九年级期末试卷综合测试(Word版 含答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级期末试卷综合测试(Word 版 含答案)
一、选择题
1.圆锥的底面半径为2,母线长为6,它的侧面积为( )
A .6π
B .12π
C .18π
D .24π
2.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足
PBC PCD ∠=∠,则线段PD 的最小值为( )
A .5
B .1
C .2
D .3
3.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.
A .4个
B .3个
C .2个
D .1个
4.如图,在□ABC D 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )
A .7 : 12
B .7 : 24
C .13 : 36
D .13 : 72 5.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( )
A .小于12
B .等于12
C .大于12
D .无法确定
6.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43
=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )
A.3或4 B.8
3
或4 C.
8
3
或6 D.4或6
7.如图,
点A、B、C是⊙O上的三点,∠BAC= 40°,则∠OBC的度数是()
A.80°B.40°C.50°D.20°
8.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是()
A.23B.1.15C.11.5D.12.5
9.如果两个相似三角形的周长比是1:2,那么它们的面积比是()
A.1:2 B.1:4 C.1:2D.2:1
10.如图,在圆内接四边形ABCD中,∠A:∠C=1:2,则∠A的度数等于()
A.30°B.45°C.60°D.80°
11.若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是()A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣1 12.抛物线y=(x﹣2)2+3的顶点坐标是()
A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)
二、填空题
13.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是______cm.
14.已知小明身高1.8m,在某一时刻测得他站立在阳光下的影长为0.6m.若当他把手臂竖直举起时,测得影长为0.78m,则小明举起的手臂超出头顶______m.
15.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
16.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为_____.
17.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.
18.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.
19.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.
20.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).
21.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.
22.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2
MN PM =_____.
23.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.
24.若关于x 的一元二次方程22
(1)0k x x k -+-=的一个根为1,则k 的值为__________.
三、解答题
25.如图,在ABC
∆中,AD是高.矩形EFGH的顶点E、H分别在边AB、AC上,
FG在边BC上,6
BC=,4
=
AD,
2
3
EF EH
=.求矩形EFGH的面积.
26.某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。

请解决下列问题:
(1)直接写出:购买这种产品 ________件时,销售单价恰好为2600元;
(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;
(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
27.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
28.已知关于的方程,若方程的一个根是–4,求另一个根及的值. 29.对于实数a,b,我们可以用{}
max,a b表示a,b两数中较大的数,例如{}
max3,13
-=,{}
max2,22
=.类似的若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的取小函数.
(1)设1y x =,21=
y x ,则函数1max ,y x x ⎧⎫=⎨⎬⎩⎭
的图像应该是___________中的实线部分.
(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.
(3)若关于x 的方程()()
{}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的
取值范围是_____________________. 30.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.
12月17日 12月18日 12月19日 12月20日 12月21日 最高气温
(℃)
10 6 7 8 9 最低气温
(℃) 1 0 ﹣1 0 3
31.如图,某农户计划用长12m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m .
(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?
(2)若要使生物园的面积最大,该怎样围?
32.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.
(1)求这条抛物线相应的函数表达式;
(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;
(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】
根据圆锥的侧面积公式:πrl=π×2×6=12π,
故选:B.
【点睛】
本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.B
解析:B
【解析】
【分析】
通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.
【详解】
如图,∵四边形ABCD为矩形,
∴AB=CD=3,∠BCD=90°,
∴∠PCD+∠PCB=90°,
∵PBC PCD
∠=∠,
∴∠PBC+∠PCB=90°,
∴∠BPC=90°,
∴点P在以BC为直径的圆⊙O上,
在Rt△OCD中,OC=11
84
22
BC,CD=3,
由勾股定理得,OD=5,
∵PD≥OD OP ,
∴当P,D,O三点共线时,PD最小,
∴PD的最小值为OD-OP=5-4=1.
故选:B.
【点睛】
本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.
3.C
解析:C
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;
由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.
故选:C .
【点睛】
本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.
4.B
解析:B
【解析】
【分析】
根据已知条件想办法证明BG=GH=DH ,即可解决问题;
【详解】
解:∵四边形ABCD 是平行四边形,
∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,
∵DF=CF ,BE=CE , ∴
12DH DF HB AB ==,12BG BE DG AD ==, ∴13
DH BG BD BD ==, ∴BG=GH=DH ,
∴S △ABG =S △AGH =S △ADH ,
∴S 平行四边形ABCD =6 S △AGH ,
∴S △AGH :ABCD S 平行四边形=1:6,
∵E 、F 分别是边BC 、CD 的中点, ∴12
EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD S S =四边形,
∴1176824
AGH EFC
ABCD S S S +=+=四边形=7∶24, 故选B.
【点睛】
本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等. 5.B
解析:B
【解析】
【分析】
利用概率的意义直接得出答案.
【详解】
解:抛掷一枚质地均匀的硬币,正面朝上概率等于12
, 前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:
12
, 故选:B .
【点睛】
此题主要考查了概率的意义,正确把握概率的定义是解题关键. 6.D
解析:D
【解析】
【分析】
分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB
=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685
CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.
【详解】
解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,
∴CMB CAB CAN ∠>∠>∠,AB=10,
CAN CAB ∴∠≠∠,
设3CN k =,4BM k =,
①当CAN B ∠=∠时,可得CAN CBA ∆∆∽,

CN AC AC CB =,
∴36
68
k
=,
3
2
k
∴=,
6
BM
∴=.
②当CAN MCB
∠=∠时,如图2中,过点M作MH CB
⊥,可得BMH BAC
∆∆
∽,
∴BM MH BH
BA AC BC
==,
∴4
1068
k MH BH
==,
12
5
MH k
∴=,
16
5
BH k
=,
16
8
5
CH k
∴=-,
MCB CAN
∠=∠,90
CHM ACN
∠=∠=︒,
ACN CHM
∴∆∆
∽,
∴CN MH
AC CH
=,

12
35
16
68
5
k
k
k
=
-

1
k
∴=,
4
BM
∴=.
综上所述,4
BM=或6.
故选:D.
【点睛】
本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.
7.C
解析:C
【解析】
∵∠BOC=2∠BAC,∠BAC=40°
∴∠BOC=80°,
∵OB=OC,
∴∠OBC=∠OCB=(180°-80°)÷2=50°
8.C
解析:C
【解析】
【分析】
由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.
【详解】
解:由题意得:(10×14+15×6)÷20=11.5,
故选:C.
【点睛】
此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可.

9.B
解析:B
【解析】
【分析】
直接根据相似三角形的性质即可得出结论.
【详解】
解:∵两个相似三角形的周长比是1:2,
∴它们的面积比是:1:4.
故选:B.
【点睛】
本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.
10.C
解析:C
【解析】
【分析】
设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】
解:设∠A、∠C分别为x、2x,
∵四边形ABCD是圆内接四边形,
∴x+2x=180°,
解得,x=60°,即∠A=60°,
故选:C.
【点睛】
此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.11.C
【解析】
【分析】
根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.
【详解】
解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,
∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,
当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,
(﹣2)2﹣4×1×c=0,得c=1;
当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,
则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);
由上可得,c的值是1或0,
故选:C.
【点睛】
本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.
12.A
解析:A
【解析】
【分析】
根据抛物线的顶点式可直接得到顶点坐标.
【详解】
解:y=(x﹣2)2+3是抛物线的顶点式方程,
根据顶点式的坐标特点可知,顶点坐标为(2,3).
故选:A.
【点睛】
本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.
二、填空题
13.6;
【解析】
解:设圆的半径为x,由题意得:
=5π,解得:x=6,故答案为6.
点睛:此题主要考查了弧长计算,关键是掌握弧长公式l=
(弧长为l,圆心角度数为n,圆的半径为R).
解析:6;
【解析】
解:设圆的半径为x ,由题意得:
150180
x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =
180
n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 14.54
【解析】
【分析】
在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.
【详解】
解:设小明举起的手臂超出头顶xm,根据题意得,

解得x=0.54
即举起的手臂超出头顶0.54m
解析:54
【解析】
【分析】
在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.
【详解】
解:设小明举起的手臂超出头顶xm,根据题意得,
1.8 1.80.60.78
x , 解得x=0.54
即举起的手臂超出头顶0.54m.
故答案为:0.54.
【点睛】
本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,
15.y =-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再
解析:y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,
∴新抛物线顶点坐标为(-2,-3),
∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.
故答案为:y=-5(x+2)2-3.
【点睛】
本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.16.2或﹣1
【解析】
【分析】
利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.
【详解】
当y=1时,有x
解析:2或﹣1
【解析】
【分析】
利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.
【详解】
当y=1时,有x2﹣2x+1=1,
解得:x1=0,x2=2.
∵当a≤x≤a+1时,函数有最小值1,
∴a=2或a+1=0,
∴a=2或a=﹣1,
故答案为:2或﹣1.
【点睛】
本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.
17.【解析】
【分析】
如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证
△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,
进而可得答案. 【详解】
解:
解析:817 9
【解析】
【分析】
如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.
【详解】
解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,
∴△CEF≌△DBF,
∴BF=EF=1
2
BE=
1
2

∵BF∥AD,
∴△BOF∽△AOD,

1
1
2
48 BO BF
AO AD
===,

8
9
AO AB
=,
∵22
1417 AB=+=,

817
9 AO=.
故答案为:817 9
【点睛】
本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.
18.2
【解析】
【分析】
首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x
n﹣)2],计算方差即可.【详解】
∵组数据的平均数是10,∴(9+10+12+x+8
解析:2
【解析】
【分析】
首先根据平均数确定x的值,再利用方差公式S2=1
n
[(x1﹣x)2+(x2﹣x)2+…+(x n﹣
x)2],计算方差即可.【详解】
∵组数据的平均数是10,
∴1
5
(9+10+12+x+8)=10,
解得:x=11,
∴S2=1
5
[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],
=1
5
×(1+0+4+1+4),
=2.
故答案为:2.【点睛】
本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1
n
[(x1﹣
x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
19.2
【解析】
【分析】
连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.
【详解】
解:如图所示,连接OA,
∵半径交于点,是的中点,
∴AM=BM==4
解析:2
【解析】
【分析】
连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】
解:如图所示,连接OA,
∵半径ON交AB于点M,M是AB的中点,
∴AM=BM=1
2
AB=4,∠AMO=90°,
∴在Rt△AMO中
2
2OM
AM+
∵ON=OA,
∴MN=ON-OM=5-3=2.
故答案为2.
【点睛】
本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
20.【解析】
【分析】
如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,根据等边三角形的性质可求出AB的长,根据相似三角形的性质可得△ADE是等边三角形,可得出AE的长,根据角的和差
33
-
【解析】
【分析】
如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,根据等边三角形的性质可求出AB的长,根据相似三角形的性质可得△ADE是等边三角形,可得出AE的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH=HF=x,利用∠EFH的正确可用x表示出EH的长,根据AE=EH+AH列方程可求出x的值,根据三角形面积公式即可得答案.
【详解】
如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,∵△ABC是面积为3的等边三角形,CM⊥AB,
∴1
2
×AB×CM=3,∠BCM=30°,BM=
1
2
AB,BC=AB,
∴CM=22
AB BM
-=3 AB,
∴1
2
×AB×
3
AB=3,
解得:AB=2,(负值舍去)
∵△ABC∽△ADE,△ABC是等边三角形,
∴△ADE是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,
∵∠BAD=45°,
∴∠EAF=∠BAD=45°,
∵FH⊥AE,
∴∠AFH=45°,∠EFH=30°,
∴AH=HF,
设AH=HF=x,则EH=xtan30°=3 x.
∵AB=2AD,AD=AE,
∴AE=1
2
AB=1,
∴x+
3
3
x=1,
解得x=
33 33
-
=
+

∴S△AEF=1
2
×1×
33
-

33
4
-

故答案为:33 -

【点睛】
本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解
21.【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的数据解答即可.
【详解】
在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,
∴这组数据的众数是2,
故答案为:2.
【点睛
解析:【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的数据解答即可.
【详解】
在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,
∴这组数据的众数是2,
故答案为:2.
【点睛】
此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.
22.【解析】
【分析】
根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.
【详解】
解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,
∴点P 的坐标为(1
解析:【解析】
【分析】
根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2
MN PM 即可解答本题. 【详解】
解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,
∴点P 的坐标为(1,2),
设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()
22222212422121
a a a a a a a a -+-+=-+-+=2, 故答案为:2.
本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2
MN PM . 23.8
【解析】
【分析】
首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.
【详解】
解:∵y=x2﹣2x ﹣3,设y =0,
∴0=x2﹣2x ﹣3,
解得:x1=3,
解析:8
【解析】
【分析】
首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.
【详解】
解:∵y =x 2﹣2x ﹣3,设y =0,
∴0=x 2﹣2x ﹣3,
解得:x 1=3,x 2=﹣1,
即A 点的坐标是(﹣1,0),B 点的坐标是(3,0),
∵y =x 2﹣2x ﹣3,
=(x ﹣1)2﹣4,
∴顶点C 的坐标是(1,﹣4),
∴△ABC 的面积=
12
×4×4=8, 故答案为8.
【点睛】
本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中. 24.0
【解析】
把x =1代入方程得,,
即,
解得.
此方程为一元二次方程,

即,
故答案为0.
解析:0
【解析】
把x =1代入方程得,2110k k -+-=,
即20k k -=,
解得120,1k k ==.
此方程为一元二次方程,
10k ∴-≠,
即1k ≠,
0.k ∴=
故答案为0.
三、解答题
25.6EFGH S =四边形
【解析】
【分析】
根据相似三角形对应边比例相等性质求出EF,EH 的长,继而求出面积.
【详解】
解:如图:
∵四边形EFGH 是矩形,AD 交EH 于点Q,
∴∥EH FG
∴AEH ABC ∆∆∽
∴AQ EH AD BC
= 设2EF x =,则3EH x =
∴42346
x x -=解得:1x =. 所以2EF =,3EH =.
∴236EFGH S EF EH =⋅=⨯=四边形
【点睛】
本题考查的知识点主要是相似三角形的性质,利用相似三角形对应边比例相等求出有关线段的长是解题的关键.
26.(1)90;(2)25650(1090,){200(90,)
x x x x y x x x -+<≤=>且为整数且为整数;(3)公司应将最低销售单价调整为2725元.
【解析】
【分析】
(1)设购买产品x 件,因为销售单间2600元,所以一定超过10件,根据题意列方程可解;
(2)分10<x≤90,x>90两种情况讨论,由利润=(销售单价-成本单价)×件数列出函数关系;(3)由(2)的函数关系式,利用函数的性质求出最大值,并求出最大值时x 的值,可确定销售单价。

【详解】
(1)设购买产品x 件,根据题意列方程3000-5(x-10)=2600,解得x=90。

所以购买这种产品 90件时,销售单价恰好为2600元.
(2)解:当10<x≤90时,y=[3000-5(x-10)-2400]·
x=-5x 2+650x , 当x>90时,y=(2600-2400)·
x=200x , 即 25650(1090,){200(90,)
x x x x y x x x -+<≤=>且为整数且为整数 (3)解:因为要满足购买数量越多,所获利润越大,所以ν随x 增大而增大
函数y=200x 是y 随x 增大而增大,
而函数y=-5x 2+650x=-5(x-65)2+21125,
当10≤x≤65时,y 随x 增大而增大,当65<x≤90时,y 随x 增大而减小,
若一次购买65件时,设置为最低售价,则可避免y 随x 增大而减小的情况发生,故 当x=65时,设置最低售价为3000-5×(65-10)=2725(元),
答:公司应将最低销售单价调整为2725元.
【点睛】
本题考察分段函数的实际应用,需要熟练掌握根据题意列一次函数与二次函数,并根据函数性质求最值。

27.(1)y =x 2+x ﹣2;(2)S =﹣m 2﹣2m (﹣2<m <0),S 的最大值为1;(3)点Q
坐标为:(﹣2,2)或(﹣1或(﹣1)或(2,﹣2).
【解析】
【分析】
(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;
(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知
PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.
【详解】
(1)设此抛物线的函数解析式为:y=ax2+bx+c,
将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得
420
2
a b c
c
a b c
-+=


=-

⎪++=


解得:
1
1
2 a
b
c
=


=

⎪=-


∴此函数解析式为:y=x2+x﹣2.
(2)如图,过点M作y轴的平行线交AB于点D,
∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,
设直线AB的解析式为y=kx﹣2,
把A(﹣2,0)代入得,-2k-2=0,
解得:k=﹣1,
∴直线AB的解析式为y=﹣x﹣2,
∵MD∥y轴,
∴点D的坐标为(m,﹣m﹣2),
∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,
∴S△MAB=S△MDA+S△MDB
=1
2 MD•OA
=1
2
×2(m2﹣2m)
=﹣m2﹣2m
=﹣(m+1)2+1,
∵﹣2<m<0,
∴当m=﹣1时,S△MAB有最大值1,
综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为1.(3)设P(x,x2+x﹣2),
①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,
∴Q的横坐标等于P的横坐标,
∵直线的解析式为y=﹣x,
则Q(x,﹣x),
由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,
即|﹣x2﹣2x+2|=2,
当﹣x2﹣2x+2=2时,x1=0(不合题意,舍去),x2=﹣2,
∴Q(﹣2,2),
当﹣x2﹣2x+2=﹣2时,x1=﹣1+5,x2=﹣1﹣5,
∴Q(﹣1+5,1﹣5)或(﹣1﹣5,1+5),
②如图,当BO为对角线时,OQ∥BP,
∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,
∴A与P重合,OP=2,四边形PBQO为平行四边形,
∴BQ =OP =2,点Q 的横坐标为2,
把x=2代入y =﹣x 得y=-2,
∴Q (2,﹣2),
综上所述,点Q 的坐标为(﹣2,2)或(﹣1+5,1﹣5)或(﹣1﹣5,1+5)或(2,﹣2).
【点睛】
本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,熟练掌握二次函数的性质把运用分类讨论的思想是解题关键.
28.1,-2
【解析】
【分析】
把方程的一个根–4,代入方程,求出k ,再解方程可得.
【详解】
【点睛】
考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.
29.(1)D ;(2)见解析;20x -<<或2x >;(3)40t -<<.
【解析】
【分析】
(1)根据函数解析式,分别比较1x ≤- ,10x -<<,01x <≤,1x >时,x 与1x 的大小,可得函数1max ,y x x ⎧⎫
=⎨⎬⎩⎭
的图像;
(2)根据{}max ,a b 的定义,当0x <时,()22x -+图像在()2
2x --图像之上,当0x =时,()22x --的图像与()22x -+的图像交于y 轴,当0x >时,()22x --的图像在()22x -+之上,由此可画出函数()(){}22max 2,2y x x =---+的图像;
(3)由(2)中图像结合解析式()22x --与()22x -+可得t 的取值范围.
【详解】
(1)当1x ≤-时,1x x ≤
, 当10x -<<时,1x x >
, 当01x <≤时,1x x <
, 当1x >时,1x x
> ∴函数1max ,y x x ⎧⎫=⎨⎬⎩⎭
的图像为
故选:D .
(2)函数()(){}22max 2,2y x x =---+的图像如图中粗实线所示:
令()2
=02x -+得,2x =-,故A 点坐标为(-2,0),
令()2=02x --得,2x =,故B 点坐标为(2,0),
观察图像可知当20x -<<或2x >时,y 随x 的增大而减小;
故答案为:20x -<<或2x >;
(3)将0x =分别代入()()2212, =22y x y x =---+,得12==4y y -,故C(0,-4),
由图可知,当40t -<<时,函数()()
{}22max 2,2y x x =---+的图像与y t =有4个不
同的交点.
故答案为:40t -<<.
【点睛】 本题通过定义新函数综合考查一次函数、反比例函数与二次函数的图像与性质,关键是理解新函数的定义,结合解析式和图像进行求解.
30.见解析
【解析】
【分析】
根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.
【详解】 ∵x 高=()110+6+7+8+9=85⨯(℃), x 低 =()1
1+01+0+3=0.65
⨯-(℃), 2S 高=()()()()()222221
108687888985⎡⎤⨯-+-+-+-+-⎣
⎦=2(℃2)
2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2) ∴2S 高>2S 低
∴这5天的日最高气温波动大.
【点睛】
本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=
()()()()
22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦. 31.(1)3m ;(2)生物园垂直于墙的一边长为2m .平行于墙的一边长为6m 时,围成生物园的面积最大,且为12m 2
【解析】
【分析】
(1)设垂直于墙的一边长为x 米,则平行于墙的一边长为(12-3x )米,根据长方形的面积公式结合生物园的面积为9平方米,列出方程,解方程即可;
(2)设围成生物园的面积为y ,由题意可得:y =x (12﹣3x )且
53
≤x <4,从而求出y 的最大值即可.
【详解】
设这个生物园垂直于墙的一边长为xm ,
(1)由题意,得x (12﹣3x )=9,
解得,x 1=1(不符合题意,舍去),x 2=3,
答:这个生物园垂直于墙的一边长为3m ;
(2)设围成生物园的面积为ym 2.
由题意,得()()21233212y x x x -+==--,
∵12371230x x -≤⎧⎨
-⎩> ∴53
≤x <4 ∴当x =2时,y 最大值=12,12﹣3x =6,
答:生物园垂直于墙的一边长为2m .平行于墙的一边长为6m 时,围成生物园的面积最大,且为12m 2.
【点睛】
本题主要考查一元二次方程的应用和二次函数的应用,解题的关键是正确解读题意,根据题目给出的条件,准确列出方程和二次函数解析式.
32.(1)y =x 2
+2x ﹣3;(2)存在,点P 坐标为⎝⎭或
⎝⎭
;(3)点N 的坐标为(﹣4,1) 【解析】
【分析】
(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;
(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32
-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.
(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N .
【详解】
(1)当y =0时,x 2﹣(a +1)x +a =0,
解得x 1=1,x 2=a ,
当x =0,y =a
∴点C 坐标为(0,a ),。

相关文档
最新文档