傅里叶光学全
傅里叶光学讲义

傅⾥叶光学讲义傅⾥叶光学实验傅⾥叶光学原理的发明最早可以追溯到1893年阿贝(Abbe )为了提⾼显微镜的分辨本领所做的努⼒。
他提出⼀种新的相⼲成象的原理,以波动光学衍射和⼲涉的原理来解释显微镜的成像的过程,解决了提⾼成像质量的理论问题。
1906年波特(Porter )⽤实验验证了阿贝的理论。
1948年全息术提出,1955年光学传递函数作为像质评价兴起,1960年由于激光器的出现使相⼲光学的实验得到重新装备,因此从上世纪四⼗年代起古⽼的光学进⼊了“现代光学”的阶段,⽽现代光学的蓬勃发展阶段是从上世纪六⼗年代起开始。
由于阿贝理论的启发,⼈们开始考虑到光学成像系统与电⼦通讯系统都是⽤来收集、传递或者处理信息的,因此上世纪三⼗年代后期起电⼦信息论的结果被⼤量应⽤于光学系统分析中。
两者⼀个为时间信号,⼀个是空间信号,但都具有线性性和不变性,所以数学上都可以⽤傅⽴叶变换的⽅法。
将光学衍射现象和傅⽴叶变换频谱分析对应起来,进⽽应⽤于光学成像系统的分析中,不仅是以新的概念来理解熟知的物理光学现象,⽽且使近代光学技术得到了许多重⼤的发展,例如泽尼克相衬显微镜,光学匹配滤波器等等,因此形成了现代光学中⼀门技术性很强的分⽀学科—傅⾥叶光学。
实验原理:我们知道⼀个复变函数f(x,y)的傅⽴叶变换为:+-=?=dxdy vy ux 2i y x f y x f v u F )](exp[),()},({),(π ( 1 )F (u,v)叫作f(x,y)的傅⽴叶变换函数或频谱函数。
它⼀般也为复变函数,f(x,y)叫做原函数,也可以通过求 F(u,v)逆傅⽴叶变换得到原函数f(x,y):+=?=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π(2)在光学系统中处理的是平⾯图形,当光波照明图形时从图形反射或透射出来的光波可⽤空间两维复变函数(简称空间函数)来表⽰。
在这些情况下⼀般都可以进⾏傅⾥叶变换或⼴义的傅⾥叶变换。
傅里叶光学课件 05_06傅里叶变换全息

x+
yo − yr
λ zo
y
⎤ ⎥
⎫⎪ ⎬
⎦ ⎭⎪
5.6.10
可见,基元全息图是正余弦条纹图样,条纹的空间频率为:
u = xo − xr , v = yo − yr
λ zo
λ zo
5.6.11
不同的物点(xo, yo)在全息图上所产生条纹的空间频率不 同,或者说全息图上的空间频率与物点之间具有一一对应的 关系。这一点与FT全息图的特征类似。
=
ro
2
+
G
2
⎡ + ro exp ⎢−
⎣
jk
x2 + y2 2f
⎤ ⎥
exp [ −
⎦
j2π
bv
]iexp
⎡ ⎢
⎣
jk
x2 + y2 2f
⎤ ⎥ G(u, v) ⎦
+ ro
exp
⎡ ⎢ ⎣
jk
x2 + 2f
y2
⎤ ⎥
exp
[
⎦
j2π bv]iexp
⎡ ⎢− ⎣
jk
x2 + 2f
y2
⎤ ⎥
G∗
(
u,
−∞ −∞
u = x ,v = y ,
5.6.1
λf λf
其中:(xo,yo)是物面的空间坐标, f 是透镜焦距,(u,v)是空间 频率坐标,(x,y)是记录面(频谱面)的空间坐标。
¾参考光波由位于物面上(0,-b)的点源产生。空域表示为:
r( xo , yo ) = roδ (0, yo + b)
y1
分布的共轭。沿y轴方向的宽度Wy 。
第三、四项都是实像,关于原点对称分布.
傅里叶光学简介

L1
O
F S+1
A B
S0
C
S-1
阿贝成象原理
I’
1
C’
通过衍射屏的光发生夫
琅禾费衍射,在透镜后
B’
焦平面上得到傅里叶频
A’
2
谱 (S+1, S0, S-1)
虚物
2 频谱图上各发光点发出的球面波在象平面上相干叠
加而形成象A’,B’,C’ 。
第一步是信息分解 第二步是信息合成
频 ❖ 第一步夫琅禾费衍射起分频作用将各 谱 语 种空间频率的平面波分开在L后焦面上形 言 成频谱 描 述 ❖ 第二步干涉起综合作用
傅里叶光学的应用
(1)光学信息处理的特点
✓ 高速 处理 并行传输 并行处理 响应 光开关 10-15s 光传输速度 3×108 m/s 电开关 10-9s 电传输速度 105 m/s
✓ 抗干扰能力强 ✓ 大容量 传输容量大 光纤
存储容量大 全息存储
(2)信息光学的应用
✓ 新型成像系统
✓ 图像处理、图像识别
傅里叶变换+线性系统理论
➢空间频率
照片的二维平面 上光振幅有一定 的强弱分布
➢空间频率
空间频率:单位长度光振幅变化的次数。 反映了光强分布随空间变量作周期性变化的频繁程 度,它同光振动本身的时间频率完全是两回事。时 间是一维的,空间可以是一维、二维、三维。
➢ 数学上的傅立叶变换
数学上可以将一个复杂的周期性函数作 傅立叶级数展开,这一点在光学中体现 为:一幅复杂的图像可以被分解为一系 列不同空间频率的单频信息的合成,即, 一个复杂的图像可以看作是一系列不同 频率不同取向的余弦光栅之和。
✓透镜的发明 ✓望远镜、显微镜的发明 ✓Snell折射定律、费马原理 ✓微粒说、波动说
傅里叶光学

课堂练习解答( 课堂练习解答(续)
在利用常用函数的傅里叶变换表的时候,必须建立观察面坐标与频率 坐标之间的关系
fx = x λz , fy = y λz
进而夫琅和费衍射可以表示为
a a x0 x0 + exp( jkz ) k 2 2 4 rect 4 exp j U ( x, y , z ) = x + y Frect a a jλ z 2z x 2 2 f x = , f y = y
这就是夫琅和费衍射公式。在夫琅和费近似条件下,观察面上的场 分布等于衍射孔径上场分布的傅里叶变换和一个二次位相因子的 乘积 对于仅响应光强不响应位相的一般光探测器,夫琅和费衍射和光场 的傅里叶变换并没有区别
夫琅和费衍射举例
1 矩孔与单缝衍射 2 双缝衍射 3 圆孔衍射
矩孔,单缝, 矩孔,单缝,和圆孔的夫琅和费衍 射图样
2
向P点会聚的照明球面波在孔径平面上的确入射光场可以简化为
U 0 (x0 , y 0 ) = k 2 A 2 exp[ jkz ]exp j x0 + ( y 0 b ) z 2z
[
]
菲涅耳衍射举例( 菲涅耳衍射举例(续2) 举例
设孔径的振幅透过率函数为 t (x0 , y 0 ) ,则在会聚光照明下透过孔径 的光场分布为
l2 ly sin c 2 I ( x, y ) = 2λz λz 2 m2 m l 2 lx 2 l sin c + sin c ( x + f 0 λz ) + sin c 2 ( x f 0 λz ) λz 4 λz 4 λz
课堂练习
如下图所示的宽度为a 的单狭缝,它的左右两半部分之间引入位相 差 π 。采用单位振幅单色平面波垂直照明,求距离为 z 的观察平 面上的夫琅和费衍射的强度分布。试画出沿 x 方向的截面上的强 度分布图。
第十四章傅里叶光学-文档资料

u
x y 1 v 1 d0 d0
~ x E 2, y 2
Ex ,y 1 1
~ Ex, y
t x ,y l 2 2
t x ,y 1 1
~ 而 FT E x ,y 1 1 A FT tx ,y A T u , v 1 1
2 f
~ ~ x E ,y 1 1 E x ,y 1 1
~ Ex, y
f
f
表明:透镜后焦面上的光场分布正比于 tl x ,y 衍射物体平面上复振幅的傅里叶变换。 tx 1 1 f ,y 1 1
jk 2 2 exp 2f x y ,后焦面上的位相分布与物体频谱的位相分布不
tx, y
tl x, y f
~ 2)紧靠透镜之后的平面上的复振幅分布E x ,y 1 1
~ 3)后焦面上的复振幅分布 Ex, y
,y 物体的复振幅透过率为tx ,则物体与透镜之间的平面上的 1 1 复振幅分布为 ~ E x , y A t x , y 1 1 1 1
k 2 2 代入上式得到 ~ 将 E x , y A t x , y exp j x y 1 1 1 1 1 1
jk 2 1 2 Ex, y exp x y j f 2f ~ x y FTEx 1, y 1 u 1 v 1
但是这种FT关系不是准确的。由于变换式前存在位相因子
一样,但他对观察平面上的强度分布没有影响,其光强为
A x y I x , y T , f f f f
物理光学-6傅里叶光学

y方向上
v 1 0 dy
( x) A exp i2 ux E
u
cos
为锐角, cos 0
u cos
xy平面 z=z0或z 0平面
为正值
上的位相值沿x正向增加
这一强度分布具有空间周期性, 在x方向和y方向的空间周期分别为: dx
cos 2 cos 1
,
dy
cos 2 cos 1
空间频率为 cos 2 cos 1 u ,
v
cos 2 cos 1
3. 衍射光波的空间频率 (Spatial frequency of diffraction Lightwave )
为钝角, cos 0
u cos
xy平面 z=z0或z 0平面
为负值
上的位相值沿x正向减小
空间频率的正负,仅表示平 面波的传播方向不同
2.平面波传播方向余弦为cos ,cos 的情况
( x, y ) A exp i 2 z cos exp i 2 x cos y cos E 0 2 A exp i x cos y cos
x
2
y
cos
2
1 u dx 1 dy
cos sin y
sin x
平面波矢量在xz平面内时,
u
sin x
0
空间周期的物理意义:(在z=0平面内讨论) 1)平面波沿k方向的空间周期;平面波沿任意方向 r 的空间周期。
《傅里叶光学基础》课件

傅里叶光学是光学领域的重要基础知识,本课程将介绍傅里叶光学的基本原 理和应用领域,包括光通信、计算机技术和医疗影像。
傅里叶光学基础知识
1 传输函数
了解传输函数的概念以及在傅里叶光学中的作用。
2 光学变换
学习傅里叶变换和反变换,以及它们在光学领域的应用。
3 频谱分析
掌握频谱分析的方法和技巧,以及如何应用于光学系统的研究。
总结与展望
本课程回顾了傅里叶光学的基础知识和应用,介绍了其在光通信、计算机技 术和医疗影像中的重要性。希望通过本课程的学习,您能深入了解傅里叶光 学的原理和应用,并在相关领域取得更好的成就。
数据压缩
了解傅里叶光学在数据压缩领域的应用,如JPEG图像压缩算法。
频谱分析
学习傅里叶光学在信号处理和频谱分析中的作用。
傅里叶光学在现代医疗影像中的应用
1
CT扫描
掌握傅里叶光学在CT扫描中的重建算法和图
磁共振成像
2
像重建技术。
了解傅里叶光学在磁共振成像中的采样技术
和图像重建方法。
3
超声成像
学习傅里叶光学在超声成像中的频域分析和
傅里叶光学在光通信中的应用
高速数据传输
了解傅里叶光学在光通信中的高 速数据传输方案和技术。
光纤通信系统
探索调制与解调
学习傅里叶光学在光调制和解调 中的原理和技术。
傅里叶光学在现代计算机技术中的应 用
图像处理
探索傅里叶光学在图像处理中的应用,如图像滤波和频域图像增强。
分子影像学
4
图像增强技术。
探索傅里叶光学在分子影像学中的应用,如 光学断层成像和荧光成像技术。
傅里叶光学的发展现状
傅里叶光学(高等物理光学)

第一章光场的表示和Fourier分析1.1 Maxwell方程与标量波1.2 平面波和球面波1.3 二维Fourier变换的定义和物理意义1.4 卷积和相关1.5 Fourier变换的基本性质1.6 可分离变量的Fourier变换1.7 一些常用函数和它们的Fourier变换17空间频率概念的引入f (2j eU )y ,x (U π=/1/1==f f y x λcos =X9112. ( f x , f y )的物理意义方向余弦为(cos α, cos β) 的单色平面波在xoy平面上的复振幅分布是以2π为周期的分布,该复振幅分布可用沿x,y 方向的空间频率( f x , f y ) 来描述3.根据波叠加原理,任何复杂的光场分布可以分解为许多不同方向传播的平面波的叠加,或分解为许多不同空间频率的波的叠加.此式表示一个在xy 平面上沿x方向的空间频率为f x ,沿y方向的空间频率为f y 作周期的复振幅函数,它代表一个传播方向为( cos α=λf x ,cos β=λf y )的平面波.)(20),(y f x f j y x eU y x U +=π)cos cos (0),(βαy x jk e U y x U +=四、球面波的复振幅1、定义:点光源发出的单色光波等相位面是球面波1215近轴条件:只考虑xoy 平面上与S 点张角不大的范围.3、近轴条件下球面波的复振幅(1)171.3 Fourier变换的定义和物理意义一、广义变换∫∞∞−=dxx k x f I f ),()()(αα把函数f (x)在x 空间变换成α空间的I f (α)的函数,I f (α) 叫函数f (x) 的以k (α,x) 为核的积分变换.变换Fourier e x k x j −−=−παα2),(拉普拉斯变换−−−x e α梅林变换−−−1αx 阶汉克尔变换n xJ n −−)(α18二、一维Fourier变换1、定义t j eπν2基元函数代表频率为ν的简谐振荡.F (ν)= F {f ( t )}=∫∞∞−−dte tf t j πν2)({}dve v F v F tf vt j π21)()()(∫∞∞−−==F 2、物理意义:1) f (t)可分解为许多基元函数的线性组合;2) F (ν)权重因子.1921四、存在条件(函数g(x,y)存在FT的条件)1、g(x,y)在整个xy平面绝对可积∫∫∞<dxdy y x g |),(|五、广义Fourier变换g (x ,y)=),(lim y x g n n ∞→G (f x ,f y )=),(lim y x n n f f G ∞→2、在任一有限区域里,g(x,y) 必须只有有限个间断点和有限个极大和(或)极小点;3、g(x,y)必须没有无限大间断点.23若g(x,y) 为实函数,G( f x , f y ) 是厄米函数,则G (-f x ,-f y ) = ( f x , f y )即振幅|G (-f x ,-f y ) | = |G( f x , f y )|幅角φ(-f x ,-f y ) = -φ( f x , f y )其中( f x , f y )是G( f x , f y )的共轭复数,G ( f x , f y )是中心对称的函数.傅立叶变换并不改变函数的奇偶性,通常该性质称为傅立叶变换的对称性.∗G ∗G24一、卷积(Convolution)1. 定义:αααd x h f x h x f x g )()()()()(−∫=∗=∞∞−展宽:卷积运算的宽度是原来两个函数宽度之和.设f (x) 宽度为b 1, h (x) 的宽度为b 2,则g (x) 的宽度是:b = b 1+b 2 .1.4 卷积和相关卷积运算的几何解释:先反转h (α),每平移一个距离x,计算f (α)h (x -α)相乘,∫∞∞−−da a x h a f )()(求面积;再绘成g(x) 随x 变化的图形;积分252627)}()({)}()({)()}()({x h x v b x h x u a x h x bv x au ∗+∗=∗+4)结合性:)()()()()()()()}()({x v x h x u x h x v x u x h x v x u ∗∗=∗∗=∗∗)()()(x u x v x h ∗∗=卷积的次序是无关紧要的.2. 性质:1)平滑性:g (x)的变化率<< f (x)、h (x)的最大变化率;2)对易性:f (x) * h (x)= h (x) * f(x);3)线性性质:30二、相关(correlation)1. 定义:αααd x h f x h x f x g )()()()()(*−∫==∞∞−★令:x −=αβ得:βββd h x f )()(*∫∞∞−+ηξηξηξd d y x h f y x h y x f y x g ),(),(),(),(),(*−−∫∫=∞∞−=★ηξηξηξ′′′′∫∫+′+′∞∞−d d h y x f ),(),(*=与卷积运算的区别:没有反转,只有平移.)(αh )(α−h31相关运算示意图322.性质:1)尖峰化:相关运算是两个信号之间存在相似性的量度.34若f (x) = h (x),则:αααd x f f x f x f x g )()()()()(*−∫==∞∞−★ηξηξηξ∫∫−−=∞∞−d d y x f f y x f y x f ),(),(),(),(*★ηξηξηξ′∫∫′′′+′+′=∞∞−d d f y x f ),(),(*3. 自相关函数:1)定义:3538六、自相关定理七、Fourier积分定理对函数相继进行正FT变换和逆FT,得到原函数.八、FT的FT对函数相继进行FT,所得的函数形式不变,仅将坐标反向.F {g (x,y )☆g (x,y )}=|G (f x , f y )|2F {|G (f x , f y )|2}= g (x,y )☆g (x,y )F –1{F {g (x,y )}}= F {F –1{g (x,y )}}=g (x,y )F {F {g (x,y )}}=g (-x,-y )自相关函数的FT是原函数的功率谱,信号的自相关和功率谱之间存在FT关系.F {g (x,y )☆h (x,y )}= (f x , f y )·H (f x , f y )——互相关定理∗G 两函数的互相关与其互谱密度之间存在FT关系.41结论:在极坐标中可分离变量函数g (r ,θ)=g r (r )g θ(θ)它的频谱在极坐标中也是可分离变量函数,关于φ的函数是exp(j k φ),关于ρ的函数是G k (ρ) 它为g r (r ) 的k 阶汉克尔变换.=ρ45464748491.7、一些常用函数和它们的FT50。
傅立叶光学

Linear Systems
1.线性系统 3)线性系统的定义 g(x, y) = {f(x, y)}
定义: 如果 g1(x, y) = 输入
f(x, y)
{
}
输出
g(x, y)
{f1(x, y)}, g2(x, y) =
{f2(x, y)}
若对任意复常数a1, a2有: {a1 f1 (x, y) + a2 f2 (x, y) } =
2.2 线性不变系统
输入输出关系: 空域
Linear Shift-Invariant System
2.二维线性空不变系统 2-D Linear Space Invariant Systems
+∞
∵ f ( x, y ) = f ( x, y ) ∗ δ ( x, y ) = ∫
∴ g (x, y) =
逆傅立叶变换的物理意义:物函数f(x,y)可看作是无数振幅不同 ( F ( f x , f y )df x df y) 方向不同( cosα=λfx cosβ= λ fy )的平面波线性叠加的结果。 这种方法通常称为傅立叶分解
1.线性系统
2.1 线性系统 Linear Systems
4)线性系统的分析与综合:
g(x, y) =
=
叠加积分
{f(x, y)}
+∞
∫∫ ∫∫
f (ξ ,η )
{ δ ( x − ξ , y − η ) }d ξ d η
−∞ +∞
=
f (ξ ,η ) h ( x , y ; ξ ,η ) d ξ dη
−∞
只要知道各个脉冲响应函数(点扩散函数), 系统 的输出即为脉冲响应函数的线性组合. 问题是如 何求对任意点的脉冲δ (x-ξ, y- η)的响应h(x, y;Linear Space Invariant Systems
《傅里叶光学》课件

光通信
利用傅里叶光学原理实现高速光信号的传输和处 理,提高通信容量和速度。
3
光学仪器设计
傅里叶光学在光学仪器设计中的应用,如干涉仪 、光谱仪等。
傅里叶光学的发展前景和挑战
发展前景
随着光子技术的不断发展,傅里叶光学在光通信、光学仪器、生物医学等领域的应用前 景广阔。
傅里叶光学在光学显微镜、光谱仪和 OCT等生物医学成像技术中被广泛应 用。
光电子器件
利用傅里叶光学原理设计的光电子器 件,如光调制器、光滤波器和光开关 等。
02
傅里叶变换
傅里叶变换的定义和性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过正弦和余弦函数的线性组合 来表示信号。
傅里叶变换的性质
傅里叶变换在信号处理中的应用
频域滤波
通过在频域对信号进行滤波,可以实现信号的降噪、增强等处理 。
信号压缩
利用傅里叶变换可以将信号从时域转换到频域,从而实现对信号的 压缩和编码。
图像处理
傅里叶变换在图像处理中也有广泛应用,如图像滤波、图像增强、 图像压缩等。
03
光学信号的傅里叶分析
光学信号的表示和测量
05
傅里叶光学的实践应用
傅里叶光学的实验技术
光学干涉实验
利用干涉现象研究光的波动性质,验证傅里叶光学的 基本原理。
光学衍射实验
通过衍射实验观察光的衍射现象,理解傅里叶光学中 的衍射理论。
光学频谱分析实验
利用傅里叶变换对光信号进行频谱分析,研究光波的 频率成分。
傅里叶光学的应用案例
1 2
图像处理
干涉和衍射在光学系统中的应用
傅里叶光学

λ cos α
λ dy cos β
空间频率: u cos α λ
v cos β λ
以空间频率描述平面波
16 / 120
空间角频率:
E(x) A'exp i2π ux vy
kx 2πu , ky 2πv
E(x) A'exp i kxx ky y
17 / 120
18 / 120
19 / 120
单色波场中的复杂复振幅
20 / 120
不同传播方向的单色平面波照射在一个观察 屏上,观察屏上的复振幅分布由这些平面波 叠加而成。
或者说,如果我们在观察屏上看到某个图案 (光强分布),它对应一定的复振幅分布。 一般情况下,这个复振幅分布是非常复杂的, 它不是由一个平面波照射形成的,往往是由 许多不同传播方向的平面波叠加而成,并且 每个平面波的幅度各不相同。
平面波沿传播方向的复振幅分布 13 / 120
光波的复振幅分布和光强分布的空间频率是傅里叶光学的基 本物理量。
空间频率:空间呈正弦或余弦分布的物理量在某个方向上单 位长度内重复的次数。
平面波的复振幅:
~
E(x,
y,
z)
A exp
i
2π λ
x cos
α
y cos
β
z
cos
γ
对于特殊情况,沿z方向传播的平面波复振幅:
v)
exp
i2π
ux
vy
dudv
~
E(u,v)
~
E(
x,
y)
exp
i2π
ux
vy
傅里叶变换光学课件

相因子判断法
• 知道了衍射屏的屏函数,就可以确定衍射场,进 而完全确定接收场。
• 但由于衍射屏的复杂性以及衍射积分求解的困难, 完全确定屏函数几乎是不可能的。
• 采取一定的近似方法获取衍射场的主要特征。 • 了解了屏函数的位相,则能通过研究波的位相改
变来确定波场的变化。这种方法称为相因子判断法。 • 一般都是在傍轴近似下进行判断。
52
除0级外,全开放 53
振动(电场强度)分布 像平面
4F系统
• 物平面O,变换平面T,像平面I:OTI系统
54
空间频率滤波举例 1. 网格实验
频 谱
像
(a)
(b)
(c)
焦平面 谱面
像面
(d)
55
➢若只让焦平面上的亮点透过在象平面上出现清洁 的光栅图形--其它图形滤掉。 ➢若挡住焦平面上的亮点在象平面上出现消除了光栅 线条的图形。
45
空间滤波
• 空间频率与波的衍射角相关, 可以据此做成低通、高通或带通的滤波装置
衍射屏或物的空间频率
低通
高通
带通
46
低通
高通
带通
47
阿贝(1874)—波特(1906)空间滤波实验 • 以黑白光栅为物,单色平行光照射 • 在傅氏面上加一可调狭缝,观察像的变化
48
像平面 可调光阑
傅氏面
黑白光栅
49
(c)
(d)
61
θ调制
0级
x
1级
光缝
花白 底白 叶白
蓝绿红 蓝绿红 蓝绿红
花
叶
底 红 绿蓝
白
底
蓝绿 红
花 叶
62
相衬显微镜
• 很薄的透明样品,例如生物切片,对光的 吸收很小,因而不同的部分反差较小,在 显微镜下观察,不容易分辨细节。这类样 品,不会引起透射光振幅的改变,所以不 是振幅型的;但由于各处折射率并不相同, 因而透射光的相位会有改变,是相位型的。
傅里叶光学

补充读物傅里叶光学和数字图象处理光学与电通讯和电信息理论相互结合,逐渐形成了傅里叶光学。
傅里叶光学的数学基础是傅里叶变换,它的物理基础是光的衍射理论。
一、空间频率和复振幅设一维简谐波以相速度u 沿x 轴正方向传播,)(cos ),(0ϕωξ+−=x k t A t x简谐振动的时间周期性:时间周期T ,时间频率ν,时间角频率ω .简谐波还具有空间周期性?波速u :(单位时间内振动状态的传播距离称为波速,相速)πλωλνλ2===T u . 空间周期性:空间周期:波长λ (表示振动在一个周期T 内所传播的距离,两个相邻的振动相位相同的点之间距离。
)空间频率:1/λ空间角频率:波数2π/λ若两个单色波沿其传播方向有不同的空间频率,意味着它们有不同的波长。
时间周期性和空间周期性的联系(对单色光):λ = uT 沿空间任意k 方向传播的单色平面波,复振幅 )(i 00e )(~ϕ−⋅=r k r A E ])cos cos cos ([i 0e ϕγβα−++=z y x k A ,其中α , β 和γ 为传播矢量k 的方位角。
在多数情况下,若不考虑光波随时间的变化,可以只用复振幅表示光波以简化计算。
二、空间频率概念的推广(二维)通常,要处理一个二维的复振幅分布或光强分布,如分析平面上的衍射花样,这时要推广空间频率。
沿k 方向传播的单色平面波,0z z =平面的复振幅分布为 γcos i 000e ),(~z k A y x E =)cos cos (i e βαy x k +对于沿一定方向传播的平面波,γcos i 0e z k =常数,则A y x E =),(~0)cos cos (i e βαy x k +x, y 平面上各点复振幅的差别仅来源于不同的(x, y )处有不同的相位差。
x y 平面上的相位分布?k 方向传播的平面波的波面如上图示,0z z =平面与任一波面的交线(虚线)上,各点的位相=该波面的相位值;交线族 = 等相位线族,其方程为 =+)cos cos (2βαλπy x 常数 故,0z z =平面上复振幅分布的特点:等位相线是一组平行线, 呈周期分布(周期为π2)。
傅里叶光学第7章-全息术课件

4.傅里叶变换全息图
5.像全息图
6.模压全息
7.位相全息
8.彩虹全息图
9.体积全息图
10.计算全息
✓全息术的应用
1.全息显示
2.模压全息
3.全息光学元件
4.全息干涉计量
5.全息信息存储
2、波前记录与再现 p227
✓全息成像过程
1、波前记录—
用干涉法记录物光波
干涉图样的记录
2、波前再现—
胶片上的曝光强度为
2
I x, y r0 O x0 , y0 r02 O r0O r0O*
2
3、同轴全息图与离轴全息图
经过显影、定影后,负片的复振幅透过率就正比于曝光强度,即
t x, y tb O r0O r0O*
2
若用一平面波垂直照明全息图,透射光场为
jr x , y
那么,两波相遇叠加的总光场是
U x, y O x, y R x , y
对应的强度分布为
I x, y U x, y O x , y R x , y O x , y R * x , y O * x , y R x , y
U t x, y C0tb C0 O C0 r0O C0 r0O*
2
b) 同轴全息图的波前再现
✓物光和参考光都来自同轴,全息图透射光波中包含的四项都在同一方向传播,
无法分离;
✓在全息图的两侧距离为z0的对称位置产生物体的实像和虚像,成为孪生像;但
观察某一像时,会受到另一离焦的孪生像的干扰;
用衍射法再现物光波
2、波前记录与再现
(物理光学)第十四章__傅立叶光学_3

E( , ) C0 E( x1 , y1 ) exp[ i 2( x1u y1v )] dx1dy1
位相弯曲消失,E()是E(x1,y1) 准确的傅里叶变换。
其中,C0 是光束走过 2f 距离产生的 位相延迟。
EL (x' , y ' ) E ( x1 , y 1 )
EL (x' , y ' ) E ( x1 , y 1 )
' EL (x' , y ' )
E ( x, y ) E (, )
E ( x1' , y1' )
d0 P
f F
f
f P'
同样,从 F 面P´到也是准确的傅里叶变换,但坐标方向相反。
E ( x , y ) C0 E (, ) exp i 2[( x1' ) ( y1' )]dd
E ( x, y )
e
x2 y 2 ik [ f ] 2f
i f
E L ( x, y) exp[
ik ( xx yy )]dxdy f
(2)
§14-4 傅里叶变换与光学信息处理
一、傅里叶变换光学系统 1. 4f 光学变换系统
EL (x' , y ' ) E ( x1 , y 1 )
(7 )
§14-4 傅里叶变换与光学信息处理
一、傅里叶变换光学系统——1. 4f 光学变换系统
将(6)式代入(4)式
d0 x2 y 2 1 E ( x, y ) exp[ ik ( f d 0 )] exp[ ik (1 ) ] if f 2f
E ( x1 , y1 ) exp[ i
傅里叶光学全

1 傅里叶变换()()()[])}y ,x (f {F dxdy ey ,x f f ,f F y f x f i 2y x y x ==⎰⎰∞∞-+-π式中fx 和fy 称为空间频率,()y x f f F ,称为F(x,y)的傅里叶谱或空间频谱。
()y x f f F ,和F(x,y)分别称为函数f (x,y )的振幅谱和相位谱,而)fy fx (,F 称为f (x ,y )的功率谱。
2 逆傅里叶变换)},({),(),(1)(2[fy fx F F fxfy efy fx F y x f y f x f i y x -∞∞-+==⎰π3 函数f(x,y)存在傅里叶变换的充分条件是:①f(x,y )必须在xy 平面上的每一个有限区域内局部连续,即仅存在有限个不连续结点②f(x,y)在xy 平面域内绝对可积 ③f(x,y)必须没有无穷大间短点4 物函数f (x ,y )可看做是无数振幅不同,方向不同的平面线性叠加的结果5 sinc 函数常用来描述单缝或矩孔的夫琅禾费衍射图样6 在光学上常用矩形函数不透明屏上矩形孔,狭缝的透射率7 三角状函数表示光瞳为矩形的非相干成像系统的光学传递函数8 高斯函数常用来描述激光器发出的高斯光束,又是用于光学信息处理的“切趾术”9 δ函数表示某种极限状态。
可用来描述高度集中的物理量。
如点电荷、点光源、瞬间电脉冲等,所以δ函数又称为脉冲函数。
δ函数只有通过积分才有定值10 在光学上,单位光通量间隔为1个单位的点光源线阵之亮度可 用一个一维梳状函数表示:∑∞-∞=-=n n x )(δ)(x comb 11 一维梳状函数表示点光源面阵或小孔面阵的透过率函数,亦可作为二维函数的抽样函数12 像平面上的强度分布是物的强度分布与单位强度点光源对应的强度分布的卷积,这就是卷积在光学成像中的物理意义 13 卷积运算的两个效应①展宽效应②平滑化效应 14 相关函数是两函数图象重叠程度的描述 15.傅里叶变换的基本定理①线性定理:反映了波的叠加定理。
傅里叶光学简介

1.光栅衍射和空间频率
2.阿贝成像原理 3. 空间滤波和光学信息处理 (1) 阿贝-波特空间实验 (2) 网格实验 (3) 调制实验
数学中的傅里叶分析,应用到通信理论中, 将电信号的特征在频率域中讨论; 傅里叶分 析与光学中的衍射理论结合起来,形成傅里叶 光学. 傅里叶光学,是在频率域中讨论图象信 息.通信理论中涉及的是一维时间函数,傅立 叶光学中讨论的是二维空间的信号.
1.光栅衍射和空间频率
波长为的单色平面波垂直入射到平面 光栅G上.设光栅d/a=2, N很大,会聚透镜后 的焦平面上得到各级干涉极大,且偶数干涉 极大缺级.
x
0
3
1 -1
屏
0 -3
G光 栅
f
对于光栅我们可以用透过率函数(x) 来描述,一维透射光栅的透过率函数是一矩形 波函数.
为了讨论问题方便, 设光栅狭缝总数N无限大.
像
倾斜方向的频谱通过
像
灰网 尘格 粘 上 的
过只 让 网 格 的 频 谱 通
失网 格 的 像 灰 尘 消
(3)
调制实验
用白光照明透明物体,物体的不同部分是 由不同取向的透射光栅片组成.频谱面上(除 零级外)干涉主极大呈彩色.物面上不同的部 分的频谱在不同方向上. 将一个方向的频谱, 只保留一种颜色,滤掉其余的颜色,其对应的 象面上,就显示出该频率的颜色来.
5 p0
p
透射光栅的空间频率和功率谱
上图是矩形波在频率域中的表示,横坐标是 空间频率p, 纵坐标分别表示振幅A和功率A2. 周期性函数的频谱都是分立的谱,各谱线的 频率为基频整数倍.在p=0处有直流分量. 再回到光栅装置.由光栅方程,
d sin m ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 傅里叶变换()()()[])}y ,x (f {F dxdy ey ,x f f ,f F y f x f i 2y x y x ==⎰⎰∞∞-+-π式中fx 和fy 称为空间频率,()y x f f F ,称为F(x,y)的傅里叶谱或空间频谱。
()y x f f F ,和F(x,y)分别称为函数f (x,y )的振幅谱和相位谱,而)fy fx (,F 称为f (x ,y )的功率谱。
2 逆傅里叶变换)},({),(),(1)(2[fy fx F F fxfy efy fx F y x f y f x f i y x -∞∞-+==⎰π3 函数f(x,y)存在傅里叶变换的充分条件是:①f(x,y )必须在xy 平面上的每一个有限区域内局部连续,即仅存在有限个不连续结点②f(x,y)在xy 平面域内绝对可积 ③f(x,y)必须没有无穷大间短点4 物函数f (x ,y )可看做是无数振幅不同,方向不同的平面线性叠加的结果5 sinc 函数常用来描述单缝或矩孔的夫琅禾费衍射图样6 在光学上常用矩形函数不透明屏上矩形孔,狭缝的透射率7 三角状函数表示光瞳为矩形的非相干成像系统的光学传递函数8 高斯函数常用来描述激光器发出的高斯光束,又是用于光学信息处理的“切趾术”9 δ函数表示某种极限状态。
可用来描述高度集中的物理量。
如点电荷、点光源、瞬间电脉冲等,所以δ函数又称为脉冲函数。
δ函数只有通过积分才有定值10 在光学上,单位光通量间隔为1个单位的点光源线阵之亮度可 用一个一维梳状函数表示:∑∞-∞=-=n n x )(δ)(x comb 11 一维梳状函数表示点光源面阵或小孔面阵的透过率函数,亦可作为二维函数的抽样函数12 像平面上的强度分布是物的强度分布与单位强度点光源对应的强度分布的卷积,这就是卷积在光学成像中的物理意义 13 卷积运算的两个效应①展宽效应②平滑化效应 14 相关函数是两函数图象重叠程度的描述 15.傅里叶变换的基本定理①线性定理:反映了波的叠加定理。
②相似性定理:表明原函数x,y 的“伸展”,导致频谱函数频域坐标,x yf f 的“压缩”。
③位移定理:说明原函数在空域中的平移导致频谱相位的线性移动。
④卷积定理:意义,当一个复杂函数可以表示成简单函数的乘积或卷积时,利用卷积定理就可由简单函数的傅里叶变换来确定复杂函数的变换式。
⑤维纳-肯欣定理。
⑥自相关定理:即信号的自相关和功率谱之间存在傅里叶变换关系。
⑦巴塞伐定理:物理意义,信号在空域的能量与其所在频域的能量守恒。
⑧傅里叶积分定理:表明,对函数相继两次变换或逆变换又得到原函数。
⑨微分定理:主要用于图像的边缘增强。
⑩积分16 物理系统是一种转换或变换的装置 ,输入到系统中的某种物理量通过转换后,可输出另一种物理量。
17凡同时具有叠加性和均匀性的系统称为线性系统。
(缩放因子保持不变的系统具有均匀性)。
18 对于一般存在像差且通光孔径有限大的光学成像系统而言,输入平面上一物点(表示为δ函数)通过系统后,在输出像面上不是形成像点,而拓展成一像斑,并用脉冲响应函数h 表示,故又把h 称为拓展函数。
19 研究线性系统的输出,突出的是研究集元函数的响应(所谓集元函数是指不能在进行分解的基本函数单元)。
20 对与无像差理想光学成像系统,若计及系统的通光孔径,则称该系统是衍射受限的,若不计孔径,则称该系统为非衍射受限系统 21点扩展函数即是物镜光学系统后所成的像 22 线性不变系统(空不变系统)“LSI ”LSI 系统对输入信号空间位置的平移所产生的唯一效应是输出信号产生同样的位置平移LSI 系统的输出函数可表示为输入函数与西戎的脉冲响应在输出平面上的一个二维卷积,这一特殊形式的叠加积分又称卷积积分。
23 系统的传递函数H(fx,fy)表示系统在频率域中对信号的传递能力 24 空不变性质强调了输出函数的形式不随输入函数空间位置而改变。
25 抽样指一个连续的物理过程在各个瞬时抽取数据的过称。
26 奈奎斯特判据:令X=1/2Bx ,Y=1/2By 27 能够将一个连续二频谱带有限的函数,用离散的抽样序列代替而不丢失任何信息。
28 空间带宽积SW 就定义为SW=16XYBxBy,4XY 表示函数在空域中面积,4BxBy 表示在频域中的面积,它既可以用来描述图象的信息容量,也可用来描述信息处理系统的信息传递或处理能力。
(只有系统的SW 大于图像的SW 时,才不会损失信息。
SW 是个不变量,若空间大小变化,带宽依反比关系变化)。
29 惠特克-商农采样定理的基本点是为了复原一个带限函数,采用了方阵采样和矩形滤波的方法30 透镜是光学成像系统和光学信息处理系统基础31 透镜的傅里叶变换性质成为光信息处理技术的基础,其作用表现为城乡作用、傅里叶变换作用、改变光波对输入图像的照明方式,使输入图像有不同的衍射效果。
32 )y ,x (B 称为透镜作用因子 称透镜的透射率函数,))(22y x (f2k y ,x +=φ称为透镜的相位变化函数空不变性质强调了输出函数的形式不随输入函数空间位置而改变。
33 我们把平行光垂直照明是透镜的后焦平面叫做傅里叶变换平面,该平面又称空间频率平面34 从空域中研究光学系统的成像质量是几何光学的重要组成部分,其中心内容是像差理论和系统光瞳的衍射效应35 研究成像质量的方法有①星点法②分辨率板法36 孔径为无限大的薄透镜对物成理想像 该像准确重现原物37 在非相干照明条件下,光学成像系统对光场强度的变换是线性不变;而对复振幅的变换,则不是线性的 称为系统的强度点扩展函数38 系统的脉冲响应,其傅里叶变换就是系统的相干传递函数在傅里叶变换平面上,靠近光轴的频谱值比较准确;远离光轴的频谱值误差较大在傍轴条件下,薄透镜为一种简单的空不变系统,其点数就是透镜孔径函数的傅里叶变换。
39 实际波面与理想球面的各种偏差称为波面像差或波相差 40 相差的出现对相干传递函数的通带宽度没有影响,仅在通带内引入了位相畸变41 光学传递函数⎰⎰⎰⎰∞∞-∞∞-+-==~I)y f x f (2i I ~I I I dxdy)y ,x (h dxdye)y ,x (h )0,0(H )fy ,fx (H )fy ,fx (H y x π就是光瞳函数的自相关函数,OTF 的计算公式0fy ,x f )fy fx (H σσ)(出瞳总面积出瞳重叠面积,==42 非相干成像系统的截止频率是相干成像系统的两倍43 具有像差的系统其调制传递函数只可能下降而绝不会增大,结果会使像面上光强度分布在多个空间频率处的对比率降低,这是一个具有普遍性的重要结论44 在相干照明条件下,光学成像系统对光场的复振幅变换而言,是线性不变系统;对于光强度的变换,则不是线性系统。
45.具有像差的系统其调制传递函数只可能下降,而绝不会增大,结果会是像面上光强度分布在多个空间频率处的对比率降低,这是一个具有普遍性的重要结论。
46.非相干截止频率是确定像强度的最高频率分量,而相干截止频率确定是像的振幅的最高频率分量。
47.瑞利分辨判据:仅适用于非相干成像系统,对于相干成像系统能否分辨两个点光源要考虑他们的相位关系。
48.各个环节在满足非相干照明条件时整个光学链的调制传递函数等于各个环节调制传递函数之积,位相传递函数则是多个环节位相传递函数之和。
49 截止频率(,)cx cy f f 是检验光学成像系统质量优劣的重要参数之一(非相干成像系统的截至频率是相干成像系统的两倍)。
50 激光散斑产生条件:①物体表面粗糙 ②入射光源为相干光 51 散斑测量方法:①散斑照相测量 ②散斑干涉测量 52 散斑分析:①逐点分析法 ②全场分析法53 空间滤波:为了得到不同的衍射像,有目的的改变物体的频率 ①物体是各种频谱成份集合,物品面发出的光首先到达频谱平面上,在频谱平面上形成一系列衍射斑。
②以衍射斑为子波 滤出光线到达像平面上产生干涉形成物体的像。
54 物体光栅常数d 缝宽为a 沿x 方向分布为L)Lx(rect )]d x (comb d 1)a x (rect [)y ,x (T 11*= 频谱M 取任意常数 55 。
56 ①对于光学成像系统,其像的调制度不可能大于物的调制度。
②当(,)0o x y H f f =意味着只要空间频率(,)x y f f 大于截止频率,不管物的调制度多大,像的调制度为零。
57 滤波器:光学中在透明膜上镀不同透过率膜层的膜片58 ①低通滤波器:只允许低频率成分通过,可以用来率高频率②高通滤波器:允许高频率成分通过,阻止低频率分量,在质图形边缘增强或衬度反转③带通滤波器:允许特定频率成分通过,同时屏蔽其他频段的设备 ④方向滤波器:允许特定方向的频率成分通过,用来突出物体的方向性特征。
59 振幅型滤波器:仅改变振幅不改变位相,如感光胶片60 位相形滤波器:改变位相的分布,不改变振幅,二元光学元件,某些光学薄膜61 复数型滤波器:对位相和振幅都改变,用全息方法制作 62 泽尼克显微镜观察物位相物体“4f 系统”②位相物体透过率)]y ,x (i exp[)y ,x (f φ=; ③常规系统1)y ,x (i 1)]y ,x (i exp[1I 2i ≈+=+=φφ;④译尼克认为像平面上光由两部分构成,一部分强的直接透射光,另一部分由位相起伏引起的弱衍射光⑤弱衍射光观察不到原因:1)与强透射光位相差90度 2)强透射光光强。
⑥利用空间滤波(其他)(滤波器内))(0i {y ,x t ±=滤波后!)]y ,x (i exp[i {)y ,x (t )y ,x (f φ±=⑦)y ,x (i 1Iiφ±≈取正号:位相值大的光强也强,称为“正相衬”; 取负号,位相值大的部位光强弱,叫做“负相称”⑧光强变化与位相联系称相幅变化系统63 麦尔查:成像不清晰是由传递函数存在相应缺陷引起的64 空间滤波的傅里叶分析:物体的光栅常数为d ,缝宽为a ,沿着1x 方向宽度为L ,则它的透过率为01()[o o o x x x t x rect comb rect a d a L ⎛⎫⎛⎫⎛⎫=* ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在P1平面上的光场分布应该正比于物体的频谱(,)sin ()sin ()x y x x x m aL m T f f c af f c Lf d d δ⎡⎤⎛⎫=-* ⎪⎢⎥⎝⎭⎣⎦∑65 光学系统存在离焦,利用空间滤波器,一块吸收板板,一块衰减板,显著改变成像质量66 散斑:激光照射到不均匀物体表面上,物体表面上的每一个点都可以看成次级滤波源,在整个空间发生干涉,产生无规则的斑衍射斑,称为散斑。