复合材料的制造方法PPT课件

合集下载

复合材料pdfPPT课件

复合材料pdfPPT课件
复合材料的热膨胀系数通常低于单一材料,使其在温度变化时能保 持较好的尺寸稳定性。
良好的热导性
某些复合材料具有良好的热导性,适用于需要散热或传热的场合。
耐高温性能
通过选择合适的基体和增强材料,复合材料可以在高温环境下保持 较好的力学性能。
电学性能
绝缘性能
大多数复合材料具有良好的绝缘性能,适用于电气 和电子设备中。
后处理与加工
固化处理
对成型的复合材料进行加热或自然固化,使其达到所需的物理和化 学性能。
机械加工
对固化后的复合材料进行切割、钻孔、打磨等机械加工,以满足产 品形状和尺寸的要求。
表面处理
对复合材料表面进行喷漆、电镀、阳极氧化等处理,以提高其耐腐蚀 性、装饰性等性能。
04
复合材料的性能特点
力学性能
成型工艺
手糊成型
在模具上涂刷脱模剂,然后铺贴一层纤 维布或毡,再涂刷一层树脂,如此反复
直至达到所需厚度。
模压成型
将预浸料或纤维与树脂混合物放入模 具中,在加热和加压的条件下固化成
型。
喷射成型
将树脂和固化剂分别通过喷嘴喷到模 具上,同时用喷枪将纤维切断并喷到 树脂中,形成复合材料层。
注射成型
将树脂和固化剂混合后注入到装有纤 维的模具中,然后在一定温度和压力 下固化成型。
复合材料的组成与结构
基体材料
聚合物基体
如环氧树脂、聚酰亚胺等,具有良好的可加工性和韧 性。
金属基体
如铝、镁、钛等合金,具有高比强度和优异的导电导 热性能。
陶瓷基体
如氧化铝、氮化硅等,具有高温稳定性和耐磨损性。
增强材料
纤维增强材料
如碳纤维、玻璃纤维、芳纶纤维等,具有高比 强度和模量。

材料导论第十四章复合材料ppt课件

材料导论第十四章复合材料ppt课件
混凝土=水泥+砂+石
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维

编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等

金属基复合材料ppt课件

金属基复合材料ppt课件

(3)、热膨胀系数小、尺寸稳定性好
金属基复合材料中的碳纤维、碳化硅纤维、晶须、颗 粒、硼纤维等均具有很小的热膨胀系数,又具有很高的 模量,特别是高模量、超高模量的石墨纤维具有负的热 膨胀系数。加入相当含量的增强物不仅大幅度提高材料 的强度和模量,也使其热膨胀系数明显下降,并可通过 调整增强物的含量获得不同的热膨胀系数,以满足各种 应用的要求。
铝基复合材料是在金属基复合材料中应用得最广
的一种。由于铝的基体为面心立方结构,因此具有良好的塑 性和韧性,再加之它所具有的易加工性、工程可靠性及价格 低廉等优点,为其在工程上应用创造了有利的条件。
在制造铝基复合材料时,通常并不是使用纯铝而是用各 种铝合金。
铝基复合材料
• 大型运载工具的首选材料。如波音747、757、767 • 常用:B/Al、C/Al、SiC/Al • SiC纤维密度较B高30%,强度较低,但相容性好。 • C纤维纱细,难渗透浸润,抗折性差,反应活性较高。 • 基体材料可选变形铝、铸造铝、焊接铝及烧结铝。它们
(2)、导热导电性能
虽然有的增强体为绝缘体,但在复合材料中占 很小份额,基体导电及导热性并未被完全阻断, 金属基复合材料仍具有良好的导电与导热性。
为了解决高集成度电子器件的散热问题,现已 研究成功的超高模量石墨纤维、金刚石纤维、金 刚石颗粒增强铝基、铜基复合材料的热导率比纯 铝、铜还高,用它们制成的集成电路底板和封装 件可有效迅速地把热量散去,提高了集成电路的 可靠性。
氧化铝和硅酸铝短纤维增强铝基复合材料的室温 拉伸强度并不比基体合金高,但它们的高温强度明显 优于基体,弹性模量在室温和高温都有较大的提高, 热膨胀系数减小,耐磨性能得到改善。
• 纤维增强复合材料的强度和刚性与纤维方向密纤维使材料具有明显的各向异性。纤维采 用正交编织,相互垂直的方向均具有好的性能。纤维 采用三维编织,可获得各方向力学性能均优的材料。

复合材料的成型工艺ppt课件

复合材料的成型工艺ppt课件

第二节 金属基复合材料(MMC)成形工艺
一、固态法
1.扩散黏结法(Diffusion Bonding) 如图9-2所示,扩散黏结是一种在较长时间、
较高温度和压力下,通过固态焊接工艺,使同类 或不同类金属在高温下互扩散而黏结在一起的工 艺方法。
2.形变法(Plastic Forming) 形变法就是利用金属具有塑性成型的工艺特点
2.复合材料的特点
(1)比强度和比刚度高 (2)抗疲劳性好 (3)高温性能好 (4)减振性能好 (5)断裂安全性高 (6)可设计性好
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
第一节 复合材料简述
四 、 复 合 材 料 的 失 效 (Failure of Composite)
复合材料的失效一般是指其疲劳破坏过程。
1.制造加工损伤
此种损伤产生初始缺陷。,它包括:纤维铺设不 均,扭结、死扣等,树脂不均;纤维切断、错排; 固化不足;有孔隙、气泡;材质污染等。
2.使用引起的损伤
此种损伤导致缺陷发展。它包括:树脂裂纹或老 化;分层;纤维断裂;振动较大导致的纤维断裂; 温度变化较大;机加工产生内应力;碰撞等。
二、复合材料用原料
1.增强材料
(1)碳纤维(Carbon Fiber) (2)硼纤维(Boron Filament) (3)芳纶(Aramid Ring) (4)玻璃纤维(Glass Fiber) (5)碳化硅纤维(Silicon Carbide Fiber) (6)晶须(Whisker)
2.基体材料
3)基体能够很好地保护纤维表面,不产生表面 损伤、不产生裂纹。

陶瓷基复合材料的制备方法与工艺 ppt课件

陶瓷基复合材料的制备方法与工艺  ppt课件

②将连续纤维编织制成预成型坯件,再 进行化学气相沉积(CVD),化学气相渗透 (CVI),直接氧化沉积(Lanxide);
③利用浸渍--热解循环的有机聚合物裂 解法制成陶瓷基复合材料。
ppt课件
7
对于颗粒弥散型陶瓷基复合材料, 主要采用传统的烧结工艺,包括常压烧 结、热压烧结或热等静压主要是高 温状态)、同环境的相容性(包括内部和外部, 而外部环境的相容主要包括氧化和蒸发)。
ppt课件
5
针对不同的增强材料,已经开发了多 种加工技术。
例如,对于以连续纤维增强的陶瓷基 复合材料的加工通常采用下面三种方法:
①首先采用料浆浸渍工艺,然后再热
压烧结;
ppt课件
6
8
此外,一些新开发的工艺如固相反 应烧结、高聚物先驱体热解、CVD、溶 胶—凝胶、直接氧化沉积等也可用于颗 粒弥散型陶瓷基复合材料的制备。
ppt课件
9
晶须补强陶瓷基复合材料的制备方法:
将晶须在液体介质中经机械或超声分散, 再与陶瓷基体粉末均匀混合,制成一定形状 的坯件,烘干后热压或热等静压烧结。
ppt课件
30
⑤为了减少最终制品的孔隙率,在 热压之前,要设法完全除去挥发性黏结 剂,使用比纤维直径更小的颗粒状陶瓷 基体。
ppt课件
31
⑥热压操作非常关键,通常是在一个 非常窄的操作温度范围,缩短操作时间可 以减少纤维的损坏。
ppt课件
32
浆料浸渍工艺可以制得纤维定向排列、 低孔隙率、高强度的陶瓷基复合材料。它可 以用在C、Al2O3、SiC和Al2O3.SiO2纤维增强 玻璃、玻璃陶瓷和氧化物陶瓷的制造工艺中。
ppt课件
21
纤维缠绕在辊筒上 纤维裁剪铺层

2024版《复合材料》PPT课件

2024版《复合材料》PPT课件
基体材料选择
如环氧树脂、聚酰胺、聚酯等,具有良好的粘结性、耐腐蚀性等 特点。
原材料预处理
包括清洗、干燥、剪裁、浸润等步骤,以确保原材料的质量和性 能。
成型工艺方法介绍
手糊成型
喷射成型
将纤维增强材料和基体材料手工逐层铺设在 模具上,通过手工涂刷或喷涂基体材料,形 成复合材料制品。
利用喷枪将基体材料和短切纤维同时喷向模 具表面,形成复合材料层。
复合材料可用于制造汽车发动机罩、底盘护板等部件,具 有减振、降噪和提高耐久性等优点。
建筑领域应用
结构构件
复合材料用于制造建筑结构如梁、板、柱等,具有轻质高强、耐腐蚀和耐候性等优点,如纤 维增强混凝土(FRC)在建筑中的应用。
外墙材料
复合材料可用于制造建筑外墙板、保温材料和装饰材料等,提高建筑的保温性能和美观度。
汽车工业应用
车身结构
复合材料用于制造汽车车身、车门、车顶等结构件,具有 减重、提高刚度和耐撞性等优点,如碳纤维复合材料在高 端跑车和电动汽车中的应用。
内饰部件 复合材料可用于制造汽车座椅、仪表盘、门板等内饰部件, 提高舒适性和美观度,如玻璃纤维增强塑料(GFRP)在 内饰中的应用。
发动机和底盘部件
光子复合材料
能够调控光的传播路径和性质, 具有隐身、光学存储等智能特性, 在光通信、光计算等领域具有重 要应用价值。
THANKS
汇报结束 感谢聆听
《复合材料》PPT课件
目录
contents
• 复合材料概述 • 复合材料的组成与结构 • 复合材料的制备工艺 • 复合材料的性能特点 • 复合材料的应用实例分析 • 复合材料的未来发展趋势
01
复合材料概述
定义与分类
定义

金属基复合材料制备工艺PPT幻灯片课件

金属基复合材料制备工艺PPT幻灯片课件
金属基复合材料的制备工艺
金属基复合材料制备及成形工艺
金属基复合材料的性能、应用、成本等在很大程 度上取决于制备技术;
研究和发展有效的制备技术一直是金属基复合材 料研究中最重要的问题之一。
2
复合材料的概念与定义
常规材料的优缺点:
• 金属材料的优点:优良的延展性和可加工性。缺点:强度相对低,耐 热、耐磨、耐蚀性差,如铝;
19
热压法工艺流程
在增强材料上铺金属箔
裁剪成形
加热至所需温度
加压与保压
抽真空
冷却取出制品 并加以整理
20
影响扩散粘结过程的主要参数是:温度、压力和一定温度及压力 下维持的时间。另外,气氛对质量也有较大影响。
21
扩散粘结过程分为三个阶段:
1.粘结表面的最初接触,由于加热、加压, 使表面发生变形、移动、表面膜(氧化膜) 破坏;
26
5.1. 粉末轧制法
27
5.2 块(带)材轧制复合法
28
5.3 温轧复合生产线
29
6.爆炸焊接法
是利用炸药产生强大脉冲应力,通过使碰撞的材 料发生塑性变形、粘结处金属的局部扰动以及热 过程使材料焊接起来。
2) 可以自由选择强化颗粒种类、尺寸,且强化颗粒添加量范围广; 3) 与铸造法相比,较易实现强化颗粒的均匀分散(微颗粒除外)。 4) 与液相法相比,制备温度低,界面反应可控; 5) 可根据要求设计复合材料的性能; 6) 其组织致密、细化、均匀、内部缺陷明显改善; 7) 利于净成型或近净成型,二次加工性能好。
2.1.3 连续增强相金属基复合材料的制备工艺
碳纤维 硼纤维 SiC纤维 氧化铝纤维
铝合金——固态、液态法 镁合金—— 固态、液态法 钛合金—— 固态法 高温合金——固态法 金属间化合物——固态法

复合工艺 ppt课件

复合工艺 ppt课件

1-涂布机
2-放卷机
3-干燥通道 4-收卷机
5-冷却工位 6-复合机
7-放卷机
特点
1.适用基材范围广。 2.有良好的粘合性能,再加热时也不会剥离。 3.操作简单,生产效率高。 4.粘合强度大,并有良好的耐热性和耐化学药品性,可用作耐高温蒸煮袋等。 5.成本高,有溶剂残留和环境污染问题。
粘合剂的种类
单联式挤出复合工艺流程图
1-放卷
2-导棍
3-效形辊 4—烘箱
5-空隙 6-T型模头 9-夹紧辊 10-冷却辊
7-挤出机 8-塑模板 11-夹层基材 12-收卷
双联式挤出复合工艺流程图 1-放卷 2-导辊 3-效形辊 4-烘箱
5-挤出机 6-夹层基材 7-挤出机 8-收卷
特点
.主要使用LDPE树脂作 为黏合剂。 2.PE既是粘合剂又作为 复合结构层,生产成本 较低。 3.从挤出到复合一次完 成,生产效率高。 4.挤出复合温度高,其 复合薄膜比手法复合薄 膜柔软。
过大会使得温度损失加 大,影响复合牢度 一般控制在50-150mm
复合速度
速度越快,涂覆层约薄, 黏合强度降低 根据复合强度要求而定 一般控制在150m/min以下 冷却温度 冷却辊表面一般为20-35度
挤出复合常见故障和解决方法
透明度不佳
原因:挤出温度过高, 冷却不足,聚乙烯牌 号不合适 涂层厚度不均
原因:出膜口温度不 均匀,出料不够,波 形出料
调节机头温度,口模 间隙、消除薄点,提 高上膜两端温度 缩孔龟裂
挤出温度过低,塑化 不良,不同树脂混合
–先印刷再复合,印刷层被夹在基 材中间,既增加印刷的色泽和牢 固度,又避免油墨中有害物质对 内装物的危害。
复合的方法与工艺

复合材料工艺及设备 ppt课件

复合材料工艺及设备  ppt课件

增强材料
涂脱模剂
原材料 手糊成型
固化 脱模制品检验 后处理专用47手糊工艺视频
专用48定义:用纤维增强材料和树脂胶液在模具上铺专用6树脂基复合材料
玻璃/酚醛 高硅氧/酚醛 涤纶/酚醛 碳/酚醛 碳/环氧 蜂窝夹层结构复合材料 经编复合材料 多维整体编织织物复合材料 耐高温树脂基料
碳基复合材料:
整体毡碳/碳 低密度碳/碳 多维整体编织碳/碳
陶瓷基复合材料:
石英织物增强,纤维在闭模中铺好,树脂在重 力或外压的作用下注入模子。
工艺因素:
(1)树脂对纤维的完全浸润 (2)树脂粘度 (3)树脂与纤维之间的界面的表面张力 (4)纤维体积百分数高,直径细小,完全浸 润需长时间和高压。专用342、预浸润
第一步:生产预浸料 把纤维和树脂铺在两张硅化纸或塑料薄膜之间,再 对它加压或辊压,确保压实和纤维浸润,然后部分 固化得到浸有树脂的纤维带或片。 该步工艺优点:单向层中的纤维定向程度极好。
纤维的原子排列,化学性能 高分子基体的分子结构和化学组成 例: 纤维的高模量、高强度性能使它成为理想的负荷 载体,但必须有一种模量较低的基体把它牢固地 粘结起来,使任何一根纤维的断裂,对整体的强 度影响不大。这就要求纤维对基体有良好的浸润 性,但玻纤和碳纤对树脂的浸润性是相当差的, 表现在层间剪切上。
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
绪论
复合材料分类
金属基复合材料 树脂基复合材料 无机非金属基专用5金属基复合材料
金属基复合材料
硼/铝复合材料 碳化硅纤维/铝复合材料

复合材料ppt课件文字可编辑

复合材料ppt课件文字可编辑
铺层优化设计
通过调整复合材料的铺层顺序、纤维方向和厚度分布等参数,实现结构的最优化。
制造工艺优化
针对复合材料的制造工艺进行优化,提高生产效率和产品质量。
试验验证与反馈
对优化后的复合材料结构进行试验验证,并将结果反馈至设计阶段,不断完善和优化设计方案。
优化设计策略探讨
06
CHAPTER
复合材料加工与制造技术
自动铺放技术及应用实例
自动铺放技术概述
自动铺放技术是一种高效、精确的复合材料制造方法,主要包括自动铺带技术和自动铺丝技术。
应用实例
自动铺放技术在航空航天、汽车、船舶等领域具有广泛应用。例如,在航空航天领域,自动铺放技术可用于制造飞机机翼、机身等部件,提高生产效率和产品质量。
树脂传递模塑(RTM)是一种闭模成型技术,将低粘度树脂注入到闭合模具中,浸润增强材料并固化成型。
航空航天领域
汽车工业领域
体育器材领域
分享汽车轻量化设计中的复合材料应用案例,如车身、底盘、发动机罩等部件。
介绍高尔夫球杆、网球拍、自行车车架等体育器材中复合材料的设计与应用。
03案例分享
01
02
03
04
有限元分析
利用有限元分析方法对复合材料结构进行力学性能和热学性能分析,以指导优化设计。
07
CHAPTER
复合材料回收利用与环保问题探讨
当前复合材料回收利用率较低,大量废弃物未得到有效利用。
回收利用率低
复合材料种类繁多,回收处理技术复杂,难以实现高效、低成本回收。
技术挑战
缺乏成熟的复合材料回收市场,回收产业链尚不健全。
市场机制不完善
回收利用现状及挑战
生产成本增加
环保法规的实施导致企业生产成本增加,对产业发展带来一定压力。

第十四章陶瓷基复合材料加工工艺课件

第十四章陶瓷基复合材料加工工艺课件

起步阶段
成熟阶段
20世纪50年代,人们开始探索陶瓷基 复合材料的制备方法。
21世纪初,陶瓷基复合材料在能源、 化工等领域得到广泛应用,并不断涌 现出新的制备技术和应用领域。
发展阶段
20世纪70年代,随着材料科学和制备 工艺的进步,陶瓷基复合材料逐渐应 用于航空航天领域。
02
陶瓷基复合材料的加工 工艺
高的生产效率。
反应烧结工艺
总结词
通过在高温下使陶瓷粉末之间发生化学反应,生成所需陶瓷材料,并进行烧结,形成致密的陶瓷基复合材料。
详细描述
反应烧结工艺是利用陶瓷粉末之间发生的化学反应来制备陶瓷基复合材料的方法。在反应烧结过程中,将陶瓷粉 末加热至高温,使粉末之间发生化学反应,生成所需的陶瓷材料。经过进一步的烧结处理,得到致密的陶瓷基复 合材料。该工艺适用于制备高熔点、高硬度、高耐磨性的陶瓷材料。
热压烧结工艺
总结词
通过在高温高压下将陶瓷粉末压制成形,然后进行烧结,形成致密的陶瓷基复合材料。
详细描述
热压烧结工艺是一种常用的陶瓷基复合材料加工方法。在热压烧结过程中,将陶瓷粉末 与适量的有机或无机粘合剂混合,然后在高温高压下将混合物压制成形。经过烧结后, 去除粘合剂,得到致密的陶瓷基复合材料。该工艺可制备形状复杂的陶瓷部件,具有较
高温超导陶瓷基复合材料
01
高温超导陶瓷基复合材料介绍
高温超导陶瓷基复合材料是一种具有优异导电性能的材料,能够在极低
的温度下实现零电阻。这种材料在电力传输、磁悬浮、磁体等领域具有
广泛的应用前景。
02
制备工艺
高温超导陶瓷基复合材料的制备工艺主要包括粉末制备、成型、烧结等
步骤。其中,粉末制备是关键环节,需要控制原料的纯度、粒度和化学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

▪ 穿刺技术与缝合技术的出现和应用极大改进了复合材料的
断裂韧性,意味着复合材料能够承受更高冲击强度和剥离
应力。该技术比缝合技术更具发展潜力,主要是因为其节
省了高成本的缝合机,尺寸不受限制,特别是能够进行局
部结构的加强,因此是未来飞机机体应用的关键技术。
.
9
(3) 三维机织
▪ 该工艺目前已经广泛用于复合材料工业,主 要用于生产单层、宽幅织物,作为复合材料 的增强体。三维异型整体机织技术是国外上 世纪80年代发展起来的高新纺织技术,它创 造了一类新的复合材料结构形式。采用三维 异型整体机织技术制造的复合材料制件具有 整体性和力学的合理性两大特点,是一种高 级纺织复合材料。其突出特点是纺织异型整 体织物,如T形、U形、工形、十字形等型 材和圆管等,灵活的机织工艺还可以创造出 许多新的复杂形状织物。
➢粉末冶金(热压、 ➢粉体烧结 机械合金化、SPS) ➢反应成形 ➢合金箔扩散键合 ➢拉拔等机加工成 形
气相工艺
➢PVD(物理气相 沉积)
.
➢CVD(化学气相
沉积)
➢CVI(化学气相
渗透)
5
塑料基复合材料的制备成形
.
6
4.2 树脂基复合材料
▪ 先进复合材料具有比强度和比模量高、耐疲劳、各向异性 和可设计性、材料与结构的一次成型等性能,自上世纪60 年代问世以来,很快获得广泛应用,成为航空航天4大材料 之一。随着其材料性能和制造技术的不断改进,复合材料 未来在战斗机、大型军用运输机、无人机等平台上必将占 有重要地位。
技术进行加热和加压。这样生产出的结构件相对于同样的
铝合金零件重量减少25%,成. 本降低20%。
8
(2) 穿刺
▪ 穿刺是复合材料结构三维加强的一种简单方法,在某些方 面优于缝合技术。但是它不能用于制造预成形体。在这个 工艺中利用薄的削棒以正确的角度在固化前或固化时插入 二维的碳纤维环氧复合材料层板中,从而获得三维增强复 合材料结构。Z向削棒可以是金属材料,也可采用非金属材 料。削棒插入的方式有两种,一是采用真空袋热压的方法, 二是采用超声技术。
4. 复合材料的制造方法 概述
▪ 复合材料的重要领域之一是其制造技术。由于制造 成本、最佳组织结构等与基体及增强体特性、排列 方式等有关,所以制造技术是复合材料中至关重要、 且为该领域的研究者非常感兴趣的课题。在复合材 料的制造中,通常是将最终制品的制造与复合材料 的成形一起完成。因此,增强体的最佳排列与分布, 不仅是对应于用途的力学性能的要求,而且要满足
▪ 航空工业中制备复合材料制件的主要要求为:可支付得起;
高度自动化;好的质量控制;降低模具成本及缩短生产周
期。为了达到这些要求,航空工业正着眼于:编织技术;
先进的铺带技术;非热压罐技术;注射工艺;先进的固化
工艺;全质量概念及热塑性工.艺。
7
预成形体的制造技术 (1)缝合技术
▪ 缝合织物增强复合材料是采用高性能纤维和工业用缝合机 将多层二维纤维织物缝合在一起,经复合固化而成的纺织 复合材料。它通过引用贯穿厚度方向的纤维来提高抗分层 能力,增强层间强度、模量、抗剪切能力、抗冲击能力、 抗疲劳能力等力学性能,从而满足结构件的性能需求。
.
13
(7) 层板及蜂窝结构制造技术
▪ 纤维增强金属层板(FRML)是由金属薄板和纤维树脂预浸 料交替铺放胶合而成的混杂复合材料。改变金属类型和厚 度、纤维树脂预浸料系统、铺贴顺序、纤维方向、金属表
使用者的要求。
.
1
4. 复合材料的制造方法
主要的液相工艺
➢压挤铸造与压挤渗透 ➢喷雾沉积 ➢热喷射 ➢浆体铸造 ➢定向凝固共晶 ➢金属的定向氧化
.
2
主要的固相工艺
➢粉末冶金 ➢薄膜的扩散键合 ➢利用陶瓷-金属(陶瓷)间的反
应 ➢由有机聚合物的合成
.
3
主要的气相工艺
➢PVD(物理气相沉积) ➢CVD (化学气相沉积) ➢CVI (化学气相渗透)
▪ 大部分的缝合复合材料结构的开发项目都是以美国的
NASA为主进行的。最著名的是利用缝合技术制造的复合
材料机翼,其中采用了波音公司开发的28m长的缝合机制
造飞机机翼蒙皮复合材料预成形体。该缝合机能够缝合超
过25mm厚的碳纤维层,缝合速度达3000针/分。除了缝合
蒙皮预成形体外,还可缝合加强筋。缝合完成后采用RFI
.
10
(4)Байду номын сангаас编织
▪ 编织是一种基本的纺织工艺,能够使两条以 上纱线在斜向或纵向互相交织形成整体结构 的预成形体。这种工艺通常能够制造出复杂 形状的预成形体,但其尺寸受设备和纱线尺 寸的限制。该工艺技术一般分为两类,一类 的二维编织工艺,另一类是三维编织工艺。
.
11
(5) 针织
▪ 针织用于复合材料的增强结构的方向强度、冲击抗 力较机织复合材料好,且针织物的线圈结构有很大 的可伸长性,易于制造非承力的复杂形状构件。目 前国外已生产了先进的工业针织机,能够快速生产 复杂的近无余量结构,而且材料浪费少。用这种方 法制造的预成形体可以加入定向纤维有选择地用于 某些部位增强结构的机械性能。另外,这种线圈的 针织结构在受到外力时很容易变形,因此适于在复 合材料上成形孔,比钻孔具有很大优势。但是它较 低的机械性能也影响了它的广泛应用。
.
12
(6) 经编
▪ 采用经向针织技术,并与纤维铺放概念相结合,制造的多 轴多层经向针织织物一般称为经编织物。这种材料由于不 弯曲,因此纤维能以最佳形式排列。经编技术可以获得厚 的多层织物且按照期望确定纤维方向,由于不需要铺放更 多的层数,极大提高经济效益。国外目前已经能够在市场 上获得各种宽幅的玻璃和碳纤维经编织物。这种预成形体 有两个优点:一是与其他纺织复合材料预成形体相比成本 低;二是它有潜力超过传统的二维预浸带层压板,因为它 的纤维是直的,能够在厚度方向增强从而提高材料的层间 性能。该技术已经在飞机机翼桁条和机翼壁板上进行了验 证,预计未来将在飞机制造中广泛应用。
.
4
聚合物基 金属基 陶瓷基 复合材料 复合材料 复合材料
液相工艺 固相工艺
➢液体状树脂的含 浸 ➢预浸料坯成形 ➢(玻璃钢)片状模 塑料 ➢热塑性塑料的注 射成形
➢热塑性塑料的热 压成形
➢压力熔浸与无压 熔浸 ➢搅拌铸造 ➢喷射沉积成形 ➢定向凝固共晶 ➢热喷射
➢定向氧化 ➢定向凝固共晶 ➢利用有机聚合物 的合成
相关文档
最新文档