《圆的标准方程》说课稿(高存义)
圆的标准方程 说课稿
![圆的标准方程 说课稿](https://img.taocdn.com/s3/m/c8d4c50cc950ad02de80d4d8d15abe23482f03ed.png)
圆的标准方程说课稿一、教学目标交代本课程的目标,让学生理解圆的标准方程的含义和应用。
二、教学重点教授学生圆的标准方程的推导过程和解题方法。
三、教学难点让学生理解圆的标准方程的几何意义和应用。
四、教学过程1. 引入课程以一道问题为例引入课程:问题:已知一个圆的圆心坐标为(2, 3),半径为4,求圆的标准方程。
通过这个问题,学生可以感受到对于一个圆而言,圆心坐标和半径是非常重要的信息,而圆的标准方程可以把这些信息整合在一起。
2. 回顾坐标系和圆复习直角坐标系的概念,以及点的坐标表示方式。
回顾圆的定义:圆是平面上距离圆心相等的所有点的集合。
3. 推导圆的标准方程在笔记本上画出一个坐标系,然后以圆心为原点,以半径为半径画出一个圆。
让学生观察这个圆,并思考如何用方程来表示它。
引导学生通过观察得出结论:圆上的点到圆心的距离等于半径。
得出圆的标准方程:(x - a)^2 + (y - b)^2 = r^2,其中(a, b)为圆心的坐标,r为半径长度。
4. 解题示例通过几个具体的实例,教授学生如何使用圆的标准方程解题。
例1:已知圆心坐标为(3, -2),半径为5,求圆的标准方程。
解答:根据圆的标准方程,将圆心坐标和半径代入公式,得到方程:(x - 3)^2 + (y + 2)^2 = 25。
例2:已知圆的标准方程为(x + 1)^2 + (y - 4)^2 = 16,求圆心坐标和半径。
解答:根据圆的标准方程,通过比较系数得到圆心坐标为(-1, 4),半径为4。
5. 练习题布置一些练习题,让学生运用所学知识解答。
例题:已知圆的标准方程为(x - 2)^2 + (y + 3)^2 = 9,求圆的面积。
解答:通过比较系数得到圆心坐标为(2, -3),半径为3。
圆的面积公式为πr^2,代入半径值计算得到面积为9π。
6. 拓展思考提出一些拓展问题,让学生深入思考和探索。
问题:如何通过圆的标准方程推导出圆的一般方程?引导学生思考,并向学生提供一些线索和指导。
高中数学说课稿:《圆的标准方程》.doc
![高中数学说课稿:《圆的标准方程》.doc](https://img.taocdn.com/s3/m/c0846f90bcd126fff7050bb8.png)
高中数学说课稿:《圆的标准方程》"说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。
下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴!高中数学说课稿:《圆的标准方程》【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用"启发式"问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块"用武"之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:.②已知圆的方程是,经过圆上一点的切线的方程是:.2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争"使教育过程成为一种艺术的事业".。
高一必修二《圆的标准方程》的说课稿
![高一必修二《圆的标准方程》的说课稿](https://img.taocdn.com/s3/m/37239e28c281e53a5802ffad.png)
高一必修二《圆的标准方程》的说课稿
【小编寄语】数学网小编给大家整理了高一必修二《圆的标准方程》的说课稿,希望能给大家带来帮助!
【一】教学背景分析
1.教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握。
《圆的标准方程》说课稿
![《圆的标准方程》说课稿](https://img.taocdn.com/s3/m/45c15674c8d376eeafaa3178.png)
《圆的标准方程》说课稿圆的标准方程讲义[1]教学背景分析1.教材分析标准圆方程是高中数学第二卷(第一部分)第七章第六节圆方程的第一种形式。
它是在学习了直线方程和求曲线方程的一般方法之后的另一个曲线方程。
这是以前知识的延续和延伸,也是研究二次曲线的开始。
这对我们学习下面的一般方程和参数方程以及第八章“二次曲线”等内容,无论在知识上还是在方法上都有积极的意义。
因此,本节的内容在整个解析几何中起着承上启下的作用。
2.学习情况分析虽然学生在初中就已经学习了圆的概念和基本性质,并且已经掌握了求解曲线方程的一般方法,但是学生学习解析几何的时间不长,对解析几何的本质了解不多,而且坐标法的应用也不够熟练,因此在学习过程中难免会出现困难。
[2]教学目标,教学重点和难点1。
教学目标:(1)知识目标:①掌握圆的标准方程,可以从圆的标准方程中写出圆的半径之和中心坐标;(2)根据条件,用待定系数法可以得到圆的标准方程;③用标准圆方程解决简单的实际问题。
(2)能力目标①加强待定系数法的应用,进一步培养学生用代数方法研究几何问题的能力;(2)提高学生应用数学解决实际问题的意识和兴趣。
(3)情感目标:培养学生主动探究的意识。
教学重点和难点(1)要点:圆的标准方程和用待定系数法求圆的标准方程的形式。
(2)难点:①根据不同的已知条件,用待定系数法求圆的标准方程;(2)用标准圆方程解决简单的实际问题。
[3]教学方法分析为了充分调动学生的积极性,我采用了“启发式”问题教学法,将教学过程由浅入深,问题环环相扣。
通过解决问题,我达到了对知识的理解,这不仅能适应学生的思维过程,而且能激发学生学习数学的兴趣,因为他能从学习过程中学习,从思维中获得收获。
[4]教学过程分析我把整个教学过程设计为五个环节,由七个问题组成。
创设情境启发思维,深入探究获取新知识,应用实例,巩固和改进反馈训练总结的形成方法,反思和拓展外延(1)创设情境启发思维1问题1:众所周知,隧道的横截面是一个半径为4米的半圆形。
高二数学说课稿《圆的标准方程》
![高二数学说课稿《圆的标准方程》](https://img.taocdn.com/s3/m/aee6a3f2d4bbfd0a79563c1ec5da50e2524dd100.png)
高二数学说课稿《圆的标准方程》圆的标准方程是高中数学的一个重要知识点,下面小编为大家搜集的一篇“高二数学《圆的标准方程》”,供大家参考借鉴,希望可以帮助到有需要的朋友!1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.。
圆的标准方程(说课稿)
![圆的标准方程(说课稿)](https://img.taocdn.com/s3/m/131285bc7d1cfad6195f312b3169a4517623e515.png)
通过推导圆的标准方程,加深学生对用坐标法 求曲线方程的理解。通过求圆的标准方程,理解 必须确定了圆心坐标和半径才能确定一个圆的方 程。
教材 分析
教学 评价
教学 方法
圆的标 准方程
板书 设计
教具 准备
教学 过程
彩色 粉笔
小黑板
教学 用具
三角板
圆规
教材 分析
教学 评价
教学 方法
圆的标 准方程
板书 设计
一、教材的地位和作用
教材 分析 二、教学目标
三、教学重难点
二、教学目标
● 1.知识目标 ①正确掌握圆的定义、圆的标准方程及其推导
过程; ②根据圆心坐标、半径熟练地写出圆的标准方
程和从圆的标准方程熟练地求出圆心和半径. ●2.能力目标
培养用代数的方法解决几何问题的能力、逻辑思 维能力. ●3.情感目标
圆的标 准方程
板书 设计
教具 准备
教学 过程
板书 设计
一、圆的方程
圆的标准方程 注意:
三、练习
1.圆心在原点 2.圆心不在 二、例题 四、作业 原点
教材 分析
教学 评价
教学 方法
圆的标 准方程
板书 设计
教具 准备
教学 过程
教学 过程
创设情景 合作探究 反馈练习 知识回顾 布置作业 引入新课 获得新知 引用拓展 反思提高 分层落实
三、反馈练习,引用拓展
1.写出下列各圆的方程 (1)圆心在原点,半径为3; (2)圆心在C(3,,4)半径为 ;5 (3)经过点 P(5,,1)圆心在点 C(;8, 3) 2.根据圆的方程口答出它的圆心和半径
D
A
O
C
B
教学 过程
人教版高中数学必修二《圆的标准方程》说课稿
![人教版高中数学必修二《圆的标准方程》说课稿](https://img.taocdn.com/s3/m/705704dd31126edb6e1a104b.png)
《圆的标准方程》说课稿说教学目标:本节课的知识目标是:理解掌握圆的定义及标准方程。
能力目标是:能根据圆的标准方程指出圆心和半径;能根据已知条件求圆的标准方程。
情感目标:培养学生勇于发现、勇于探索的精神。
说教学重难点,重点是理解掌握圆的定义及标准方程。
难点是圆的标准方程的推导说教法:本节课主要采用讲练结合法和引导发现法。
说学法:主要采用自主探究法说本节课使用的教具:主要采用多媒体教学说教学过程:一、师生问好 二、复习提问:两点间的距离公式和线段的中点坐标公式。
三、 导入新课用图片导入本节课主要内容㈠ 圆的定义圆是平面内到定点的距离等于定长的点的轨迹。
㈡ 圆的标准方程222()()x a y b r -+-=㈢ 例题讲解及练习例1 写出圆22(2)(1)5x y -++=的圆心的坐标及半径. 解 方程 22(2)(1)5x y -++=可化为 []222(2)(1)x y -+--=,所以 2,1,a b r ==-=,故,圆心的坐标为(2,1)C -,半径为r =.【注意】使用公式(8.8)求圆心的坐标时,要注意公式中两个括号内都是“-”号.练习1:说出圆的圆心坐标及半径(1) (x-1)2+(y-2)2=9 (2) (x+1)2+(y+2)2=4 (3) (x-3)2+y 2=5 (4) x 2+(y+5)2=8 (5) x 2+y 2=16 (6) (x-2)2+(y+8)2=(-6)2例2 设点A(4,3)、B (6,-1),求以线段AB 为直径的圆的标准方程。
解:所求圆的圆心为C ,则C 为线段AB 的中点,半径为线段AB 的长度的一半,即 2211(46)(31)20522r =-++==故所求圆的方程为22(5)(1)5x y -+-=.练习2:1.求以点C(-1,3)为圆心,r=3为半径的圆的标准方程.2. 求以点(-2,5)为圆心,并且过点(3, -7)的圆的标准方程强化练习1.求圆心为点C(2,-3)且过点A (5,1)的圆的标准方程.2.已知点A (1,2),B(3,0),求以AB 为直径的圆的标准方程.四、说课堂小结1.圆的定义 2.圆的标准方程五、说作业布置 读书部分:认真读教材64,65页;预习教材65—66页内容。
高中数学必修第二册上《圆的标准方程》说课稿共23页文档
![高中数学必修第二册上《圆的标准方程》说课稿共23页文档](https://img.taocdn.com/s3/m/1444c12d4693daef5ff73dc9.png)
( 7 ,10)的切线的方程。
引导:你打算怎样求过P点的切线方程?
斜率怎样求?
启发:已知条件有哪些?能利用吗? 不妨结合图形来看看(如图),圆 的切线有怎样的性质?
y P
•
o
x
设计意图:通过教师的引导,启发学生,让他们自己观察、
探索,自己分析、解决相关问题。
2、变式题.
①求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方
程。
答案:(x-1)2 + (y-3)2 = 256/25
②已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。
答案: C(a,0), r=|a|
设计意图:互动练习,旨在理解巩固圆的标准方程
例题分析、巩固应用
学法分析
学生是主体,教师起引导作 用,启发他们,让他们自己 观察、类比、猜想、尝试、 探索、归纳并引导加以证明, 自己分析、解决相关问题。 为此,我想应充分调动学生 学习的积极性,引导他们自
ab
己动手、动脑、动口,分析、 讨论,得出结论。通过反馈 练习,指导学生尽快克服难 点。
教学程序
I. 引入课题 II. 讲授新课 III. 学生练习 IV. 课时小结 V. 课后作业
①圆心在原点,半径是3:
____________X_2_+_y_2=_9_________
②圆心在点C(3,4),半径是 5 :______(x_-_3_)2_+_(_y_-4_)_2=__5_____
③经过点P(5,1),圆心在点C(8,-3):_(x_-_8)_2_+_(_y+__3_)2_=_2_5_
高中数学说课稿:《圆的标准方程》
![高中数学说课稿:《圆的标准方程》](https://img.taocdn.com/s3/m/26ca3440854769eae009581b6bd97f192279bf34.png)
高中数学说课稿:《圆的标准方程》尊敬的各位领导、亲爱的同事们:大家好!我是XX中学的数学教师XX,今天我来给大家做一堂关于《圆的标准方程》的高中数学说课。
圆是我们日常生活和数学研究中经常遇到的一个几何形体。
了解和掌握圆的性质和特点,对我们在解决实际问题和进行数学推理时具有重要的指导作用。
而圆的标准方程是描述圆所用的一种数学表达方式,掌握圆的标准方程将有助于我们更深入地理解圆的性质和应用。
那么,本节课的目标就是引导学生理解圆的标准方程的含义,掌握圆的标准方程的求解方法,以及通过标准方程解决实际问题的能力。
为了达到这个目标,本节课将分为三个部分进行教学。
第一部分,激发学生对圆的兴趣和好奇心。
我将通过引入一个具体的生活例子,比如说日常生活中的自行车轮胎、电视机要放在几何图形上等,引起学生思考,提出问题,并激发他们对圆的进一步探索的兴趣。
第二部分,引导学生理解圆的标准方程的含义。
通过简洁明了的语言和图示,我将向学生解释圆的标准方程的含义:圆的标准方程是一个关于圆心和半径的方程,可以通过该方程来描述圆的位置、形状和大小。
同时,我将举一些例子,以帮助学生更加直观地理解标准方程的意义。
第三部分,讲解圆的标准方程的求解方法。
我将通过一个简单的问题来引导学生推导出圆的标准方程。
首先,我们通过给定圆心和半径的条件,列出对应于标准方程的一元二次方程。
然后,我们通过解一元二次方程的方法,求解出圆的标准方程。
我将使用具体的例子和动态的演示来帮助学生理解求解过程。
在教学过程中,我会采用多媒体教学手段,利用投影仪展示示意图、演示过程和解题步骤。
同时,我还会积极与学生互动,引导他们思考和发言,鼓励他们提出问题和解答问题,以加强师生之间的互动和合作。
为了提高教学效果,我还将设计一些小组活动,让学生在小组内进行讨论和合作,共同解决实际问题,加深对圆的标准方程的理解和应用。
最后,我们还将进行一次课堂小结,总结今天所学的知识点,并开展一些巩固练习,以帮助学生巩固和深化对圆的标准方程的理解。
圆的标准方程说课稿
![圆的标准方程说课稿](https://img.taocdn.com/s3/m/fd22bc8b8762caaedd33d4bd.png)
圆的标准方程说课稿各位评委:上午好!今天我说课的课题是《圆的标准方程》。
下面我对本课题进行分析:首先是我的说课思路是:1、教材分析 2、教法学法设计 3、教学过程 4、自我评价。
一、教材分析1、教材的地位与作用《圆的标准方程》是人教版必修二第4章第1节的第1个课题。
在此之前,学生已经学习了直线及其方程,这为过渡到本课题起到铺垫的作用。
同时,学好本课题为今后学习圆锥曲线及其方程奠定了基础,所以本课题在整个教材中起到承上启下的作用。
2、教学目标根据本教材的结构和内容分析,结合高一年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:(1)知识目标①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程③利用圆的标准方程解决简单的实际问题。
(2)能力目标①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解;③增强学生用数学的意识。
(3)情感目标①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。
3、教学重难点⑴重点:圆的标准方程的求法及其简单应用;⑵难点:会根据不同的已知条件求圆的标准方程。
二、教法分析我们都知道数学是一门培养人的逻辑思维能力的重要学科。
因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。
我们在以师生既为主体又为客体的原则下,展现获取理论知识、解决实际问题的思维过程。
为了充分调动学生学习的积极性,本节课采用“启发式”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。
借助创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
三、学法分析通过推导圆的标准方程,求圆的标准方程,理解必须具备两个个独立的条件才可以确定一个圆。
通过应用圆的标准方程,使学生认识到数学在实际问题中的应用。
四、教学过程在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理,各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
《圆的标准方程》说课稿(通用)
![《圆的标准方程》说课稿(通用)](https://img.taocdn.com/s3/m/8b9b27bcf71fb7360b4c2e3f5727a5e9856a27f4.png)
学生参与度高
3
通过引导学生参与课堂讨论和练习,使学生能够 更加积极地参与到学习中来,提高了学生的学习 效果。
2024/1/28
20
存在问题剖析
2024/1/28
部分学生基础薄弱
01
部分学生在初中阶段对圆的知识掌握不够扎实,导致在学习圆
的标准方程时存在困难。
练习题难度不够
02
本次教学中,练习题的难度相对较低,没有充分考虑到学生的
在线题库
利用在线题库资源,供学生练习和巩固圆的方程相关知识,提高解 题能力。
26
THANKS
2024/1/28
27
数学文化
引入与圆相关的数学文化,如圆周率、圆的美学价值等,拓宽学生的 数学视野。
2024/1/28
25
网络资源利用
2024/1/28
网络课程
推荐优质的网络课程资源,如慕课、微课等,供学生自主学习和 拓展知识。
数学软件
介绍数学软件在圆的方程教学中的应用,如GeoGebra、Desmos 等,提高学生的实践能力和数学素养。
案例法
通过展示具体案例,让学 生感受圆的标准方程在实 际问题中的应用,加深对 知识的理解和记忆。
13
学生活动安排
01
观察与思考
引导学生观察圆形物体或图案 ,思考圆形的特征和描述方法 ,培养学生的观察能力和思维
能力。
02
小组合作探究
组织学生进行小组合作探究, 共同探讨圆的标准方程的特点 和规律,培养学生的合作精神
练习法
布置相关练习题,让学生在实践中巩固 所学知识。
9
教学手段运用
多媒体辅助教学
利用PPT、视频等多媒体手段,展示 圆的图形、动画等,帮助学生直观 理解圆的概念和性质。
圆的标准方程说课稿
![圆的标准方程说课稿](https://img.taocdn.com/s3/m/dc1c8865581b6bd97e19ea66.png)
《圆的标准方程》说课稿《圆的标准方程》说课稿(第一课时)大家好,我今天说课的题目是圆的标准方程。
下面我将从以下几个方面来阐述我的教学设计。
一、教材分析《圆的标准方程》选基础模块下册第八章第4节的内容,在此之前我们学了直线方程,圆的标准方程是是进一步学习圆的一般方程、直线与圆的位置关系的基础,所以本节内容在整个解析几何中起着承前启后的作用。
二、学情分析我教授的是幼教二年级的学生,他们在知识、能力和情感上有以下特征。
在新课开始之前教师借助“问卷星”创建网络问卷,通过微信将问卷发布到班级微信群,学生填写提交。
老师在手机浏览每一份问卷,并获得详细的统计分析报告,准确了解学生知识准备情况。
三、教学目标依据教学大纲和新课程理念,结合本专业学生的认知特点,我确定本节课的教学目标如下:四、重点、难点分析重点:圆的标准方程的推导和初步运用。
难点:利用待定系数法求圆的标准方程,五、教法学法分析结合本节课的教学目标,我主要采用了以下教学策略,本着以学生发展为核心的理念,我引导学生形成以下几种学习方法下面我将着重阐述我教学过程设计。
六、教学过程设计(一)课前诊测,扫除障碍根据课前调查了解的情况,学生对两点间距离公式有关知识不太熟悉了。
我制作微课以便学生在线学习。
课前教师通过问卷星设计课前检测,让学生可以在线答题。
(二)创设情境,导入新课通过播放赵州桥的视频,设置问题引起学生思考。
使学生感受到数学源于生活,学会用数学的眼光去关注生活,体现了数学的应用价值。
(三)合作交流,探究新知本环节旨在探究圆的标准方程,整个教学环节分三步完成。
第一步,深入探究圆的定义我指出“不以规矩,无以成方圆。
”要求学生用圆规在直角坐标系中作出一个圆,我又利用几何画板演示了一遍圆的定义。
让他们尝试回忆出圆的定义,最后说出完整的圆的定,也为下一步方程的推导奠定了基础。
第二步,探究圆的标准方程中职学生数学基础薄弱,很大部分原因是没有建立基本数学思维,因此我让他们自学圆的标准方程的推导过程。
圆的标准方程说课稿
![圆的标准方程说课稿](https://img.taocdn.com/s3/m/c624005543323968001c9232.png)
圆的标准方程我说课的内容是《圆的标准方程》,下面我将从教材、学情、教学目标、教学方法与手段、教学过程、板书设计和教学反思等几个方面来阐述我对这节课的分析和设计。
一、教材分析《圆的方程》是人教版高中数学必修二第四章《圆与方程》第一节的内容。
圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。
圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.计划安排两课时,本节是圆的标准方程的第一课时。
二、学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.因此,计划与学生一起推导圆的标准方程,以便学生进一步了解坐标在解决实际问题中的运用.推导出圆的标准方程后,加强对圆是标准方程的直接运用的练习题,通过这样的训练来达到让学生充分掌握圆的标准方程的形式的目的.三、教学目标1. 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题。
2.能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识。
3.情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。
四、教学重点与难点(1)重点:会根据不同的已知条件求圆的标准方程。
(2)难点:求点的轨迹方程方法的理解及灵活应用已知条件求圆的方法。
五、教法学法分析1.教法分析:为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。
高二数学说课稿《圆的标准方程》
![高二数学说课稿《圆的标准方程》](https://img.taocdn.com/s3/m/27dfa6f5c0c708a1284ac850ad02de80d4d8068d.png)
高二数学说课稿《圆的标准方程》圆的标准方程是高中数学的一个重要学问点,下面我为大家搜集的一篇"高二数学说课稿《圆的标准方程》',供大家参考借鉴,盼望可以关心到有需要的伴侣!1.教材结构分析《圆的方程》支配在高中数学其次册(上)第七章第六节.圆作为常见的简洁几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础学问,是讨论二次曲线的开头,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在学问上还是方法上都有着乐观的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是同学在学校学习了圆的概念和基本性质后,又把握了求曲线方程的一般方法的基础上进行讨论的.但由于同学学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够娴熟,在学习过程中难免会消失困难.另外同学在探究问题的力量,合作沟通的意识等方面有待加强.依据上述教材结构与内容分析,考虑到同学已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 学问目标:①把握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能依据条件写出圆的标准方程;③利用圆的标准方程解决简洁的实际问题.(2) 力量目标:①进一步培育同学用代数方法讨论几何问题的力量;②加深对数形结合思想的理解和加强对待定系数法的运用;③增加同学用数学的意识.(3) 情感目标:①培育同学主动探究学问、合作沟通的意识;②在体验数学美的过程中激发同学的学习爱好.依据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会依据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.。
圆的标准方程说课稿
![圆的标准方程说课稿](https://img.taocdn.com/s3/m/86f5c4a5e45c3b3566ec8b8c.png)
《圆的标准方程》的说课稿各位老师、同学们,大家好!今天我说课的题目是《圆的标准方程》,按大纲要求《圆的方程》这一节共分三课时,我今天要说的是第一课时的内容——圆的标准方程.下面我将从三个方面来阐述我对这节课的教学认识,分别是,教学背景分析、教法学法分析、以及具体的教学过程与设计。
首先,我对本节课的教学背景进行一些分析:在这里我分四小点进行说明。
【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节。
在新课表实验教材中,被安排在必修二的平面解析几何初步中,我们知道,圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.而圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对接下来直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2。
学情分析:圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。
但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1)知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3)情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4。
教学重点与难点(1)重点:圆的标准方程的求法及其应用。
说课稿——圆的标准方程
![说课稿——圆的标准方程](https://img.taocdn.com/s3/m/6516b31982c4bb4cf7ec4afe04a1b0717fd5b3b2.png)
说课稿——圆的标准方程
圆是一个重要的概念,它是许多几何图形的基本元素,而更重要的是,它也是科学研究和应用中一个重要的因素。
对于学习圆的标准方程来说,一定要先了解圆是什么,以及它的基本特性是什么,从而了解它的标准方程是什么。
首先,让我们来了解一下圆是什么。
圆是一种平面图形,它是由点组成的闭合曲线,任意两点的距离都是定值的,这个定值就是圆的半径。
从定义上来看,圆是一种特殊的椭圆,它的中心就是椭圆的中心,并且它的长轴等于它的短轴,也就是说,所有椭圆的周长都是相同的。
接下来,让我们看一下圆的基本特性。
圆有很多特性,这些特性中有许多是非常重要的,从而可以帮助我们更好的理解它的标准方程。
首先,由于圆的周长都是相同的,因此它的弧度是相同的。
圆的面积也是一个定值,它的面积是径径,也就是Pi平方。
最后,圆的中心点到圆周上任意一点的距离是一个定值,也就是半径。
根据以上内容,我们可以得出圆的标准方程:(x-a)+(y-b)=r。
其中,a和b是圆心坐标,r是半径。
一般来说,当我们知道圆心和
半径,就可以通过这个标准方程来确定一个圆。
综上所述,圆的标准方程是(x-a)+(y-b)=r,它包含了圆的三个
基本特性,即周长、面积和中心点到圆周上任意一点的距离,我们可以通过这三个特性来推导出它的标准方程。
谢谢大家!。
《圆的标准方程》说课稿
![《圆的标准方程》说课稿](https://img.taocdn.com/s3/m/524e3c3411a6f524ccbff121dd36a32d7375c781.png)
《圆的标准方程》说课稿(一)说教材1、教材构造编排:本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了根底,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好根底,因此在构造上起承上启下的作用。
2、教学目标学问目标:(1)把握圆的标准方程,并能依据圆的标准方程写出圆心坐标和半径、(2)已知圆心和半径会写出圆的标准方程、力量目标:(1)培育学生数形结合力量、(2)培育学生应用数学学问解决实际问题的力量情感目标:(1)培育学生主动探究学问,合作沟通的意识。
(2)在体验数学美的过程中激发学生学习的兴趣。
3、教学重点(1)圆的标准方程(2)已知圆的标准方程会写出圆的圆心和半径(3)已知圆心坐标和半径会写出圆的标准方程4、教学难点(1)圆的标准方程的推导(2)圆的标准方程的应用(二)说教法本节课采纳讲练结合,启发式教学(三)说学法1、主动探究学习2、小组合作学习(四)说教学过程1、导入通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,其次个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。
2、学问连接(1)圆的定义,圆上的点具备的特征性质(2)平面上两点间的距离公式通过复习为后边推导圆的标准方程奠定根底,降低难度。
3、新课学习(1)推导圆的标准方程(化解难点)怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就简单推出圆的标准方程。
(2)圆的标准方程(突出重点)先分析它的构造,圆心的横纵坐标及半径与圆的标准方程之间的关系。
为了稳固这个学问安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径(3)为了加强学问的应用,我加了一道用圆的标准方程解决实际问题的例子。
2024版《圆的标准方程》说课课件大纲
![2024版《圆的标准方程》说课课件大纲](https://img.taocdn.com/s3/m/eb84b4b7900ef12d2af90242a8956bec0975a501.png)
阶段性测试成绩分析
平均分与及格率
统计班级平均分和及格率,了解 班级整体掌握情况。
分数段分布
分析各分数段学生人数和比例, 了解班级内部的差异情况。
知识点掌握情况
针对测试中出现的错误类型,分 析学生对各个知识点的掌握程度。
历年对比
将本次测试成绩与历年同期成绩 进行对比,了解教学质量的变化
趋势。
总体评价及改进建议
人合作、分享想法。
作业完成情况检查
01
02
03
04
作业完成率
统计学生按时提交作业的比例, 了解学生对课后任务的重视程
度。
作业正确率
分析学生作业中的错误类型和 数量,评估其对知识点的掌握
情况。
订正情况
检查学生是否对错误进行了及 时订正,并了解订正后的掌握
程度。
书写规范与整洁度
评估学生作业的书写是否清晰、 整洁,符合规范要求。
圆心等。
圆的几何要素
圆心、半径、直径、弧、弦等概 念及其性质。
求解圆的标准方程方法
已知圆心和半径求圆的标准方程
01
直接代入圆的标准方程公式求解。
已知圆上三点求圆的标准方程
02
设圆的一般方程,利用待定系数法求解。
已知圆的直径端点求圆的标准方程
03
利用中点坐标公式和距离公式求解圆心和半径,再代入圆的标
易错点提示及预防措施
易错点
在求解圆的标准方程时,容易忽略方程中各参数的取值范围; 在解决实际问题时,容易忽略问题的实际背景和意义。
预防措施
在讲解圆的标准方程时,强调方程中各参数的取值范围及其意 义;在解决实际问题时,引导学生认真分析问题的实际背景和 意义,避免盲目套用公式。
圆的标准方程说课稿(高级)
![圆的标准方程说课稿(高级)](https://img.taocdn.com/s3/m/80bf51f20508763231121241.png)
《圆的标准方程》说课稿安定门校区数学组李晶晶《圆的标准方程》说课稿(第一课时)《圆的标准方程》选自高等教育出版社中职数学教材基础模块下册第八章第4节,本节共分5课时,我说课的内容是第一课时,下面我将从教学背景分析、教学过程设计、教学策略说明三个方面来阐述我的教学设计。
一、教学背景分析(一)教材分析圆的标准方程是运用解析法研究二次曲线的开始,它既是进一步学习圆的一般方程、直线与圆的位置关系的基础,又是解决生产、生活中实际问题工具,同时它的学习方法为其它圆锥曲线的研究奠定了基础,所以本节内容在整个解析几何中起着承前启后的作用。
(二)学情分析我教授的是职业学校中外合作专业高二年级的学生,学生大多以出国留学为目标,偏科现象严重,重视英语学习,普遍数学基础薄弱。
知识上:已经学习了圆的概念、基本性质和直线方程,这有利于学生实现从“旧知”向“新知”的迁移。
能力上:学生接触解析几何的时间不长,能初步理解了解析几何的基本思想,但他们逻辑思维能力属于经验型,对图形不敏感,对坐标法的运用更不熟练,特别是抽象思维能力和探究问题的能力比较欠缺。
(三)教学目标依据教学大纲和新课程理念,结合本专业学生的认知特点,我确定本节课的教学目标如下:知识与技能:初步掌握圆的标准方程;能根据圆的标准方程正确地读出其圆心和半径;能运用圆心、半径的具体条件求出圆的标准方程。
过程与方法:通过探究圆的标准方程,初步形成代数方法处理几何问题能力,渗透由特殊到一般的数学思想;通过例题的分析解决,加强数形结合及待定系数法的运用。
情感、态度与价值观:使学生领会用运动的观点去观察分析事物的方法,体验数学的应用价值;通过学生之间、师生之间的交流与合作,实现共同探究、教学相长的教学氛围,调动学生学习的积极性。
(四)重点、难点分析重点:圆的标准方程的推导和初步运用。
在教学中只有突出这个重点,才能为其它圆锥曲线的学习提供研究模式和解题方法。
难点:利用待定系数法求圆的标准方程,并解决一些简单的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.3.1 《圆的标准方程》说课稿
各位评委老师好,我是高存义,说课课题是《圆的标准方程》(写上课题)。
今天我从五个方面对本节课进行阐述,分别是教学背景、教学目标、教学重难点,教学法,教学过程。
首先我来讲一下教学背景(板书),教学背景有两块内容,分别为学情分析与教材教纲分析。
我所教课的班级为数控专业学生,缺点是数学基础浅薄,中考成绩平均分折算成百分制,大概在40分左右;优点是全班都是男生,思维活跃,在第一个学期就开设机械制图课,绘图能力强,在解析几何的学生中占有优势。
而这堂课属于解析几何圆锥曲线的内容——圆的标准方程。
在这节课前面的章节是《直线的方程》,后面的章节是《直线与圆的位置关系》,这节课显然起着承上启下的作用。
《中职数学教学大纲》对这部分知识的要求是“掌握”——能够应用知识的概念、定义、定理、法则去解决一些问题,这点要求要结合8.5《直线与圆的方程的应用》才能实现。
根据学生的特点,教学内容,教纲对学生的要求,我确定本节课的教学目标:第一层次是知识目标:求圆的标准方程。
第二层次是能力目标:培养学生计算技能、数学工具(尺规)使用技能、分析与解决问题能力,利用网络教学资源的能力。
第三是情感目标:(1)结合生活、生产实践,进行数学来源于生活,应用生活的唯物观教育。
(2)通过问题解决培养学生注重细节,注重程序,注重逻辑的思维习惯。
为了现实最基本的知识目标所以这堂课的重点是:利用已知条件求圆的标准方程。
而求圆的标准方程最关键的是从已知条件中得出圆心坐标与半径长,而学生缺乏中复杂信息中寻找关键信息的能力,所以我把如何求圆心与半径作为难点。
实现教学目标,突出教重点,突破难点,根据解析几何数形结合的特点,学生的认知习惯,我采用的教法是:尽量从直观入手,利用绘图,让学生体会“数”在“图”上的直观体现。
设计问题引导上课进程,同时体现教师的主导地位。
而对于学生学习方面:我们要给予充分的时间让学生动眼观察,动手算画,动口讲,到动脑思考,体现学生的主体地位。
而工欲善其事,必先利其器,我和学生使用的教学工具有:PPT课件,实物投影仪,彩色粉笔,教学用尺规,四色圆珠笔,学生用尺规、方格作业本,数学学习模板(方便学生建立直角坐标系)等。
而上述四方面内容在教学过程是这样体现的,在教学环节的第一块预习环节我会在在上一节课《直线方程》习题课是布置预习任务:学生爱玩手机,我要求他们搜索百度百科“圆”,其中内容为圆的相关概念、字母表示、计算公式等等,收藏为书签。
2.每个人携带好直尺、圆规、方格本、数学学习模板。
在课堂环节,我分为引入,求解公式,问题讲解,小结作业等来阐述。
在引入部分,我设置了三个问题:
(1)教室中有哪些东西是圆形的?这样可以结合身边事物,体现数学是来源于生活的,很多学生可能拿球举例,这时可以顺带提下“圆与球”,平面图形和立体图形的区别,为立体几何的学习铺垫。
(2)如何画出一个圆(板书圆的定义)?要求学生用尺规做一个半径为5厘米的圆,观察什么东西是固定的——圆心与半径,自然得出定义。
(3)什么叫做圆的半径,直径,周长,他们之间有何关系?
设计目的:复习初中相关知识,并为例1求半径,突破难点做好铺垫。
2.求解公式(时间控制在10分钟左右)
(1)问题:如何求出以C(1,2)为圆心,以3为半径的圆的方程?
(2)利用圆的定义与距离公式(8.1所学)得出圆的轨迹方程。
设计意图:把圆心坐标,半径具体为数字,方便学生操作。
而且借机会复习前面所学的公式,温故知新。
(3)把圆心坐标改成C(a,b),半径改成r,得出圆的标准方程。
(类比勾股定理识记公式)
结论:求圆的标准方程需要两个条件——圆心坐标与半径。
推导圆心在原点的圆的标准方程,学生自己推导出公式,加深对公式的理解和记忆,为教学第一层次的目标服务。
3.探究过程(时间控制在20分钟左右)
探究一:求符合下列条件的圆的方程。
i、圆心在原点,半径为2
ii、圆心在点(3,2)
学生操作:让学生写在练习本上,实物投影A组与B组的两位同学,让学生从比较中学习,错误中学习。
iii:求过点A(6,0),且圆心B的坐标为(3,2)的圆的标准方程,并在直角坐标系中画出该圆。
提示:要确定两个要素——半径与圆心。
比较:与练习1第2题相比较。
学生发现殊途同归,我们可以从不同的
角度去观察同一个事物。
而且注重学生运算能力的同时,提高他们使用
数学学习工具的技能,同样为了突破难点——直观得出两个要素半径和
圆心。
探究二:求以线段A(2,3),B(4,9)为直径的圆的方程。
设计意图:这个问题没有直接给出半径或圆心坐标,这时教师要强调求圆方程的两个要素,来强调重点。
用图像分析来突破难点——从已知条件中得出两个要素。
探究三:求以两直线交点为圆心,半径为的圆的标准方程,并在直角坐标系
中画出该圆。
(这个问题体现了理解——懂得圆的方程与直线方程的联系)师生操作:教师提示把题目分解成两个题目:一个是求两直线的交点,一个是利用半径与圆心求方程。
设计意图:结合直线方程与圆的方程,复习如何求直线交点。
1.小结、作业(复习、预习作业布置)
(1)小结:如图,利用思维导图进行小结,让学生形成知识结构。
(2)作业:i复习巩固作业A组做P93 T1(3)(4) P94T2(2)
B组除了A组的题目还需做P94 B组T1,T2 ii预习作业:阅读8.3.2《圆的一般方程》用蓝色的笔划出有疑问的地方,并且用红色笔标记定义和公式。
5.板书:如图。