300MW汽轮机组热力性能计算

合集下载

300MW机组主要性能参数

300MW机组主要性能参数
1100
汽轮机制造厂
东汽
上海
东汽
哈汽
主蒸汽流量(TRL工况)
t/h
1045
1130
1014.3
1045.9
主蒸汽压力
MPa(a)
16.67
16.67
24.2
24.2
主蒸6
566
再热蒸汽流量(TRL工况)
t/h
779.787
940
829.93
880.82
再热蒸汽温度

538
540
附件1 附表1-1 300MW等级机组主要性能参数
性能参数
单位
亚临界供热
湿冷、汽泵
亚临界供热
间冷、汽泵
超临界供热
直冷、汽泵
超临界
湿冷、汽泵
装机容量
MW
330
300
350
350
汽轮机型式
两缸两排汽
两缸两排汽
三缸两排汽
两缸两排汽
过热器出口蒸汽流量(BMCR)
t/h
1100
1164
1140
%
5.3
5.3
5.8
5.3
机组发电设计标准煤耗
g/kW.h
287.9
307
297.3
279.4
机组供电设计标准煤耗
g/kW.h
304
324.2
315.6
295
566
566
低压缸排汽压力
kPa(a)
4.9/11.8
11/28
13/32
6.6/11.8
给水温度(TRL)

276
277
276.4
287.88

汽轮机热力性能

汽轮机热力性能

汽轮机热力性能汽轮机热力性能qilunji reli xingneng汽轮机热力性能steam turbine performance汽轮机装置(包括汽轮机、凝汽器和给水加热器等)的热力性能,包括热耗率和热效率,主要与采用的热力系统有关。

热力系统图1[300兆瓦汽轮机装置热力系统示意图]为采用再热的300兆瓦凝汽式汽轮机装置的热力系统示意图。

来自锅炉的蒸汽经蒸汽室进入高压缸膨胀作功。

高压缸的排汽,除小部分通往给水加热器加热给水外,其余的通往再热器。

蒸汽在再热器中再热后,通往中压缸继续膨胀作功。

中压缸的排汽,除小部分流向驱动给水泵的小汽轮机和除氧器外,其余流入双流结构的低压缸作功。

低压缸的排汽和小汽轮机排汽一起进入凝汽器凝结成水。

为了提高循环热效率,从汽轮机中间级抽出一部分作过功的蒸汽,分别送入各给水加热器逐步加热凝结水。

图 [300兆瓦汽轮机装置热力系统示意图]中除轴封加热器外,共有8台加热器,其中1台为除氧器,它是混合式加热器,由抽汽将凝结水加热到饱和温度,以除去溶解在水中的氧,防止设备腐蚀;其余7台均为表面式加热器。

从凝结水泵出口到给水泵前这段管路上的加热器承受低水压,称为低压加热器;给水泵后的加热器承受高水压,称为高压加热器。

给水泵将通过低压加热器的凝结水升压,再经高压加热器将给水加热后送往锅炉;另有很小部分给水从给水泵出口直接送往锅炉,用于喷水调节过热蒸汽温度。

各高压加热器中抽汽的凝结水(疏水)从抽汽压力较高的加热器逐级排入压力较低的加热器,并在其中放出一部分热量,最后排入除氧器。

低压加热器也同样逐级排出疏水,最后排入凝汽器。

热力性能汽轮机装置的热力性能用热耗率和热效率表示。

汽轮机装置的热耗率为每输出单位机械功所耗的蒸汽热量。

热效率是输出机械功与所耗蒸汽热量之比。

电站汽轮机装置的热耗率和热效率是按发电机输出单位功计算的,已考虑了发电机效率。

为了进行热力性能计算,必须列出各部分的热力系统热平衡方程,因此热力性能计算也称热平衡计算。

对300MW汽轮机组热应力计算分析

对300MW汽轮机组热应力计算分析

对300MW汽轮机组热应力的计算分析【摘要】汽轮机在启动、停机或负荷变动时,转子金属内部将产生较大的温度梯度并由此产生热应力,热应力是影响转子疲劳寿命损耗的重要因素。

分析转子热应力在启停时的变化规律,并使之控制在合理范围内,是制定大机组合理运行方式的重要依据。

本文利用有限元分析软件anasys分析国产300mw机组热态启动的温度场和应力场,通过对计算结果的分析,对机组运行提出建议。

【关键词】对象;模型1.研究对象(1)研究对象为东方汽轮机厂生产的型号为n300-16.7/537/537-5型的机组。

该机组采用高中压合缸布置方式,因此高温部分集中在高中压汽缸中段。

高中压转子采用整锻结构,材料为30crmov。

(2)隔离体的选取和网格划分图1 隔离体及网格划分根据分析和文献(1)可知,轴封段和高中压前几级在启动过程中经历的温度变化最剧烈, 产生的热应力最大。

本文沿轴向截取转子高压调节级到中压第一级的转子为计算隔离体。

对隔离体进行网格划分,如图1所示。

2.数学模型2.1温度场数学模型根据文献(1),计算汽轮机转子的不稳定温度场时,可以认为转子是一个均匀、各向同性且无内热源的物体,属于解轴对称非定常温度函数问题,温度他t(z,r,τ)在区域中应满足下列偏微分方程式:■=■(■+■+■■) (1)式中λ—材料的导热率;ρ—材料的密度;cp—材料的比热。

确定上面微分方程的解,除了需要满足初始条件t│τ=0=f(z, r)外,在物体边界条件上还应满足一定的边界条件,对于汽轮机转子来说,外表面的边界条件由蒸汽对转子表面的换热速度来确定,属于传热学中的第三类边界条件,即边界与介质的热交换条件为已知:-λ■|r=α(t-tf)(2)式中tf——转子表面的温度;α——蒸汽与转子表面的换热系数。

当放热系数α=0时,式(2)化为绝热边界条件,即无热交换,如转子的中心孔边界;若α→∞,则t(z,r)│r=tr,此时由第三类边界条件转化为第一类边界条件,即加热物体表面的温度与介质的温度相等。

300MW火电机组性能计算原理说明书(锅炉)

300MW火电机组性能计算原理说明书(锅炉)

第一部分 锅炉系统性能计算锅炉系统性能计算包括运行工况下的锅炉毛效率计算、煤耗量计算和空预器漏风及效率计算。

锅炉热力系统热平衡图如下所示。

一、输入输出法(正平衡法)效率1.燃料的输入热量(KJ/kg 燃料)燃料的输入热量包括燃料(煤)应用基低位发热量和燃料(煤)的物理显热。

rx yD W r Q Q Q += (1)式中:yDWQ ——燃料(煤)应用基低位发热量,KJ/kg 燃料 rx Q ——燃料(煤)的物理显热,KJ/kg 燃料。

由(2)式计算。

)(0t t C Q r r rx -= (2)式中:r C ——燃料的比热,KJ/kg.℃。

由(3)式计算。

r t ——燃料的温度,℃。

0t ——基准温度,℃。

1001868.4100100yy grr W W C C ⨯+-⨯= (3)式中:g r C ——煤的干燥基比热,KJ/kg.℃。

由(4)式计算。

y W ——燃料(煤)应用基水分,%。

)]100([01.0y r y h g r A C A C C -+= (4)式中:h C ——灰的比热,KJ/kg.℃。

由(5)式计算。

y A ——燃料(煤)应用基灰分,%。

r C ——可燃物质的比热,KJ/kg.℃。

由(5’)式计算。

h h t C 41002.571.0-⨯+= (5) )130)(13(1068.3784.06r r r t v C ++⨯+=- (5’)式中:h t ——灰的温度,℃。

r ν——燃料(煤)的可燃基挥发分,%。

2.锅炉热负荷(KJ/kg 燃料)BQ Q b b '= (6))()()()()()("'"''gs bs pw gs bq bq zj zq zj zq zq zq gj gq gj gs gq gs b h h D h h D h h D h h D h h D h h D Q -+-+-+-+-+-=(7)式中,'bQ ——总锅炉热负荷 B ——燃料消耗量,T/hgs D ——省煤器给水流量,T/hgq h ——主蒸汽焓(炉侧),KJ/kg gs h ——给水焓,KJ/kggj D ——过热器减温水流量,T/h gj h ——过热器减温水焓,KJ/kg'zqD ——再热器入口蒸汽流量,T./h "zqh ——热再热汽焓(炉侧),KJ/kg 'zqh ——冷再热汽焓(炉侧),KJ/kg zj D ——再热器减温水流量,T/hzj h ——再热器减温水焓,KJ/kg bq D ——汽包饱和蒸汽抽出量,T/h bq h ——汽包饱和蒸汽焓,KJ/kg bs h ——汽包饱和水焓,KJ/kgpw D ——排污水流量,T/h3. 输入输出法效率(正平衡效率):%1001,⨯=rbb Q Q η (8) 实用中,(8)用来计算实际燃煤消耗量B 和标准煤耗量B 0:h T Q Q B r b b/,1002'⨯=η (9)h T Q Q B r b b/,10002'0⨯=η (10)式中,2b η为由热损失法计算得到的锅炉效率,Q r0为标准煤的低位发热量:kg KJ Q r /292700=二、热损失法(反平衡法)效率1. 排烟热损失2q ,%10022⨯=rQ Q q (11) OH gy Q Q Q 2222+= (11’) 式中:gy Q 2——干烟气带走的热量,KJ/kg 燃料。

300MW汽轮机技术参数

300MW汽轮机技术参数

意大利GIE公司 TCDF-328.5 亚临界 一次中间再热 单轴 双缸双排气 冲动凝汽式 328.5 334.6 16.67/3.28 538/538 1025 0.0049 290.5 8 1+9/6/2*6=28 851 7874 18.79
哈尔滨汽轮机厂 N600-16.7/537/537 亚临界 一次中间再热 单轴 四缸四排气 反动凝汽式 600 648 16.67/3.29 537/537 1815.3 0.00539 20 272.5 8 1+10/2*9/4*7=57 869 8005.5 32
上海汽轮机厂 N300-16.2/550/550 亚临界 一次中间再热 单轴 四缸四排气 冲动凝汽式 300 16.2/3.12 550/550 945 0.0051 20 263 8 1+8/11/4*6=44 700 8331 23.828
上海汽轮机厂 N300-16.7/537/537 亚临界 一次中间再热 单轴 双缸双排气 反动凝汽式 300 326 16.7/3.29 537/537 922.3 0.0054 20 273 8 1+10/9/2*7=34 869 8080 17.629
法国CEM公司 D3YTT2*54 亚临界 一次中间再热 单轴 三缸双排气 反动凝汽式 313
日本三菱公司 日本东芝公司 2F-33.5 TC4F
美国GE公司 AD-5
亚临界 亚临界 亚临界 一次中间再热 一次中间再热 一次中间再热 单轴 单轴 单轴 双缸双排气 三缸双排气 双缸双排气 冲动凝汽式 冲动凝汽式 冲动凝汽式 350 350 352 364.3 364 17.76/3.85 16.6/3.49 16.6/3.53 17.5/3.11 540/540 538/538 538/538 537.8/537.8 921 1061.9 1085 0.00558 0.0049 0.0058 0.0049 20 20.5 20 28.86 258 274.7 274 282 7 7 8 8 1+17/14/2*5=42 1+11/10/2*6=34 1+7/6/4*6=38 1+8/7/2*5=26 867 851 660.4 851 7938 7884 7754 7980 16.79 16.31 24.732

300MW火电机组热力系统选择资料

300MW火电机组热力系统选择资料

300MW火电机组热力系统选择摘要300MW级燃煤机组是我国在近阶段重点的火力机组,由于300MW发电机组具有容量大,参数高,能耗低,可靠性高,对环境污染小等特点,今后在全国将会更多的300MW级发电机组投入电网运行。

本次设计的目的是通过对300MW火力发电厂热力系统局部的初步设计,掌握火力发电厂热力系统初步设计的步骤、计算方法及设计过程中设备的选择方法,熟悉热力系统的组成、连接方式和运行特性。

本文分为四部分,对锅炉燃烧系统及其设备进行选择,进行原则性热力系统的拟定计算、全面性热力系统的拟定和汽机主要辅助设备的确定。

通过一些给定的基本数据和类型进行科学的计算,来选配发电机组所需的各种设备,使其达到优化。

本次设计的目的是通过对300MW火力发电厂热力系统局部的初步设计,掌握火力发电厂热力系统初步设计的步骤、计算方法及设计过程中设备的选择方法,熟悉热力系统的组成、连接方式和运行特性。

本文分为四部分,对锅炉燃烧系统及其设备进行选择,进行原则性热力系统的拟定计算、全面性热力系统的拟定和汽机主要辅助设备的确定。

通过一些给定的基本数据和类型进行科学的计算,来选配发电机组所需的各种设备,使其达到优化。

关键词:火力发电厂;热力系统;初步设计;设备选择目录摘要 (I)前言 (1)1 锅炉辅助设备的选择 (2)1.1燃烧系统的计算 (2)1.2 磨煤机选择及制粉系统热力计算 (2)2 发电厂主要设备的选择 (5)2.1 汽轮机型式、参数及容量的确定 (5)2.2 锅炉型式和容量的确定 (5)3 热力系统辅助设备的选择 (6)3.1 给水泵的选择 (6)3.2 凝结水泵的选择 (7)3.3 除氧器及给水箱的选择 (9)3.4连续排污扩容器的选择 (9)3.5定期排污扩容器的选择 (10)3.6 疏水扩容器的选择 (11)3.7 工业水泵的选择 (11)3.8 循环水泵的选择 (12)4 原则性热力系统的拟定 (14)4.1 除氧器连接系统的拟定 (14)4.2 给水回热连接系统的拟定 (15)5全面性热力系统的拟定 (18)5.1 选择原则 (18)5.2 主蒸汽管道系统 (18)5.3 再热蒸汽旁路系统 (19)5.4给水管道系统 (20)5.5回热加热系统 (20)5.6 除氧器及给水箱管道系统 (21)5.7 其他一些系统 (21)结论 (23)致谢 (24)参考文献 (25)前言电力工业,是我国经济不断发展的基础。

汽轮机热力性能指标公式推导及验证

汽轮机热力性能指标公式推导及验证

汽轮机热力性能指标公式推导及验证吕海祯; 丁立新【期刊名称】《《发电设备》》【年(卷),期】2019(033)006【总页数】5页(P389-392,398)【关键词】汽轮机; 热力性能指标; 再热回热循环【作者】吕海祯; 丁立新【作者单位】国网山东省电力公司电力科学研究院济南250003【正文语种】中文【中图分类】TK261为了从热力学的角度,对再热回热汽轮机性能进行具体的理论分析,比照简单朗肯循环的热力学分析,需要知道理想比内功率、相对内效率、理想循环效率、理想循环的平均吸热温度和平均放热温度等热力性能指标。

通过这些指标,把热力学和热力工程两个领域联系起来,更有利于从理论与实践相结合上实现两个专业的全面协作;因此,有必要确定再热回热汽轮机的这些热力性能指标。

笔者以典型的一次再热八级回热凝汽式汽轮机为例,对这些热力性能指标进行公式推导、验证和分析讨论。

1 热力性能指标公式推导1.1 理想比内功率一次再热八级回热凝汽式汽轮机的绝对内效率可表示为:(1)式中:η i为汽轮机绝对内效率;αj、αrh、αc分别为汽轮机进汽1 kg时1~8级抽汽、中压缸进汽、低压缸排汽份额;h0、hfw分别为汽轮机自动主汽门前实测的进汽焓、锅炉省煤器入口实测的给水焓,kJ/kg;qrh为再热蒸汽吸热量,kJ/kg;Δhj为抽汽在汽轮机中的实际焓降,kJ/kg,再热前Δhj=h0-hj,再热后Δhj=h0+qrh-hj,hj为汽轮机1~8级抽汽焓,kJ/kg;Δhc为凝汽在汽轮机中的实际焓降,kJ/kg,Δhc=h0+qrh-hc,hc为低压缸排汽与凝汽器喉部结合面排汽焓,kJ/kg。

该汽轮机高压缸有2级抽汽,第2级抽汽为高压缸排汽;中、低压缸各3级,第5级抽汽为中压缸排汽;机组共有8级抽汽。

式(1)分子第一项可写为:(2)式中:Δhsj为抽汽对应的等熵焓降,kJ/kg;ηj为抽汽点的级段效率;ΔhsH为自动主汽门前至高压缸排汽对应的等熵焓降,kJ/kg,ΔhsH=h0-hsH,hsH为高压缸排汽的等熵焓,kJ/kg;η H为高压缸效率;ΔhsI为中联门至中低压连通管中点对应的等熵焓降,kJ/kg,ΔhsI=hrh,out-hsI,hrh,out为中压缸中联门前实测蒸汽焓,kJ/kg,hsI为中低压连通管中点的等熵焓,kJ/kg;η I为中压缸效率。

毕业设计:国产300MW机组热力系统的拟定计算及分析(终稿)-精品

毕业设计:国产300MW机组热力系统的拟定计算及分析(终稿)-精品

**工程学院毕业设计说明书(论文)题目:国产300MW机组热力系统的拟定计算及分析指学生姓名:班级: **动*** 班指导老师: ***时间: 2007.11.4~2007.12.1论文摘要本设计的内容为国产N300MW机组发电厂原则性热力系统的拟定、计算、及火电厂热经济性分析。

本设计从原则性热力系统的拟定、计算、汽轮机耗量及各项汽水流量的计算;热经济性指标计算;全面性热力系统的拟定分板及计算,对电厂热力系统经济性分板方面进行阐述。

目录毕业设计任务第一章原则性热力系统的计算第二章汽轮机汽热量及各项汽水流量计算第三章热经济指标计算第四章全面热力系统的分板建议小结附图一、二、三毕业设计任务题目:国产N300MW机组发电厂原则性热力系统的拟定,计算与分析(额定工况)内容及要求:一、根据给定条件拟定发电厂的原则性热力系统。

二、用热平衡法理行额定工况的热力系统计算,求出系统各部分的汽水流量,发电功率及主要经济指标。

三、根据计算结果分析拟定系统的可靠性、经济性。

主要原始资料(一)、锅炉型式及有关数据1、型号:DG1000/170—Ⅰ型2、额定蒸发量:1000t/h3、一次汽压力:16.76Mpa,温度555℃4、二次汽压力(进/出)3.51/3.3 Mpa5、温度(进/出)335℃/555℃6、汽包压力:18.62 Mpa7、锅炉热效率:90.08%8、排污量:D pw=5t/h(二)汽轮机型式及额定工况下的有关数据:1、汽轮机型式:N300—16.18/550/550型中间再热凝汽式汽轮机、四缸四排汽、汽缸及轴封系统情况见附图。

2、额定功率:300MW3、主汽门前蒸汽压力:16.181Mpa,温度550℃4、中压联合汽门前蒸汽压力:3.225 Mpa,温度550℃5、额定工况给水温度:262.5℃6、额定工况汽机总进汽量:970T/H。

7、背压:0.0052 Mpa,排汽焓2394.4KJ/kg。

8、各级抽汽参数如下表9、加热器散热损失:高加1%,除氧器4%,低加0.5%,轴加4%。

300mw机组原则性热力系统计算

300mw机组原则性热力系统计算

1、汽轮发电机组型号:N300-16.8/550/550 实际功率:300MW初参数:16.18Mpa,550℃;再热汽参数:〔3.46Mpa,328℃〕/〔3.12 Mpa 550℃〕Mpa x=9%给水泵出口压力:17.6 Mpa,给水泵效率:η凝结水泵出口压力:1.18 Mpa除氧器工作压力:0.588 Mpa机组效率:ηmη不考虑回热系统的散热损失,忽略凝结水泵焓升。

锅炉效率:ηb=0.925 管道效率:η3、全厂汽水损失:DD B 〔D B为锅炉蒸发量〕轴封漏汽量:Dsg=1.01Do 〔Do为汽轮机新汽量〕轴封漏汽焓:h sg=3049kJ/kgMpa汽轮机进汽节流损失为:4%中压联合汽门压损:2%各抽汽管道压损:6%小汽机机械效率:η设计:根据数据,与水蒸汽焓熵图,查出各抽汽点焓值后,作出水蒸汽的汽态膨胀线图如下:二、计算新汽流量与各处汽水流量1、给水泵焓升:〔假设除氧器标高为35m〕△hpu=1000〔P入-P出〕V/η=21.56〔kJ/kg〕给水泵出口焓值h=h入+△〔kJ/kg〕2、大机与小机排汽焓:h c=xh¹+〔1-x〕h¹¹〔kJ/kg〕3、根据所知参数知道,#1、2、3GJ疏水为未饱和水除氧器为饱和水,#1、2、3、4DJ疏水为饱和水轴加、凝结器为饱和水。

由以上特点与设计参数查未饱和水特性表、饱和水与饱和蒸汽表、查汽轮机总汽耗量为D¹那么 D¹=Do+Dsg=1.01 Do 即α¹锅炉蒸发量D B= D¹D BD B=1.01 Do即α锅炉给水量Dgs : Dgs= D B=1.0202 Do 即αh 〕α1=αgs 〔h12-h11〕/〔 h1-h1s 〕=1.0202*〔1129.3-1029〕/〔3133.3-1065〕〕=αgs 〔h22-h21〕 α2=[αgs 〔h22-h21〕-α1〔h1 s –h2s 〕]/〔 h2-h2s 〕=1.0202*〔1029-824.5〕-0.04947*〔1065-853〕/〔3049.6-853〕6、#3GJ 列热平衡式:α3、h31+α2〕〔h2 s –h3s 〕=αgs 〔h32-h31〕α3=[αgs 〔h32-h31〕-〔α1+α2〕〔h2 s –h3s 〕]/〔 h3-h3s 〕〔824.5-688.8〕-〔0.04947+0.09020〕*〔853-706.8〕/〔3341.9-706.8〕7、αxj : αxj △Hxj ηm=αgs △hpu αxj=αgs △hpu /△Hxj η/8、除氧器: 列物质平衡式:α4、αn4=αgs-〔α1+α2+α3〕-α4 〕-α4 4h 4+αn4h d42=αgs h ¹cy αα α α9、#4DJ :α5、h5h5- h ¹bh4〕、αgs α5=αn4〔h D42- h D41〕/〔 h5- h ¹bh4〕3049.6-623.8〕¹bh3〕- h D31〕gs〕-α5〔h ¹bh4- h ¹bh3〕/〔 h6- h ¹bh3〕537.1-376.07〕-0.02909*〔623.8-542.7〕/〔2933.1-542.7〕= 0.05483列热平衡式:〔α5+α6〕*〔h ¹bh3- h ¹bh2〕+α7〔h7- h ¹bh2〕=αn4〔h D31- h D21〕α7=[αn4〔h D31- h D21〕-〔α5+α6〕*〔h ¹bh3- h ¹bh2〕]α5+α6、h ¹bh3α7=0.82815*〔376-223.9〕-〔0.02909+0.05483〕*〔542.7-387.5〕/〔2714-387.5〕12、SG αsg 、hsgαn4、h D21h¹bh列热平衡式:αn4〔h D21- h n〕=αsg〔h sg - h¹bh〕h D11=αsg〔h sg - h¹bh〕/αn4+ h n=0.01*〔3049-236.5〕/0.82815+=170.6〔kJ/kg〕13、#1DJα8、h8αn4、h D12αn4、h D11〔α5+α6+α7〕、h¹列热平衡式:αn4〔h D12- h D11〕=α8〔h8 - h¹bh1〕+〔α5+α6+α7〕〔h¹bh2- h¹bh1〕α8=[αn4〔h D12- h D11〕-〔α5+α6+α7〕〔h¹bh2- h¹bh1〕]/〔 h6- h¹bh3〕=[0.82815*〔223.9-170.6〕-〔0.02909+0.05483+0.04854〕*〔387.5-236.5〕]/〔2607.5-236.5〕14、凝结器:列物质平衡式:αn4=αsg+αxj+〔α5+α6+α7+α8〕+αnαn=αn4-αsg-αxj-〔α5+α6+α7+α8〕=0.82815-0.01-0.03173-〔0.02909+0.05483+0.04854+0.0101〕15、计算抽汽作功不足系数:y1=〔h1-hn〕/〔h0-hn〕=〔3133.3-2342.3〕/〔3435.7-2342.3〕=791/y2=〔h2-hn〕/〔h0-hn〕=〔3049.6-2342.3〕/y3=〔h3-hn〕/〔h0-hn〕=〔3341.9-2342.3〕/y4=〔h4-hn〕/〔h0-hn〕=〔3165.8-2342.3〕/y5=〔h5-hn〕/〔h0-hn〕=〔3049.6-2342.3〕/y6=〔h6-hn〕/〔h0-hn〕=〔2933.1-2342.3〕/y7=〔h7-hn〕/〔h0-hn〕=〔2714.1-2342.3〕/y8=〔h8-hn〕/〔h0-hn〕=〔2607.5-2342.3〕/αααα〔α5+αααα∑α机组无回热时的汽耗量Dd:Dd=3600Nd/[〔h0-hz1〕+〔hz2-hn〕]ηmη=3600*300000/[〔3435.7-3049.6〕+〔3565.8-2342.3〕]*=691600=691.600〔t/h〕机组有回热时的汽耗量DoDo= Dd/〔1-∑α/〔1-0.22875〕=896.726〔t/h〕各段抽汽量:D1=α1 Do=0.04947*896.726=44.359〔t/h〕D2=α2 Do=0.09020*896.726=52.529〔t/h〕D3=α3 Do=0. 0.04479*896.726=40.163〔t/h〕D4=α4 Do=0.00759*896.726=6.806〔t/h〕D5=α5 Do=0.02909*896.726=26.085〔t/h〕D6=α6 Do=0.05483*896.726=49.166〔t/h〕D7=α7 Do=0.04854*896.726=43.526〔t/h〕D8=α8 Do=0.01018*896.726=59.128〔t/h〕Dzr=αzr Do=337*896.726=〔t/h〕Dxj=αxj Do=0.03173*896.726=28.5〔t/h〕其它各汽水流量:Do¹Do=1.01*896.726=905.667〔t/h〕Dgl=αgl Do=1.0202*896.726=914.813〔t/h〕Dn=αn1025*896.726=547.235〔t/h〕Dsg=αsg Do=0.01*896.726=8.967〔t/h〕Dl D B=0.01*914.813=9.148〔t/h〕汽轮机功率校核:N1=D1(ho-h1)ηmη/3600=7593(kw)N2=D2(ho-h2)ηmη/3600=5466(kw)N3=D3(h¹¹zr-h3)ηmη/3600=2423(kw)N4=D4(h¹¹zr –h4)ηmη/3600=734(kw)N5=(D5+Dxj)h¹¹zr–h5)ηmη/3600=7594(kw)N6=D6(¹¹zr–h6)ηmη/3600=8383.4(kw)N7=D7(h¹¹zr–h7)ηmη/3600=9990(kw)N8=D8(h¹¹zr–h8)ηmη/3600=2357(kw)Nn=Dn(h¹¹zr-hn)ηηg/3600=547235/3600=180368(kw)Nzr=Dzr(ho-¹zr)ηmηg/3600=747619/3600=77877(kw)∑N=302756(kw)σ=(∑N-N)/N=(302756-300000)/300000*100%=0.92%<1%所以,误差在允许围,计算结果符合要求。

300MW机组进行原则性热力系统计算解读

300MW机组进行原则性热力系统计算解读

摘要针对某大型机组利用再热蒸汽喷水减温的不正常运行方式,本文对300MW机组进行原则性热力系统计算,定量分析了该调温方式使机组主要热经济指标的降低幅度,分析了再热蒸汽喷水减温对机组运行的重要性。

机组定负荷稳定运行工况下的再热蒸汽喷水,改变了系统中工质总量,使系统各计算点上工质焓降发生了变化(各级抽汽量发生变化),汽轮机高、中压缸和低压缸发电功率进行了重新分配,系统热经济指标(热耗率、绝对电效率、系统热耗率、标准煤耗率等)都发生相应的变化。

本文选取了5个再热蒸汽喷水量(0、5、10、15、25)t/h 变化工况点进行了计算,获得了系统各项热经济指标及再热蒸汽喷水量变化时的变化量并验证了其线性变化规律,从而得出采用喷水减温对再热蒸汽进行调节将使机组的热经济性受到了影响。

关键词:再热机组;热力系统计算;再热蒸汽;喷水减温;效率;热经济性目录1.前言 (1)2. 汽轮机概况 (2)2.1机组概况 (2)2.2机组的主要技术参数 (3)2.3额定工况下机组各回热抽汽参数 (4)3.锅炉概况 (5)3.1锅炉设备的作用及构成 (5)3.2本锅炉设计有以下特点 (5)3.3锅炉型式和参数 (6)3.4其他数据整理 (6)4. 机组原则性热力系统求解 (7)4.1额定工况下的原则性热力系统计算 (8)4.1.1整理原始数据 (8)4.1.2 整理过、再热蒸汽及排污扩容器计算点参数 (8)4.1.3 全厂物质平衡 (8)4.1.4 计算汽轮机各段抽汽量Dj 和凝汽流量Dc (9)4.1.5 热经济指标计算 (16)4.2非额定工况下的原则性热力系统计算 (17)4.2.1再热蒸汽喷水流量为Dzp (17)4.2.2 工况二再热蒸汽喷水流量Dzp=5t/h (25)4.2.3 工况三再热蒸汽喷水流量Dzp=10t/h (27)4.2.4 工况四再热蒸汽喷水流量Dzp=15t/h (29)4.2.5 工况五再热蒸汽喷水流量Dzp=25t/h (31)5. 计算结果汇总与分析 (33)5.1各项汽水流量的计算结果 (33)5.2再热蒸汽喷水引起系统各项汽水的相对变化量 (34)5.3对系统热经济性的影响 (35)6.结论与建议 (36)致谢 (37)参考文献 (38)1.前言喷水减温是将水直接喷入过热蒸汽中,水被加热,汽化和过热,吸收蒸汽中的热量,达到调节汽温的目的。

300MW汽轮机热力计算

300MW汽轮机热力计算

动叶出口比体积 动叶出口面积 动叶出汽角 动叶高度 轮周损失 轮周有效比焓降 轮周功率 轮周效率 动叶 轮周功率(校核) 轮周效率(校核) 误差 叶高损失 叶轮摩擦损失 部分进气损失 湿汽损失 级内有效比焓降 级相对内效率 级的内功率 下一级 下一级
v2 m3/kg 0.0258815 Ab cm3 273.3054018 β 2 (º) 20.03182585 lb mm 22 hu 12.21141002 ⊿hu kj/kg 72.78858998 pu kw 18240.82065 η u % 85.63363527 α 2 68.20101033 72.77370859 85.61612775 -0.020444678 ⊿hl kj/kg 4.367315399 v 0.025590525 ⊿pf 326.3765758 ⊿hf kj/kg 1.30238059 ⊿ kj/kg 2.75 ⊿hx kj/kg 0 ⊿hi kj/kg 64.36889399 η i % 0.757281106 pi kw 16130.84483 ht 3336.382726 st 6.46 t 493.87
300MW汽轮机热力
高压缸3 250.82 836 836 10.5848 474.5 3298.054128 131.260919 24.35 220.6807649 0.5948 48.3 1.3 12.58895 12.58895 158.6754549 0.97 153.9151913 0.744006945 3285.465178 6.476749 10.1468 468.172 0.030394621 495.310351 14.8 82.99516198 1 3286.209185 10.1468 6.47858 43.05523773 0.926876748 12.68792675 159.2980022 0.9355 1.583957603 149.023281 36.61253169 0.670238738 3274.448135 6.47858 9.7538 461.955 高压缸4 250.82 856 856 9.7538 462.5 3277.755057 134.3796407 25.24 224.6775467 0.5981 47.9 1.34 13.15004 13.15004 162.1729941 0.97 157.3078042 0.777167364 3264.605017 6.483727 9.3338973 455.962 0.032609475 519.9429658 14.78 85.19964234 1 3265.382184 9.3338973 6.485347 43.86994296 0.962285948 13.05224595 161.5688457 0.9365 1.605005317 151.309224 36.95064804 0.682675195 3253.292224 6.485347 8.9521 449.581 高压缸5 250.82 876 876 8.9521 450.2 3256.669399 137.5318931 26.14 228.6482014 0.6015 48.5 1.34 13.4621 13.4621 164.0859531 0.97 159.1633745 0.79561011 3243.207299 6.490931 8.556 443.454 0.035075206 552.7379202 14.92 87.69375904 1 3244.002909 8.556 6.492418 44.08980666 0.971955526 13.64985553 165.226242 0.9365 1.678492022 154.7343757 37.7851955 0.713860499 3231.325009 6.492418 8.1895 436.787 高压缸6 241.12 896 896 8.1895 437.46 3234.827047 140.670142 27.04 232.5510697 0.6049 48.9 1.34 13.81744 13.81744 166.2374206 0.97 161.250298 0.816610704 3221.009607 6.498026 7.8088 430.531 0.037798749 565.2103848 14.83 88.19095083 1 3221.826218 7.8088 6.499737 43.98537883 0.967356775 14.18991678 168.4631519 0.9375 1.718310235 157.9342049 38.20078508 0.72964999 3208.603658 6.499737 7.4658 423.642 高压缸7 241.12 917 917 7.4658 424.4 3212.191737 143.9757564 28.01 236.6854453 0.6083 48.7 1.42 14.36913 14.36913 169.5236267 0.97 164.4379179 0.849215583 3197.822607 6.504979 7.0963 417.142 0.040845242 598.9254071 14.78 91.61344832 1 3198.671823 7.0963 6.506982 44.55780725 0.992699094 14.63356909 171.0764104 0.9375 1.772033757 160.3841347 38.56825237 0.743755045 3185.030953 6.506982 6.7685 410.026 高压缸8 241.12 938 938 6.7685 410.8 3188.71877 147.2660604 28.98 240.7488318 0.6117 49.3 1.42 14.69286 14.69286 171.4226356 0.97 166.2799565 0.868348026 3174.02591 6.512524 6.4357 403.463 0.044434017 644.3308219 14.81 96.16143448 1 3174.894258 6.4357 6.513599 44.59293624 0.994264981 15.28140498 174.8222239 0.9385 1.821814719 164.0706571 39.12632326 0.765434586 3160.607118 6.513599 6.1132 396.025

300MW汽轮机课程设计

300MW汽轮机课程设计

300MW汽轮机课程设计(报告书)学院:班级:姓名:学号:二O一六年一月十五日300MW汽轮机热力计算一、热力参数选择1.类型:N300-16.67/537/537机组形式为亚临界、一次中间再热、两缸两排气。

额定功率:Pel=300MW;高压缸排气压力prh=p2=3.8896MPa;中压缸排汽压力p3=p4=0.7979Mpa;凝汽器压力Pc=0.004698Mpa;汽轮机转速n=3000r/min;2.其他参数:给水泵出口压力Pfp=19.82MPa;凝结水泵出口压力Pcp=5.39MPa;机械效率ƞni=0.99;发电机效率ƞg=0.99;加热器效率ƞh=0.98;3.相对内效率的估计根据已有同类机组相关运行数据选择汽轮机的相对内效率:高压缸,ƞriH=0.875 ;中压缸,ƞriM=0.93;低压缸ƞriL=0.86;4.损失的估算主汽阀和调节汽阀节流压力损失:Δp0=0.8335MPa;再热器压损ΔPrh=0.1Prh=0.3622MPa;中压缸联合气阀节流压力损失ΔP‘rh=0.02 Prh=0.07244MPa;中低压缸连通管压力损失Δp s=0.02ps=0.0162MPa;低压缸排气阻力损失Δp c=0.04pc=0.1879KPa;二、热力过程线的拟定1.在焓熵图,根据新蒸汽压力p0=16.67 和新蒸汽温度t= 537,可确定汽轮机进气状态点0(主汽阀前),并查的该点的比焓值h0=3396.13,比熵s=6.4128,比体积v=0.019896。

2.在焓熵图上,根据初压p0= 16.67和主汽阀和调节气阀节533.62流压力损失Δp=0.8335 以确定调节级级前压力p‘0= p-Δp=15.8365,然后根据p‘和h的交点可以确定调节级级前状态点1,并查的该点的温度t‘0=533.62,比熵s’=6.4338,比体积v‘=0.0209498。

3.在焓熵图上,根据高压缸排气压力prh =3.8896和s=6.546437可以确定高压缸理想出口状态点为2t,并查的该点比焓值hHt = 3056.864,温度tHt= 335.743,比体积vHt=0.066192,由此可以得到高压缸理想比焓降ΔHt H=h0-hHt=339.266 ,进而可以确定高压缸实际比焓降ΔHi H=ΔHtH×ƞriH=296.8578,再根据h’rh、ΔHiM和ps可以确定高压缸实际出口状态2,并查得该点比焓值hH =3099.2722,温度tH=351.3652,比体积vH= 0.0687,sH=6.6058。

300MW原则性热力系统计算步骤

300MW原则性热力系统计算步骤

《热力发电厂》课程设计指导书(3)设计题目: 300MW 凝汽式机组全厂原则性热力系统设计计算一、课程设计的目的和任务本课程设计是《热力发电厂》课程的具体应用和实践,是热能工程专业的各项基础课和专业课知识的综合应用,其重点在于将理论知识应用于一个具体的电厂生产系统介绍实际电厂热力系统的方案拟定、管道与设备选型及系统连接方式的选择,详细阐述实际热力系统的能量平衡计算方法和热经济性指标的计算与分析。

完成课程设计任务的学生应熟练掌握系统能量平衡的计算,可以应用热经济性分析的基本理论和方法对各种热力系统的热经济性进行计算、分析,熟练掌握发电厂原则性热力系统的常规计算方法,了解发电厂原则性热力系统的组成。

二、计算任务1 .根据给定的热力系统数据,在 h - s 图上绘出蒸汽的汽态膨胀线(要求出图占一页);2 .计算额定功率下的汽轮机进汽量 D0,热力系统各汽水流量 D j;3 .计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组汽耗率、机组热耗率、绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率);4 .按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量标在图中(手绘图 A2 )。

汽水流量标注: D ×××,以 t/h 为单位三、计算类型:定功率计算采用常规的手工计算法。

为便于计算,凡对回热系统有影响的外部系统,如辅助热力系统中的锅炉连续排污利用系统、对外供热系统等,应先进行计算。

因此全厂热力系统计算应按照“先外后内,由高到低”的顺序进行。

计算的基本公式是热平衡式、物质平衡式和汽轮机功率方程式,具体步骤如下:1、整理原始资料根据给定的原始资料,整理、完善及选择有关的数据,以满足计算的需要。

(1)将原始资料整理成计算所需的各处汽、水比焓值,如新蒸汽、抽汽、凝气比焓。

加热器出口水、疏水、带疏水冷却器的疏水及凝汽器出口水比焓,再热热量等。

300MW机组进行原则性热力系统计算

300MW机组进行原则性热力系统计算

300MW机组进⾏原则性热⼒系统计算摘要针对某⼤型机组利⽤再热蒸汽喷⽔减温的不正常运⾏⽅式,本⽂对300MW机组进⾏原则性热⼒系统计算,定量分析了该调温⽅式使机组主要热经济指标的降低幅度,分析了再热蒸汽喷⽔减温对机组运⾏的重要性。

机组定负荷稳定运⾏⼯况下的再热蒸汽喷⽔,改变了系统中⼯质总量,使系统各计算点上⼯质焓降发⽣了变化(各级抽汽量发⽣变化),汽轮机⾼、中压缸和低压缸发电功率进⾏了重新分配,系统热经济指标(热耗率、绝对电效率、系统热耗率、标准煤耗率等)都发⽣相应的变化。

本⽂选取了5个再热蒸汽喷⽔量(0、5、10、15、25)t/h 变化⼯况点进⾏了计算,获得了系统各项热经济指标及再热蒸汽喷⽔量变化时的变化量并验证了其线性变化规律,从⽽得出采⽤喷⽔减温对再热蒸汽进⾏调节将使机组的热经济性受到了影响。

关键词:再热机组;热⼒系统计算;再热蒸汽;喷⽔减温;效率;热经济性⽬录1.前⾔ (1)2. 汽轮机概况 (2)2.1机组概况 (2)2.2机组的主要技术参数 (3)2.3额定⼯况下机组各回热抽汽参数 (4)3.锅炉概况 (5)3.1锅炉设备的作⽤及构成 (5)3.2本锅炉设计有以下特点 (5)3.3锅炉型式和参数 (6)3.4其他数据整理 (6)4. 机组原则性热⼒系统求解 (7)4.1额定⼯况下的原则性热⼒系统计算 (8)4.1.1整理原始数据 (8)4.1.2 整理过、再热蒸汽及排污扩容器计算点参数 (8)4.1.3 全⼚物质平衡 (8)4.1.4 计算汽轮机各段抽汽量Dj 和凝汽流量Dc(9)4.1.5 热经济指标计算 (16)4.2⾮额定⼯况下的原则性热⼒系统计算 (17)4.2.1再热蒸汽喷⽔流量为Dzp(17)4.2.2 ⼯况⼆再热蒸汽喷⽔流量Dzp=5t/h (25)4.2.3 ⼯况三再热蒸汽喷⽔流量Dzp=10t/h (27)4.2.4 ⼯况四再热蒸汽喷⽔流量Dzp=15t/h (29)4.2.5 ⼯况五再热蒸汽喷⽔流量Dzp=25t/h (31)5. 计算结果汇总与分析 (33)5.1各项汽⽔流量的计算结果 (33)5.2再热蒸汽喷⽔引起系统各项汽⽔的相对变化量 (34)5.3对系统热经济性的影响 (35)6.结论与建议 (36)致谢 (37)参考⽂献 (38)1.前⾔喷⽔减温是将⽔直接喷⼊过热蒸汽中,⽔被加热,汽化和过热,吸收蒸汽中的热量,达到调节汽温的⽬的。

300MW机组锅炉热力计算研究综述

300MW机组锅炉热力计算研究综述

300MW机组锅炉热力计算研究综述摘要:本文分析了目前国内典型的300mw机组的热力系统特点,全面阐述了原则性热力系统简洁计算过程,通过对比计算分析,得到了标称工况下的各项热经济性指标,为分析热力系统经济性提供参考。

关键词:300mw机组;热力系统一、前言我国是一个能源大国,有丰富的石油和煤炭等资源。

但是,随着经济的发展、社会的进步,人们对能源提出越来越高的要求,电厂锅炉负荷日益增大。

近十多年来,我国的电力事业取得很大的发展,自行设计生产的火电机组单机出力不断提高。

但应看到,包括引进的国外300mw~600mw在内的燃煤火电机组,其锅炉在安全可靠的工作和经济运行方面,至今还有着相当部分的不尽如人意。

主要原因之一是现今采用的锅炉热力计算方法存在着不足。

本课题将研究300mw机组锅炉热力计算综述。

二、引进300mw机组锅炉的背景及发展1.引进300mw机组锅炉的背景我国的发电总量中,火力发电约占70%。

电站锅炉是火力发电的重要设备,设计出燃料效率高、排出有害污染物少、节省钢材而又长期经济安全运行的电站锅炉对国民经济具有十分重要的意义,同时也符合现阶段环保和节能减排两大世界性的主题。

自20世纪70年代以来,高参数、大容量已成为火力发电机组的发展趋势。

改革开放后,我国从国外引进300mw和600mw火电机组制造技术被提上议事日程,并在80年代初从美国西屋电气公司开始了这方面的技术引进。

2.我国锅炉技术的发展五十年来,我国电力工业飞速发展,近二十年的发展更可谓突飞猛进。

相应的电站锅炉不仅在数量上增加,而且技术水平也有了质的飞跃。

在上世纪五十年代,主力机组仅是小容量120t/h~230t/h、低参数3.83mpa/cm、450℃的自然循环煤粉锅炉;在上世纪六七十年代主力机组为高温高压(7.8mpa~14.7mpa,535℃~540℃)的125mw 和200mw再热机组,并建造了一些1000t/h的up型直流锅炉,同时也引进了一些300mw和500mw的低循环倍率锅炉,在燃烧技术方面也发展了液态排渣炉和小型鼓泡流化床锅炉;1978年成为一个重要的历史转折点,八十年代的改革开放加快了设备和技术的引进,300mw~600mw亚临界(~18mpa、540°c)控制循环锅炉机组逐渐成为主力,设计、制造、安装和运行水平得到大幅度的提升,达到了世界先进水平;进入本世纪后,随着高速的经济发展、节约能源和环保要求的日益严格,火电机组进入了向1000mw、超临界和超超临界参数发展的新时期。

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组效率及热力系统节能降耗定量分析计算关于修订管理标准的通知汽轮机组主要经济技术指标的计算为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民共和国电力行业标准DL/T 904—2004《火力发电厂技术经济指标计算方法》和 GB/T 8117—87《电站汽轮机热力性能验收规程》。

1 凝汽式汽轮机组主要经济技术指标计算1. 1汽轮机组热耗率及功率计算a. 非再热机组试验热耗率:G0 HkJ/kWhG HHRfwfwN t式中G0 ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H 0─主蒸汽焓值,kJ/kg;Hfw ─给水焓值,kJ/kg;N t ─实测发电机端功率,kW。

修正后(经二类)的热耗率:kJ/kWhHQ HRC Q式中C Q ─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。

修正后的功率:N N t kWpQ式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。

b.再热机组试验热耗率::kJ/kWhG 0 H 0G fw H fw G R(H r H 1)G J (H r H J )HRN t式中G R ─高压缸排汽流量,kg/h;G J ─再热减温水流量,kg/h;H r ─再热蒸汽焓值,kJ/kg;关于修订管理标准的通知H1 ─高压缸排汽焓值,kJ/kg;H J ─再热减温水焓值,kJ/kg。

修正后(经二类)的热耗率:kJ/kWhHQ HRC Q式中C Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽机背压对热耗的综合修正系数。

修正后的功率:N N t kWpQ式中K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽机背压对功率的综合修正系数。

1. 2汽轮机汽耗率计算a. 试验汽耗率:kg/kWhSR G0N tb. 修正后的汽耗率:SR G ckg/kWh关于修订管理标准的通知pc cp式中G c ─ 修正后的主蒸汽流量, G cG 0 ,kg/h ;p c 、c ─ 设计主蒸汽压力、主蒸汽比容; p 0 、0 ─ 实测主蒸汽压力、主蒸汽比容。

300MW汽轮机热力计算 (1)

300MW汽轮机热力计算 (1)

300MW汽轮机热力计算一、热力参数选择1.类型:N300-16.67/537/537机组形式为亚临界、一次中间再热、两缸两气1.额定功率:Pel=300MW;高压缸排气压力prh=p2=3.8896MPa;中压缸排汽压力p3=p4=0.7979Mpa;凝汽器压力Pc=0.004698Mpa;汽轮机转速n=3000r/min;2.其他参数给水泵出口压力Pfp=凝结水泵出口压力Pcp=机械效率ƞni=发电机效率ƞg=加热器效率ƞh=3、相对内效率的估计根据已有同类机组相关运行数据选择汽轮机的相对内效率:高压缸,ƞriH= ;中压缸,ƞriM= ;低压缸ƞriL=4、损失的估算主汽阀和调节汽阀节流压力损失:Δp0=再热器压损ΔPrh=0.1Prh=中压缸联合气阀节流压力损失ΔP‘rh=0.02 Prh=中低压缸连通管压力损失Δps=0.02ps=低压缸排气阻力损失Δpc=0.04pc=一、汽轮机热力过程线的拟定1、在焓熵图上,根据新蒸汽压力p0= 和新蒸汽温度t= ,可确定汽轮机进气状态点0(主汽阀前),并查的该点的比焓值h0= ,比熵s= ,比体积v=2、在焓熵图上,根据初压p0= 和主汽阀和调节气阀节流压力损失Δp= 以确定调节级级前压力p‘0= p-Δp= ,然后根据p‘和h的交点可以确定调节级级前状态点1,并查的该店的温度t‘0= ,比熵s’= ,比体积v‘=3、在焓熵图上,根据高压缸排气压力prh = 和s= 可以确定高压缸理想出口状态点为2t,并查的该点比焓值hHt = ,温度tHt= ,比体积vH=4、在焓熵图上,根据高压缸排气压力prh = 和再热器压损Δprh= 可以确定热再热压力p’rh =prh-Δprh= ,然后根据p’rh和再热蒸汽温度tth= 确定中压缸进气状态点为3(中压缸联合气阀前),并查的该点的比焓值h’rh = 比熵3‘rh= ,比体积v’rh=5、在焓熵图上,根据热再热压力p’rh = 和中压缸联合气阀节流压力损失Δp’rh= ,可以确定中压缸气阀后压力p’’rh =p’rh-Δp’rh= 然后根据p’’rh与h’rh的交点可以确定中压缸气阀状态点4,并查得该点的温度t’’h = ,比熵s’’rh= 比体积v’’rh=若将中、低压缸的热力过程线分别用直线画出,则进行如下步骤:①在焓熵图上,根据中压缸排气压力ps = 和s’rh= 可以确定中压缸理想出口状态点5t,并查得该点比焓值hmt = ,温度tMt= ,比体积vMt= ,由此可以得到中压缸理想比焓降ΔHt M=h’rh-hmt= ,进而可以确定中压缸实际比焓降ΔHi M=ΔHtM-ƞriM= ,再根据h’rh、ΔHiM和ps可以确定中压缸实际出口状态5,并查得该点比焓值hs = ,温度ts= ,比体积vs= ss=②在焓熵图上,根据中压缸排汽压力Ps= 和中低压缸连通管压力损失Δps = ;可以确定低压缸进气P’s=Ps-Δps= ,然后根据P’s和中压缸排汽比焓hs 可以确定低压缸进气状态点6,并查得该点的温度t’s= ,比熵t’s= ,比体积v’s=③在焓熵图上,根据凝汽器压力pc = 和低压缸排气阻力损失Δpc=可以确定低压缸排气压力p’c =pc+Δpc=④在焓熵图上,根据凝汽器压力pc = 和ss= 可以确定低压缸理想状态出口状态点7t,并查得该点比焓值hct = ,温度tct= ,比体积vct= ,干度x ct = 。

300MW汽轮发电机组全厂热力系统计算

300MW汽轮发电机组全厂热力系统计算

一、设计任务书:(一)、课程设计的任务热力发电厂课程设计的主要任务是按照给定的设计条件,完成300MW凝汽式汽轮发电机组原则性热力系统计算;完成300MW机组全面性热力系统图、300MW 机组原则性热力系统图的绘制。

通过以上设计计算工作,要求掌握300MW汽轮发电机组全厂热力系统计算方法,确定全厂的热经济性。

掌握300MW机组全面性热力系统图的绘制方法。

(二)、课程设计的内容及主要要求热力发电厂课程设计包括发电厂原则性热力系统计算。

热力系统设计的主要内容和设计过程包括(详细计算方法参考文献1):1.整理原始资料根据给定的已知条件(全厂电功率、全厂原则性热力系统图、计算用汽水参数等),求得计算点各处的汽水焓值(查h-s图),并确定某些辅助设备的汽水流量和效率。

2.进行全厂物质平衡。

3.进行回热系统计算。

4.汽轮机组及全厂热经济指标计算。

5.计算结果汇总表。

6.完成300MW机组原则性热力系统图(3号图纸)、全面性热力系统图绘制(1号图纸),将计算出的数据标在原则性热力系统图上。

7.最终提交课程设计纸质文本的纸型:A4纸质文本组成:封面、任务书、目录、正文。

(三)、原始资料1.热力系统结构及参数见附图。

机组型号 N300-16.17/535/535额定工况 N d=300MW2.锅炉参数P b=16.66MPa;t b=540℃汽包压力P bq=19.67MPa3.其他参数主汽门压损 2%再热器系统压损 12%中低压联通管压损 2%小汽机抽汽管道及阀门压损 8%各加热器抽汽管道及阀门压损 6%锅炉排污量: D bl=0.01D b全厂汽水损失 D l=0.01D b锅炉效率ηb=0.92机械、电机效率ηmηg=0.98加热器及除氧器效率ηh=0.99排污扩容器效率ηf=0.98补充水温度 t ma=20℃排污扩容蒸汽压损△P bl=0.06MPa4. 各加热器上、下端差如下:项目JG1 JG2 JG3 CY JD1 JD2 JD3 JD4上端差-1 0 -1 0 0 2 3 3下端差 5.6 5.6 5.6 - - - - -(四)、参考文献1.严俊杰等,发电厂热力系统及设备,西安交通大学出版社,2003 2.冯慧雯,汽轮机课程设计参考资料,水利电力出版社,19913.沈士一等,汽轮机原理,水利电力出版社,19924. 叶涛,热力发电厂,中国电力出版社,2009二、原始资料整理1、已知全部参数(1)汽轮机机组形式N300-16.17/535/535新蒸汽参数P0=16.17 Mpa,t0=535℃,h0=3394.601318 kJ/kg再热蒸汽参数高压缸排汽t2=324.66℃,P rh=3.59 Mpa,h2=3041.232178 kJ/kg 中压缸进汽t rh=535℃,p'rh=3.1592 Mpa,h rh=3532.881592 kJ/kg 排气压力P c=0.0051 Mpa,h c=136.110840 kJ/kg(2)锅炉型式和参数主蒸汽参数P b=16.66MPa;t b=540℃,h b=3402.948486 kJ/kg汽包压力P bq=19.67MPa再热蒸汽出口温度t rh=535℃锅炉效率ηb=0.92(3)回热抽气八级回热抽气给水温度给水泵焓升=30.584 kj/kg计算中的选用数据锅炉排污量D bl=0.01D b全厂汽水损失D l=0.01D b加热器及除氧器效率ηh=0.99排污扩容器效率ηf=0.98补充水温度t ma=20℃,h m=84.141739 kJ/kg连续排污扩容压力0.75Mpa(扩容蒸汽进入除氧器),见表1计算工况下机械电机效率ηmηg=0.98小汽机抽汽管道及阀门压损8%各加热器抽汽管道及阀门压损6%表1 排污扩容器计算点汽水参数汽水参数单位锅炉汽包排污水连续排污扩容器压力Mpa 19.67 0.75温度℃364 167.757629汽焓kJ/kg 2764.834229水焓kJ/kg 1804.061890 709.3009642、全部计算结果(1)整理原始资料,按照简捷计算焓值如下再热焓升q rh=491.649414 kJ/kg各加热器出口焓值见表2表2 各加热器进出口焓值加热器序号抽汽焓进口疏水焓出口疏水焓进口水焓出口水焓iτiqiγ1 2482.763671221.488403139.24736208.94358869.6962282261.2752682 2688.982666531.954285208.943588363.459869154.5162812480.039078323.0106973 2901.481934618.108643531.954285363.459869523.444824159.9849552369.52764986.1543584 3017.977783618.108643523.444824618.10864394.6638192399.869145 3122.179932750.717041618.108643694.28448576.1758422504.071289132.6083986 3300.3396855.891357750.717041724.284485832.050476107.7659912549.622559105.1743167 3047.0266111066.688599855.891357832.0504761039.765015207.7145392191.135254210.7972428 3128.090821066.6885991039.7650151153.940474114.1754592061.402221.(2)全厂物质平衡计算全厂汽水损失D l=0.01D b=0.01*1.0101D0=0.010101D0锅炉蒸发量D b=D0+D1=D0+0.010101D0=1.010101D0锅炉连续排污量D bl=0.01D b=0.010101D0给水量D fw=D b+D bl=1.010101D0+0.010101D0=1.020202D0轴封漏气量1 D sg1=0.00608D0轴封漏气量2 D sg2=0.000263D0轴封漏气量3 D sg3=0.00233D0轴封漏气量4 D sg4=0.0012D0轴封漏气参数见表3表3 轴封漏气参数序号 sgi α 1/-⋅kg kJ q sgi 1/-⋅kg kJ h sgi 流向 1 0.00608 2276.411401 3343.1 1号高加 2 0.000263 2721.902959 3472.62 3号高加 3 0.00233 2423.051357 3041.16 除氧器 40.00122467.51159726894号低加由排污扩容器热平衡计算D f ,D'bl=⨯--⨯==0bl ff f f bl f D 0101.0300964.709834229.2764300964.70998.0233032.1806D t -h t -t D η0.00521234805D 0未回收的排污水量000f bl bl 1946D 0.00488765805D 0.00521234-0.0101D D -D D'===补充水量000bl l m D 0.014988651946D 0.004887650.010101D D'D D =+=+= (3)回热加热器抽汽系数计算 ①高压加热器GJ1计算0h8sg1sg18fw 8D 050295004.0q q D -D D =⨯⨯⨯=ητ②高压加热器GJ2计算0h77sg187fw 7D 0922.0q )D (D -D D =⨯⨯+⨯=ηγτ③高压加热器GJ3计算 No7的疏水量0sg1877D 148586367.0D D D =++=β再热蒸汽量0sg4sg3sg1780rh D 847883633.0D -D -D -D -D -D D ==高压加热器GJ3抽汽量0h6sg2sg2676fw 6D 037082038.0q q D --D D =⨯⨯⨯⨯=ηγβτ高压加热器No6的疏水量0sg2676D 185931405.0D D =++=ββ④除氧器CY 计算进入除氧器的抽汽量0h533565fw 5D 014611956.0q D D'=⨯⨯---⨯-⨯=ηγβτff sg sg q D q D小汽轮机的抽汽量0stst 5bfw D 067413925.0)h -(h D Dst =⨯⨯=ητ除氧器的抽汽量0st 55D 082.0D D'D =+=DJ1级回热加热器的出口水量06sg3f 5fw fw 4D 812184583.0-D --D D'-D D ==β⑤低压加热器DJ1计算0h44c44D 032357837.0q D D =⨯⨯=ητ⑥低压加热器DJ2计算 低压加热器DJ2抽汽量0h3343fw43D 054202315.0q D D D =⨯⨯-⨯=ηγτ低压加热器N03的疏水量04332D 0.08656015D D =+=β⑦低压加热器DJ3计算 低压加热器DJ3抽汽量02222fw42D 0397.0-D D =⨯⨯⨯=hq ηγβτDJ4级回热加热器的出口水量032fw 4fw 1D 685898808.0-D -D D ==β⑧低压加热器DJ4计算0h1sg4sg41fw11D 020031401.0q q D -D D =⨯⨯⨯=ητ⑨凝气流量计算 正平衡计算:000000000000041sgi81i i 0c D 58226.0D 0012.0D 00233.0D 000263.0D 00608.0D 020031401.0D 0397.0D 054202315.0D 032357837.0D 082.0D 037082038.0D 0922.0D 050295004.0D D D -D D =------------=-=∑∑==i反平衡计算:00000st4sg m 1fw1c D 58226.0D 067413925.0D 0012.0D 01498865.0D 020031401.0D 685898808.0D -D -D -D -D D =----==(四)计算D 0 由汽轮机功率方程:可得:各加热器抽汽及轴封漏气份额和焓值如表4表4 D 和h 数据-1h D/t ⋅α1kg h/kJ -⋅ D 0 1 3394.601318 D zr 0.847883633 3532.881592 D 1 0.020031401 2482.763671 D 2 0.0397 2688.982666 D 3 0.054202315 2901.481934 D 4 0.0323578373017.977783 D 5 0.082 3122.179932 D 6 0.037082038 3300.3396 D 7 0.0922 3047.026611 D 8 0.050295004 3128.09082 D sg1 0.00608 3343.1 D sg2 0.000263 3472.62 D sg3 0.00233 3041.16 D sg40.00122689D c0.58226 2380.51将上表数据代入公式得: D 0=945.3397632t/h回热系统的各项汽水流量见表5表5 各项汽水流量项目 比例 数值/(t/h) 汽轮机汽秏D 0 1 945.29282543 锅炉蒸发量D b 1.010101 954.84122826 给水量D fw 1.020202 964.38963109 锅炉排污量D b1 0.010101 9.5484028297 扩容蒸汽量D f 0.00521234805 4.9271952153 未扩容蒸汽量D'bl 0.0048876519464.6202623177 全厂汽水损失D 1 0.010101 9.5484028297 化学补水量D m 0.01498865 14.168663308 再热蒸汽量D rh 0.847883633 801.56677034 第一级抽汽D 1 0.020031401 18.935472533 第二级抽汽D 2 0.0397 37.552020282 第三级抽汽D 3 0.054202315 51.236964962 第四级抽汽D 4 0.03235783730.590203304 第五级抽汽D 5 0.082 77.54237047 第六级抽汽D 6 0.037082038 35.053634031 第七级抽汽D 7 0.0922 87.174108424 第八级抽汽D 8 0.050295004 47.467682608 汽轮机排气量D c 0.58226 550.40620053 小汽轮机耗汽量D st 0.06741392563.725899636①正平衡计算单位新蒸汽的循环内功为代入数据解得:iD N 1166kJ/h 单位新蒸汽的循环吸热量为代入数据解得:=0D Q2695.2kJ/h 则循环内效率为==QN ii η0.4326 ②反平衡计算单位新蒸汽在一个循环中所损失的热量为代入数据解得:=∑0nD Q1529kJ/h则循环效率为:==∑QQ -Q i nη0.4326正反平衡计算完全一致,说明热系统计算正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

300MW汽轮机组热力性能计算摘要:节能的核心是中国能源战略和政策。

火力发电厂是能源供应的中心和资源消耗和环境污染和温室汽体排放、的主要部门,提高经济效益的电厂设备运行的经济性和可靠性,减少污染物的排放,已成为全球关注的重大问题。

热效率代表了火力发电厂热能源利用、功能转换技术的进步和运作的经济性,是电厂的基础经济评价。

合理的计算和分析燃煤电厂的热效率是基于保证机组安全运行的基础上,是提高作业水平和科学管理有效手段。

火力发电厂的设计在国内和国外技术改造、运行优化和研究大型火力发电厂性能监视、运行偏差分析等都需要热力系统热平衡的计算,计算出热经济指标作为决策的依据。

所以发电厂热力系统计算是关键技术来实现上述任务,直接反映了经济效率的协调,针对发电厂节能是有重要意义的。

本文设计的300MW凝汽式汽轮机。

了解其工作原理及其它组件的工作原理。

设计这个汽轮机每个热力系统,并使用计算机绘制图纸。

最后,热力系统设计为经济指标的计算,分析温度、压力等参数如何影响效率。

本设计采用了三种计算方法——常规计算方法、简捷计算、等效热降法。

关键词:节能、热经济性分析、热力系统300MW Steam Turbine Thermal PerformanceCalculationAbstract:Energy conservation is the core of China's energy strategy and policy. Coal-fired power plant is the center of the energy supply, improve the economic benefit of power plant equipment operation and reliability, reduce pollutant emissions, has become the world focus on the major issue.Represents the thermal power plant economics of energy use, advanced thermal conversion technology functions and running economy is the thermal power plant based on economic evaluation. Rational calculation and analysis of the Thermal Power Plant is to increased operating and running an effective means of scientific management based on ensure the safe operation of generating units. Power plant design, technological innovation, optimization and operation of large thermal power plants at home and abroad Performance Monitoring, running deviation analysis require thermal power plant system on a detailed calculation of heat balance. Thus the plant system calculation is an important technique to achieve these tasks based on and it is a direct reflection of the economic benefits of the whole plant. It is important to energy power plant.This article aims to design a 300MW Condensing Steam Turbine. Firstly, I understand the components of the turbine and its working principle. Secondly, design the turbine of the thermal system and hand-drawn maps of each system. Finally, I design thermal system on the economic index calculation,and analyze how parameters such as temperature and pressure affect the efficiency. This design uses three methods conventional method, simple calculation, the equivalent enthalpy drop method.Keywords: energy saving;economic analysis of thermal thermal system目录中文摘要 (i)英文摘要..................................................................................................................... i i 1 绪论.. (1)1.1毕业设计的目的 (1)1.2国内外研究综述 (1)2 300MW汽轮机组结构与性能 (3)2.1汽轮机工作的基本原理 (3)2.2汽轮机各部分的工作原理及结构特点 (3)3 热力系统的设计 (7)3.1主、再热蒸汽系统 ........................................................... 错误!未定义书签。

3.2主给水系统 ....................................................................... 错误!未定义书签。

3.3凝结水系统 ....................................................................... 错误!未定义书签。

3.4抽汽及加热器疏水系统 ................................................... 错误!未定义书签。

3.5轴封系统 ........................................................................... 错误!未定义书签。

3.6本体疏水系统 ................................................................... 错误!未定义书签。

3.7原则性热力系统 ............................................................... 错误!未定义书签。

4 热力系统的计算 ................................................................ 错误!未定义书签。

4.1常规计算方法 ................................................................... 错误!未定义书签。

4.2热力系统简捷计算 (8)4.3等效焓降法计算 ............................................................... 错误!未定义书签。

4.4分析主要经济性指标对效率的影响 ............................... 错误!未定义书签。

5 设计总结 (48)谢辞 (43)参考文献 (50)附录 (51)1 绪论1.1 毕业设计的目的汽轮机知识是本科热动专业高等院校的一门重要知识,同时也是我们国家重要的能源动力相关机械的重要课程。

通过细心完成本次毕业设计,不仅增强了我对专业知识的了解程度,加深了我对汽轮机原理、热力发电厂专业知识的学习,为我以后从事相关工作打下了不错的基础。

同时通过本次毕业设计,使我所学知识更多的应用与实践,使理论与实践较好的结合在一起,因为毕业设计过程中会用到很多专业资料,将使我查阅相关资料的能力提高、锻炼我的查询数据、处理数据的能力,更好地了解国家想过的标准,也会提高我的电脑绘图能力,使我更好的使用办公软件,包括修改格式处理图纸、办公软件所遇到的问题,并在毕业设计过程中学到更多的知识,丰富自己。

1.2 国内外研究综述汽轮机现状简述:1983年瑞典的工程师拉伐尔首先创造了世界第一台轴流式的汽轮机。

这是一台 3.7kW的单机冲动式汽轮机。

转速高达2600r/min。

相应的轮周速度为475m/s。

对于本台汽轮机,拉伐尔通过细心钻研最终修改了等强度轮盘、绕性轴和缩放喷嘴等问题。

至1900年左右的几年中初步认定了多级反动式汽轮机和多级冲动是汽轮机两种基本类型,有些国家工业发达,大约在70年代左右,就开始生产百万级的汽轮机组。

其中有两根轴的汽轮机飞速发展,单机的最大功率能达到1200MW[1]。

大约至1955年我们国家第一次生产了一台6MW的汽轮机,在短短的三十多年中,已经一点点发展壮大,从6MW至中亚汽轮机组再到亚临界600MWE汽轮机组的全过程,最近10几年来发展更为迅猛。

只预示着我国将制造出更大功率等级的汽轮机,逐步赶上世界先进水平。

至目前为止全世界制造企业比较突出的包括:美国的通用公司,美国的西屋电汽公司,日本的三菱公司。

国内主要有:上海汽轮机厂,哈尔滨汽轮机厂,杭州汽轮机厂(工业用)等。

汽轮机在我们国家作为发电、热电冷联产中扮演重要角色,是重要的机械设备,作用显著。

汽轮机具有以下优点:1)单机功率大。

2)热经济性高。

3)运行安全可靠。

4)可以利用多种燃料和使用寿命长。

汽轮机的设计制造现状:本世纪40年代后,尤其是最近20几年,汽轮机发展特别迅速。

现代汽轮机的设计和制造主要围绕增大单机功率为主。

这样不仅能节约占地的面积还可以提升汽轮机组的热经济性,节约能源,有利于长期发展,单机功率增加以后,所使用的蒸汽参数提升很多,至汽轮机做功量会增加还能减少单位功率的制造材料降低生产成本和制造所用工时。

相关文档
最新文档