数学文化与数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学文化与数学史》期终复习提纲
Lecture 0 为什么要开设数学史
1.介绍文艺复兴时期意大利艺术大师达·芬奇(L. Da Vinci, 1452~1519)和19 世纪英国业
余数学家伯里加尔(H. Perigal, 1801~1898)证明勾股定理的方法。
达·芬奇
H. Perigal的水车翼轮法
2.谈谈你对数学史教育价值的认识。
一门学科一座桥梁一条进路一种资源一组专题
对学生来讲,通过对数学史的学习,有利于学生对数学知识的掌握和数学能力的提高,它不仅使学生获得了一种历史感,而且,通过从新的角度看数学学科,他们将对数学产生更敏锐的理解力和鉴赏力,有利于学生对数学的思考, 促进学生的数学理解,启发学生的人格成长,有利于激发学生的情感、兴趣和良好的学习态度,有利于辩证唯物主义世界观的形成, 有利于学生了解数学的应用价值和文化价值。
对于教师来讲,要使个体知识的发生遵循人类知识的发生过程,那么数学史就成为了数学教学的有效工具。将数学史作为一种资源运用到教学中,给教学提供一种新的视角,发挥其启发和借鉴的作用,并丰富课堂教学,使教学活动变得自然而有趣。这对数学教育改革也具有极其重要的意义。
Lecture 2 古代数学(I):埃及
3.Rhind 纸草书问题79 是一个等比数列求和问题,介绍其中蕴涵的等比数数列求和方法。
124
房屋 猫老鼠麦穗容积总数
7 49 343 24011680719607
2801 56021120419607
()5749343230116807 717493432301 72801 19607
S =++++=++++=⨯= ()
()()
21
221
1 11n n n n n n n
n S a aq aq aq a q a aq aq aq a qS a q S aq a aq S q q
----=+++
+=++++
=+=+--⇒=≠-
4. “埃及几何学中的珍宝”是什么?
正四棱台体积公式:
Lecture 3 古代数学(II ):美索不达米亚
6. 研究古巴比伦时期的泥版 BM 15285。设想你是一位祭司,你会提出什么数学问题?
7. 美国哥伦比亚大学收藏的 Plimpton 322 号巴比伦泥版的内容是什么?
泥版上有15行、4列数字,原来人们还以为是一份帐目。但是,奥地利著名数学史家诺伊格鲍尔(O. Neugebauer, 1899~1990)经过研究惊奇地发现:第3列数与第2列数的平方差竟都是平方数(少数行不满足这一规律,但显然是抄写错误所致)!例如(见下表,表中数字均为60进制):
()()2222
212011916959,149,2=-=-,
()()2222
2
3456336748257,5625,20,1=-=-,等等这就表明,它是一张勾股数表。
英国著名数学家齐曼(C. Zeeman, 1925~)指出,如果巴比伦人使用了勾股数一般公式
22q p a -=,pq b 2=,22q p c +=
那么,满足60≤q ,︒≤≤︒4530A 且222cot a
b A =(A 是勾a 所对的角)为有限小数的勾股数只有16组。而Plimpton 322号泥版给出了其中的15组!其水平之高,令人惊叹不已。
8. 古代巴比伦人是如何求平方根近似值的?
1211322,
1212a a a a a a a a a ⎛⎫=+ ⎪⎝⎭⎛⎫
=+ ⎪⎝
⎭设第一个近似值为则第二个近似值为;
第三个近似值为;
23
11
2
11;3021121;301;2521;30121;251;24,51,1021;25245110
1 1.4142155606060⎛⎫
+= ⎪⎝⎭⎛⎫
+= ⎪⎝⎭⎛⎫
+= ⎪⎝
⎭
+
++=设第一个近似值为,
则第二个近似值为;第三个近似值为;第四个近似值为。
9. 古巴比伦时期的泥版 Str.362 上记载了如下问题:“十兄弟分银32
1
迈纳,每个兄弟均比
相邻的弟弟多得若干,已知老八分得 6 斤(1 迈纳=60 斤)。问:各兄弟比相邻的弟弟多得 几何?”泥版上给出的解法是:“取十兄弟所得平均数 10 斤,倍之,得 20 斤;减去老八所得的两倍即 12 斤,得 8 斤。于是,公差为斤。”用我们今天的代数符号来表达这一解法,并写出一般公式。
⨯=+表高两表间距日高表高影长之差Lecture 4 古代数学(III ):中国
10. 用出入相补原理证明勾股定理。
11. 介绍
西汉时期的
“日高
日高公式: 杨辉推导日高公式:
根据上面的原理我们可得:(其中d 为两个杆子的距离)
2
s 1
21ad H a s s =+-
12. 试述刘徽和祖暅的球体积工作。
正方形与其内切圆的面积之比都是: 由“截面原理”可得:
于是我们只要求出牟合方盖的体积即可求出球的体积。
刘徽:提出从立方体割出牟合方盖之后所余的“外棋”着手。但是外棋的复杂难倒了刘徽。 祖暅:
对边长为D 的正方体及其内牟合方盖的八分之一进行考察如右图并将其分解为一个内棋和三个外棋
祖暅公理:用平行于底面的平面去截两个等高的立体,如果所得的两个截面面积处处相等,则这两个立体的体积就相等。
33
1
R V V ==阳马外棋
323V R ⇒内棋=3283
V V D ⇒合盖内棋
=
=3
16V D π⇒
球
=
牟合方盖
球=V V ⨯
4π
π
:4