把-4m3+16m2-26m分解因式.分析:此多项式第一项的系数是负数,与前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提"-"号时,注意添括号法则.解:-4m3+16m2-26m=-(4m3-16m2+26m)=-2m(2m2-8m+13).说明:通过此例可以看出应用提公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式.课堂练习:(投影)把下列各式分解因式:(1)-15ax-20a;(2)-25x8+125x16;(3)-a3b2+a2b3;(4)-x3y3-x2y2-xy;(5)-3ma3+6ma2-12ma;(6)(三)小结1.因式分解的意义及其概念.2.因式分解与整式乘法的联系与区别.3.公因式及提公因式法.4.提公因式法因式分解中应注意的问题.六、作业七、板书设计《三角形的外角》各位领导、老师们,上午好!今天我将要为大家讲的课题是三角形的外角,首先,我对本节教材进行一些简单分析一、教材结构与内容简析“三角形的外角”是第二节内容。
人教版初中九年级上册数学《因式分解法》教案
21.2.3 因式分解法【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.一、情境导入,初步认识问题根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)想一想你能根据题意列出方程吗?你能想出解此方程的简捷方法吗?【教学说明】让学生通过具体问题寻求解决问题的方法,激发学生求知欲望,引入新课.二、思考探究,获取新知学生通过讨论,交流得出方程为10x-4.9x2=0.在学生用配方法或公式法求出上述方程的解后,教师引导学生尝试找出其简捷解法为:x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.从而可知物体被抛出约2.04s后落回到地面.想一想以上解方程的方法是如何使二次方程降为一次方程的?通过学生的讨论、交流可归纳为:当方程的一边为0,而另一边可以分解成两个一次因式的乘积时,利用a·b=0,则a=0或b=0,把一元二次方程变为两个一元一次方程,从而求出方程的解.这种解法称为因式分解法.【教学说明】让学生自主探索,进行归纳总结,既锻炼学生的分析问题,解决问题能力,又能培养总结化归能力,并从中体验转化、降次的思想方法.三、典例精析,掌握新知例1 解下列方程:(1)x(x-2)+x-2=0; (2)5x2-2x-14=x2-2x+34.解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x1=2,x2=-1;(2)原方程整理为4x2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x1=-12,x2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.例2 用适当的方法解下列方程:(1)3x2+x-1=0; (2)2(2x-3)2=12;(3)(3x-2)2=4(3-x)2; (4)(x-1)(x+2)=-2.分析:根据方程的结构特征,灵活选择恰当的方法来求解.【教学说明】以上两例均应先让学生自主完成,最后共同评析,达到深化理解本节知识的目的.教学时,可选派学生代表上黑板完成.对于学生的解法只要合理就应给予肯定,若有更简捷解法时再予以说明.思考请你谈谈解一元二次方程的几种方法的特点,与同伴交流.【归纳结论】1.配方法要先配方,再降次;公式法可直接套用公式;因式分解法要先使方程的一边为0,而另一边能用提公因式法或公式法分解因式,从而将一元二次方程化为两个一次因式的积为0,达到降次目的,从而解出方程;2.配方法、公式法适用于所有一元二次方程,而因式分解法则只适用于某些一元二次方程,不是所有的一元二次方程都适用因式分解法来求解.四、运用新知,深化理解1.用因式分解法解方程,下列方程中正确的是()A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0B.(x+3)(x-1)=1,∴x+3=0或x-1=1C.(x+2)(x-3)=6,∴x+2=3或x-3=2D.x(x+2)=0,∴x+2=02.当x= 时,代数式x2-3x的值是-2.3.已知y=x2+x-6,当x= 时,y的值等于0.当x= 时,y的值等于24.(注:4~5题为教材第14页练习)4.解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)3x(2x+1)=4x+2; (6)(x-4)2=(5-2x)2.5.如图,把小圆形场地的半径增加5m得到大圆形场地,场地面积扩大了一倍.求小圆形场地的半径.【教学说明】针对所设置的作业,可因不同的学生分层次布置作业,让每个学生都能参与数学的学习,激发学习热情.【答案】1.A 2.1或2 3.2或-35或-6 4~5略.五、师生互动,课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?【教学说明】设计两个问题引导学生回顾本课知识的学习过程,反思学习过程中的疑惑,查漏补缺,完善认知.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.本节课围绕利用因式分解法解一元二次方程这一重点内容,教师通过问题情境以及学生的合作交流,使学生的问题凸现出来,让学生迅速掌握解题技能,并探讨出解题的一般步骤,使学生知道因式分解法是一元二次方程解法中应用较为广泛的简便方法,提高解题速度.2.学生已经学过多项式的因式分解,所以对本课内容并不陌生,通过本课学习,让学生更能领会因式分解在数学领域的广泛应用.3.本节课有大量的基础计算问题,也有符合不同学生层次的问题,力争让所有学生学有所得,提高课堂效率.4.解一元二次方程是本章教学的重中之重,如何正确选择用不同方法解一元二次方程是关键,本节课中的计算题有一题多解问题,体现了选择“最优化”解方程方法的问题.良好的学习态度能够更好的提高学习能力。
初中数学因式分解教案(推荐6篇)
初中数学因式分解教案(推荐6篇)初中数学因式分解教案(一)教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x24和y225学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2b2=(a+b)(ab)如果多项式是两数差的.形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2=2②b2=2③0.16a4=2④1.21a2b2=2⑤2x4=2⑥5x4y2=2解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2例2:下列多项式能否用平方差公式进行因式分解①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2解答:①1.21a2+0.01b2能用②4a2+625b2不能用③16x549y4不能用④4x236y2不能用初中数学因式分解教案(二)因式分解教材分析因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。
由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。
初中数学因式分解教案3篇
初中数学因式分解教案3篇初中数学因式分解教案篇1教学目标:1、理解运用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的综合运用。
3、进一步培养学生综合、分析数学问题的能力。
教学重点:运用平方差公式分解因式。
教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是,如何用语言描述?把上述公式反过来就得到,如何用语言描述?2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?①-x2+y2 ②-x2-y2 ③4-9x2④ (x+y)2-(x-y)2 ⑤ a4-b43、试总结运用平方差公式因式分解的条件是什么?4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?5、试总结因式分解的步骤是什么?师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5: a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2 还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。
……反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
最新人教版初中数学九年级上册《21.2.3 因式分解法》精品教学课件
x1=x2=1.
巩固练习
(5) 3x 2x 1 4x 2 ( 6 ) x 42 5 2x2
解:将方程化为
解:将方程化为
6x2 - x -2 = 0.
( x -4 ) 2 - ( 5 - 2x )2=0.
因式分解,得
因式分解,得
( 3x - 2 )( 2x + 1 ) = 0.
( x - 4 - 5 + 2x )( x - 4 + 5 -2x ) = 0.
A.x=4 C.x=2
B.x=3 D.x=0
课堂检测
能力提升题
我们已经学习了一元二次方程的四种解法:直接开 平方法、配方法、公式法和因式分解法.请从以下 一元二次方程中任选一个,并选择你认为适当的方 法解这个方程.
①x2-3x+1=0; ②(x-1)2=3;
③x2-3x=0;
④x2-2x=4.
我选择______________________
1.理解一元二次方程因式分解法的概念.
探究新知
知识点 因式分解法的概念
根据物理学规律,如果把一个物体从地面 10 m/s 的速 度竖直上抛,那么经过 x s 物体离地面的高度(单位:m) 为 10x 4.9x2.
【思考】根据这个规律求出物体经过多少秒落回地面?(精 确到 0.01 s) 提示:设物体经过 x s 落回地面,这时它离地面的高度
探究新知
方法点拨
一.因式分解法简记歌诀:
右化零
左分解
两因式
各求解
二.选择解一元二次方程的技巧:
1.开平方法、配方法适用于能化为完全平方形式的 方程. 2.因式分解法适用于能化为两个因式之和等于0的 形式的方程. 3.配方法、公式法适用于所有一元二次方程.
初中九年级数学教案-因式分解法【省一等奖】
∴12x =,21x =-。
(答案)D 。
3.方程2120x x +-=的两个根为( )。
A .12x =-,26x =B .16x =-,22x =C .13x =-,24x =D .14x =-,23x =(解题过程)解:()()430x x +-=,则40x +=,或30x -=,解得:14x =-,23x =。
(答案)D 。
4.一元二次方程2412x x -=的根是( )。
A .12x =,26x =-B .12x =-,26x =C .12x =-,26x =-D .12x =,26x =(解题过程)解:整理得:2412x x -=,分解因式得:()()260x x +-=,解得:12x =-,26x =。
(答案)B 。
二、课堂设计。
1.知识回顾。
(1)因式分解的方法。
提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
公式法:利用平方差公式()()[]a b a b a b -=+-和完全平方公式()[2]a ab b a b ±+=±分解因式。
十字相乘法:简单来讲就是,十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。
其实就是运用乘法公式()()()²x a x b x a b x ab ++=+++的逆运算来进行因式分解。
(2)解一元二次方程的方法:直接开方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解2.因式分解法解一元二次方程的步骤。
初中因式分解方法教案
一、教学目标1. 知识与技能:让学生掌握因式分解的基本概念和方法,能够运用因式分解解决一些实际问题。
2. 过程与方法:通过学生的自主探究、合作交流,培养学生的动手操作能力、逻辑思维能力和数学素养。
3. 情感态度与价值观:激发学生学习数学的兴趣,体验成功的喜悦,培养学生的自信心。
二、教学内容1. 因式分解的定义与意义2. 常用的因式分解方法:提公因式法、公式法、十字相乘法、分组分解法等。
3. 因式分解的应用三、教学重点与难点1. 教学重点:让学生掌握因式分解的基本方法和技巧。
2. 教学难点:如何引导学生灵活运用因式分解的方法解决实际问题。
四、教学过程1. 创设情境:让学生计算一些简单的多项式,从而引出因式分解的概念。
2. 自主探究:让学生通过小组合作,探究并总结因式分解的方法。
3. 讲解与示范:教师对每种因式分解方法进行讲解和示范,让学生清晰地了解因式分解的步骤。
4. 练习与巩固:让学生通过课堂练习,加深对因式分解方法的理解。
5. 拓展与应用:让学生运用因式分解解决一些实际问题,提高学生的应用能力。
6. 总结与反思:让学生回顾本节课所学内容,总结因式分解的方法和技巧。
五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,是否能够主动探究、提出问题。
2. 知识掌握程度:通过课堂练习和课后作业,检查学生对因式分解方法和应用的掌握情况。
3. 合作与交流:评价学生在小组合作中的表现,是否能够有效沟通、共同解决问题。
4. 情感态度:观察学生在学习过程中的自信心和兴趣,是否能够积极面对挑战。
六、教学资源1. 教材:人教版《数学》七年级下册。
2. 教具:黑板、粉笔、多媒体课件。
3. 学具:练习本、文具。
七、教学时间1课时因式分解是初中数学的重要内容,通过本节课的教学,希望学生能够掌握因式分解的基本方法,并在实际问题中能够灵活运用。
在教学过程中,要注意激发学生的学习兴趣,培养学生的动手操作能力和逻辑思维能力,为今后的数学学习打下坚实的基础。
人教版数学九年级上册21.2.3因式分解法解一元二次方程 教案
两道一元二 次方程问题 的教学,可 以巩固所学 新知,同时 培养学生良 好的观察能 力和分析解 决问题的能 力.
应用 归纳:解一元二次方程的方法主要有直接开平方法、配方法、公式法和因式分
解法,其中直接开平方法和因式分解法较为简便,但是不适用于所有方程,配
情感态度
通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题、解决 问题,树立转化的思想方法.
教学 用因式分解法解某些一元二次方程
重点
教学 针对不同形式的一元二次方程选择适当的解法.
难点
授课 类型
新授课
课时
第一课时
教具
多媒体
教学活动
教学 步骤
师生活动
设计意图
提出问题:
复习前面所
(多媒体展示问题)
+3) =0,则 x1= -34 ,x2= -3 W.
学生自主解答问题,教师进行个别指导,然后学生进行做法讲述,教师进行点
评与总结.
板书:利用因式分解法解一元二次方程的步骤:
①将方程的右边化为 0;
②将方程的左边进行因式分解;
③_x0001_
令每个因式为 0,得到两个一元一次方程;
2.通过环 节 2 为理解 因式分解法 打好基础, 循序渐进, 使学生易于 接受新知;
题的能力及
(2)若(2x-1)(3x+5)=0,则 x1=
1 2
,x2=
-53
;
勇于探索的 精神,主要
(3)解方程 x2-x=0 时,方程可以变形为 x(x-1) =0,则 x1= 0 , 为因式分解
x2= 1 ;
法提供依
初中数学因式分解教案
初中数学因式分解教案初中数学因式分解教案(5篇)作为一名优秀的教育工作者,可能需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。
如何把教案做到重点突出呢?下面是小编帮大家整理的初中数学因式分解教案,欢迎阅读,希望大家能够喜欢。
初中数学因式分解教案1教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25;2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).初中数学因式分解教案2教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的'思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
初中九年级数学教案因式分解法
法
为学习本节
新知识作铺
学生观察式子特 垫
点,进行因式分解,
为下面地学习作
铺垫
学生根据 ab=0
得到 a=0 或 b=0, 对比探究,结
为下面学习作铺 合已有知识,
垫
尝试解题,培
养学生发现
学生直接利用 2 问题地能力
地结论完成 3 中
教学教案
教学教案
4. 试求下列方程地根
○1 4x2-11x =0; x(x-2)+ (x-2)=0; (x-2)2 -(2x-4)=0
○2 25y2-16=0; (3x+1)2 -(2x-1)2 =0; (2x-1)2 =(2-x)2
○3 x2+10x+25=0; 9x2-24x+16=0;
○4 5x2-2x- 1 = x2-2x+ 3 ; 2x2+12x+18=0;
4
4
解方程
分析:观察○1 ○2 ○3 三组方程地结构特点,在方程右边为 0
4
确定性.
分析:四个方程最适合地解法依次是:利用完全平方公式,
求根公式法,提公因式法,直接开平方法或利用平方差公
式. 归纳:配方法要先配方,再降次;公式法直接利用求根公
式;因式分解法要先使方程一边为两个一次因式相乘,另
一边为 0,再分别使各一次因式等于 0.配方法,公式法适 先观察,尝试选用
用于所有一元二次方程,因式分解法用于某些一元二次 合适方法解方程,
步理解降次 思想解方程
让学生在巩 固过程中掌 握所学知识, 培养应用意 识与能力
本节课应掌握: 1.用因式分解法解一元二次方程 2.归纳一元二次方程三种解法,比较它们地异同,能根据 方程特点选择合适地方法解方程 五,作业设 计
人教版因式分解市公开课获奖教案省名师优质课赛课一等奖教案
人教版因式分解教案一、教学目标:1. 理解因式分解的概念,掌握因式分解的基本方法。
2. 能够运用因式分解解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维和数学推理能力。
二、教学重点:1. 熟悉因式分解的基本方法和原理。
2. 掌握通过因式分解解决实际问题的思路和方法。
三、教学难点:1. 理解因式分解的意义和应用。
2. 运用因式分解解决复杂问题。
四、教学准备:1. 教材:人教版初中数学教材。
2. 板书:因式分解的基本方法和原理,例题和练习题。
五、教学过程:1. 导入活动通过举例子与学生互动,引导学生思考:什么是因式分解?为什么需要因式分解?什么情况下可以使用因式分解?2. 分组合作将学生分成小组,提供一些例如矩形面积、图形周长等问题,引导学生用因式分解的方法解决这些问题,并让他们与小组成员进行讨论,分享解题思路和方法。
3. 教师讲解教师在黑板上讲解因式分解的基本方法和原理,包括提取公因式、分组提取公因式和差平方的分解。
4. 辅助练习教师提供一些例题,让学生用课堂上学到的知识进行因式分解,教师可以适时给予指导和帮助。
5. 拓展应用针对学生已经掌握的因式分解方法,教师设计一些拓展应用题,让学生运用所学知识解答问题,提高解决问题的能力。
6. 总结归纳教师引导学生总结因式分解的基本方法和原理,鼓励学生积极参与讨论和思考,提高他们的逻辑思维和数学推理能力。
7. 练习巩固教师布置一些练习题,要求学生在课后完成,以巩固所学内容。
六、教学评价方法:1. 教师观察学生在课堂上的表现,包括对概念的理解和应用能力。
2. 学生通过课堂讨论、小组合作和个人练习来展示他们的学习成果。
七、教学扩展:以摘取一张图纸的面积作为例子,引导学生思考数学在日常生活中的运用,如何通过因式分解解决实际问题。
八、教学反思:本教案通过寓教于乐的方式,引导学生主动参与学习,帮助他们更好地理解因式分解的概念和方法。
通过小组合作和讨论,学生之间的互动促进了他们的思维深度和团队合作能力的提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.3因式分解第1课时提公因式法教学目标1.了解因式分解公因式等相关的概念及与整式乘法的关系.2.能找出多项式的公因式,会用提公因式法分解简单的多项式.教学重点会用提公因式法分解因式.教学难点正确理解因式分解的概念,准确找出公因式.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标同学们,我们先来看下面两个问题:1.630能被哪些数整除,说说你是怎么想的?(2,3,5,7,9,10等)2.当a=101,b=99时,求a2-b2的值.对于问题1我们必须对630进行质因数分解,对于问题2,虽然可以直接代值进行计算,但有没有简单的方法使计算变得简单呢?这就是我们这节课要解决的问题.二、自主学习,指向目标自学教材第114页至115页,思考下列问题:1.把一个多项式化成几个整式积的形式,像这样的式子变形叫做把这个多项式因式分解2.因式分解与整式的乘法之间的关系是互逆变形的关系.3.公因式确定的方法是:①系数是各项系数的最大公约数,②因式的字母取各项都含有的字母;③因式的指数取最低次数.三、合作探究,达成目标探究点一因式分解的定义活动一:填空并观察:(1)计算:x(x+1)=________;(x+1)(x-1)=________.(2)请你将下列各式写成乘积的形式:①x2+x=________;②x2-1=________;③am+bm+cm=________.展示点评:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.小组讨论:因式分解与整式乘法有什么关系? 反思小结:因式分解是由一个多项式到几个整式积的变形,整式乘法是几个整式的积到一个多项式的变形,它们之间是互逆变形.针对训练:见《学生用书》相应部分 探究点二 公因式 活动二:填空:①6与9的最大公约数是________;②多项式ma +mb +mc 的公因式是________.展示点评:公因式的定义:组成多项式的各项都有一个公共的因式,叫做这个多项式各项的公因式.小组讨论:归纳确定公因式的方法【反思小结】确定公因式的方法:(1)公因式的系数应取各项系数的最大公约数;(2)因式取各项相同的因式;(3)因式的指数取次数最低的针对训练:见《学生用书》相应部分 探究点三 提取公因式法分解因式 活动三:1.把多项式ma +mb +mc 写成两个整式积的形式是: ma +mb +mc =m(a +b +c),其中m 是组成多项式各项的公因式,另一个因式a +b +c 是ma +mb +mc 除以m 所得的商2.一般的,如果多项式的各项都有公因式,可以先把这个公因式提取出来,将多项式写成公因式与另一个因式积的形式,这种分解因式的方法叫做提取公因式法.3.分解因式:(1)8a 3b 2+12ab 3c ;(2) 2a(b +c)-3(b +c)小组讨论:应用提取公因式法分解因式时,其关键是什么? 另一个因式如何确定? 展示点评:关键是确定公因式;另一个因式就是所要分解的多项式除以公因式所得的商 解答过程见课本P 115例1,例2【反思小结】(1)应特别强调确定公因式的三个条件,以免漏取,即系数、所有相同的字母、指数;(2)当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提取公因式后剩下的应是1,1作为项的系数时可以省略,但如果单独成一项时不能漏掉.提取公因式后的项数应与原多项式的项数相等,这样可以检查是否漏项.(3)提取公因式时应先观察第一项系数的符号,或是负号时应用添括号法则提出负号,此时一定要把每一项都变号,然后再提取公因式.针对训练:见《学生用书》相应部分 四、总结梳理,内化目标1.因式分解与整式乘法之间的关系:整式乘法 互逆变形因式分解;2.确定公因式的方法.3.提取公因式法分解因式应注意:①找公因式,提公因式,注意符号及不要漏项;②分解结果到每个因式不能再分解为止.五、达标检测,反思目标1.下列各式从左到右的变形为因式分解的是( C )A .(a -2)(a +2)=a 2-4B .m 2-1+n 2=(m +1)(n -1)C .8x -8=8(x -1)D .x 2-2x +1=x(x -2)+12.多项式8a 3b 2-12ab 3c +16ab 的公因式是__4ab __. 3.把下列各式因式分解:(1)a(a-3)+2(3-a)解:原式=a(a-3)-2(a-3)=(a-3)(a-2)(2)9a2b3-6a3b2-3a2b2解:原式=3a2b2(3b-2a-1)(3)-6x3-10x2-2x解:原式=-2x(3x2+5x+1)(4)a(y-z)-4b(z-y)解:原式=a(y-z)+4b(y-z)=(y-z)(a+4b)4.先因式分解再求值:5x(m-2)+4x(2-m),其中x=0.4,m=5.5.解:原式=(m-2)(5x-4x)=x(m-2)=0.4(5.5-2)=0.4×3.5=1.4●布置作业,巩固目标教学难点1.上交作业:课本第119页1、4(1).2.课后作业:见《学生用书》.第2课时平方差公式教学目标1.能说出平方差公式的特点.能较熟练地应用平方差公式分解因式.2.掌握利用平方差公式因式分解的步骤.教学重点应用平方差公式分解因式.教学难点灵活应用平方差公式分解因式,并理解因式分解的要求.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标问题1:看谁算得最快:①982-22;②已知x+y=4,x-y=2,则x2-y2=________.问题2:你能将多项式x2-4与多项式y2-25分解因式吗?这两个多项式有什么共同的特点吗?你可以把这两个多项式写成两个因式积的形式吗?今天我们就来学习利用平方差公式分解因式.二、自主学习,指向目标自学教材第116页至117页,思考下列问题:1.观察平方差公式:a2-b2=(a+b)(a-b)的项、指数、符号有什么特点?(1)左边是二次二项式,每项都是平方的形式,两项的符号相反.(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两个数的差.2.乘法公式的平方差公式与因式分解的平方差公式的联系是互逆变形.三、合作探究,达成目标探究点一探究平方差公式活动一:1.平方差(分解因式)公式: a2-b2=(a+b)(a-b),即:两个数的平方差,等于这两个数的和与这两个数的差的积.展示点评:公式特征(与乘法公式正好相反): 左边是两数的平方差,右边是这两数的和乘以这两数差的形式.(因此叫平方差公式)小组讨论:运用平方差公式的条件有哪些?【反思小结】运用平方差公式的条件:(1)多项式是二项式,且两项符号相反(可转化为差的形式);(2)两项的绝对值分别可化为一个数(整式)的平方的形式.针对训练:见《学生用书》相应部分探究点二应用平方差公式因式分解活动一:分解因式(1)4x2-9;(2)(x+p)2-(x+q)2.解答过程见课本P116例3例3分解因式(1)x4-y4;(2)a3b-ab.展示点评:一个多项式第一次分解后若还能进行分解,应怎么做?展示点评:(继续分解到不能再分解为止)小组讨论:归纳分解因式的一般步骤.解答过程见课本P116例3反思小结:1.分解因式的一般步骤:一提二套三分组即先看有没有公因式,若有提出公因式,再看能不能运用公式,若能运用公式进行分解;若不能则考虑分组,分组的原则:①分组后有公因式可提;②分组后有公式可套. 2.公式中的“a”,“b”可表示单项式也可表示多项式;若表示多项式,应将多项式用括号括起来.3.分解因式必须进行到每一个多项式因式都不能再分解为止.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.能说出平方差公式的特点.能较熟练地应用平方差公式分解因式2.对于多项式的因式分解要注意:①如果多项式各项含有公因式,则第一步是提出这个公因式②如果多项式各项没有公因式,则第一步是考虑用公式分解因式③第一步分解因式后,所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式因式都不能再分解为止五、达标检测,反思目标1.下列多项式中,能否用平方差分解因式?(1)x-xy;(2)x+xy;(3)x2+y2;(4)x2-y2;解:(1)不能(2)不能(3)不能(4)能(5)-x 2+y 2; (6)-x 2-y 2; (7)x 3-y 2; (8)x 4-y 4. 解:(5)能 (6)不能 (7)不能 (8)能 2.分解因式: (1)a 2-125b 2;解:原式=(a +15b )(a -15b )(2)-a 4+16;解:原式=(4+a 2)(4-a 2)=(4+a 2)(2+a )(2-a )(3)x -xy 2;解:原式=x (1-y 2) =x (1+y )(1-y )(4)(2x +3y)2-(3x -2y)2;解:原式=(2x +3y +3x -2y )·(2x +3y -3x +2y ) =(5x +y )(5y -x )(5)5m 2a 4-5m 2b 4;解:原式=5m 2(a 4-b 4)=5m 2(a 2+b 2)(a 2-b 2)=5m 2(a 2+b 2)(a +b )(a -b )(6)3xy 3-3xy ;解:原式=3xy (y 2-1) =3xy (y +1)(y -1)(7)a 2-4b 2-a -2b ;解:原式=(a 2-4b 2)-(a +2b ) =(a +2b )(a -2b )-(a +2b ) =(a +2b )(a -2b -1)3.简便计算:(1)4292-1712;解:原式=(429+171)(429-171) =600×258 =154800(2)5152×24-4852×24.解:原式=24×(5152-4852) =24×(515-485)(515+485) =24×30×1000 =720000●布置作业,巩固目标教学难点1.上交作业:课本P119第2题,第4(2)题.2.课后作业:见《学生用书》.第3课时完全平方公式教学目标1.会判断完全平方式.2.能直接利用完全平方公式进行因式分解.教学重点用完全平方公式法进行因式分解.教学难点灵活应用公式分解因式.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.前面我们学习了因式分解的意义,并且学会了一些因式分解的方法,运用学过的方法你能将a2+2a+1分解因式吗?2.在括号内填上适当的式子,使等式成立:(1)(a+b)2=________;(2)(a-b)2=________.(3)a2+________+1=(a+1)2;(4)a2-________+1=(a-1)2.展示点评:(1)你解答上述问题时的根据是什么?(2)第(1)(2)两式从左到右是什么变形?第(3)(4)两式从左到右是什么变形?(从左到右是乘法;从左到右是分解因式)我们知道利用平方差公式可以来进行因式分解,那么这节课就来研究如何利用完全平方公式来进行因式分解.二、自主学习,指向目标自学教材第117页至118页,思考下列问题:1.观察完全平方公式:________=(a+b)2;________=(a-b)2完全平方式的特点:左边:①项数必须是________;②其中有两项是________;③另一项是________.右边:________________________________________________________________________.2.乘法公式完全平方公式与因式分解完全平方公式的联系是________.三、合作探究,达成目标探究点一完全平方公式(因式分解)活动一:我们把乘法公式中:(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2等号右边的式子即: a2+2ab+b2和a2-2ab+b2叫做完全平方式.展示点评:运用完全平方公式分解因式的方法同用平方差公式分解因式是一致的.小组讨论:完全平方式的特征是什么?【反思小结】完全平方式满足两个条件:(1)是一个三项式;(2)两数的平方和加上或减去这两数积的2倍.针对训练:见《学生用书》相应部分探究点二运用完全平方公式分解因式活动二:把乘法公式逆向变形为:a2+2ab+b2=________;a2-2ab+b2=________可以发现,通过变形把一个完全平方式也变成了两个因式积的形式(平方也就是两个相同因式积的形式),即:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1把下列多项式分解因式:(1) 16x2+24x+9;(2)-x2+4xy-4y2.思考:若所要分解的多项式是三项式,应当考虑应用什么公式分解?小组讨论:运用完全平方公式分解因式应注意什么问题?展示点评:首先考虑用完全平方公式分解.解答过程见课本P118例5【反思小结】在直接应用完全平方公式分解因式时应当注意:1.先找平方项,再运用公式.2.若平方项前面是负号,先把负号提到括号前面,然后再考虑用完全平方公式针对训练:见《学生用书》相应部分活动三:把下列多项式分解因式:(1)3ax2+6axy+3ay2;(2)(a+b)2-12(a+b)+36展示点评:能提取公因式的首先应当提取公因式,再考虑应用公式分解,对于平方项的底数是多项式的要看作一个整体.小组讨论:多项式含有公因式的分解时应当怎么做?对于一些平方项的底数是多项式的,又应当如何看待?解答过程见课本P118例6【反思小结】1.能提取公因式的要先提取公因式;2.灵活地将x+y看作一个整体;3.分解因式必须进行到不能再分解为止.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.应用完全平方公式分解因式一定要熟记公式特征:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)22.完全平方式的结构特征:(1)项数必须是三项;(2)其中有两项是平方项且都是正的;(3)还有一项是两平方项底数乘积的两倍.3.分解因式的一般思路:一提(提公因式法)二套(运用公式法)平方差公式法 (两项) 完全平方公式法(三项) 三分组(针对分解因式是三项式以上且不能直接分解的,要考虑分组分解.4.分解到最后一定要检查是否分解到不能再分解为止.五、达标检测,反思目标1.下列多项式,能用完全平方公式分解因式的是( C )A.x2+xy+y2B.x2-2x-1C.-x2-2x-1 D.x2+4y22.多项式4a2+ma+25是完全平方式,那么m的值是( D )A.10 B.20 C.-20 D.±203.-x2+2xy-y2的一个因式是x-y,则另一个因式是__-(x-y)__.4.分解因式:(1)y2+2y+1;解:原式=(y+1)2(2)16m2-72m+81.解:原式=(4m-9)25.分解因式:(1)(x+y)2+6(x+y)+9;解:原式=(x+y+3)2(2)4xy2-4x2y-y3.解:原式=(-4xy+4x2+y2)(-y)=-y(2x-y)26.已知(a+b)2=25,(a-b)2=9,求a2+b2和ab的值.解:由题意可得:a2+2ab+b2=25①a2-2ab+b2=9②由①+②得:2(a2+b2)=34,a2+b2=17由①-②得:4ab=16,ab=4●布置作业,巩固目标教学难点1.上交作业:课本P119第3题,第9题.2.课后作业:见《学生用书》.。