七年级数学垂直
七年级下册数学垂直知识点
七年级下册数学垂直知识点在数学中,垂直是一种常见的概念,也是我们学习数学必须熟悉的知识点。
在七年级的下册数学中,垂直知识点是一个非常重要的内容。
本文将介绍七年级下册数学中的垂直知识点,让同学们能够更好地理解和掌握这一知识点。
1. 垂线的概念垂线是指从一个点到一条直线或平面的距离最近的线段。
用符号⊥表示。
在图形中,垂线通常用虚线表示。
需要注意的是,一条直线或平面可以有无数条垂线。
2. 平行线和垂直线的关系平行线是指一直线与另外一条直线在同一平面上,但不相交的直线。
而垂直线则是指两条直线或线段之间成90度角的情况。
在平面几何中,当两条直线相交时,它们互为垂线。
因此,平行线和垂直线是互不相容的概念。
3. 垂直平分线垂直平分线是指一个线段的中垂线,它是将这个线段平分并垂直于线段的一条直线。
垂直平分线可以能够将一个线段分成相等的两部分,并且它们互相垂直。
4. 垂线的性质垂线有一些特殊的性质,这些性质对于理解垂线的概念和运用垂线进行计算是非常有帮助的。
- 垂线的长度:垂线的长度等于点到垂线所在的直线或平面的距离。
- 垂线的斜率:垂线的斜率是与被垂线的直线或平面的斜率相反的倒数。
- 垂线的平方:当垂线从一个点到另一个点垂直时,它的平方是两个点之间的距离的平方。
5. 垂线的应用垂线在实际生活中有着广泛的应用。
例如,在建筑设计中,垂线被广泛地用来检查建筑的垂直性和水平性。
在地图制图中,垂线被用来确定两个点之间的最短距离。
在数学中,垂线也是解决几何问题的重要工具。
总之,在七年级下册数学中,垂直知识点是数学学习过程中的一个必备知识点。
通过学习垂直知识点,同学们能够更好地理解和应用数学概念,提高自己的数学成绩。
部编数学七年级下册专题03由垂直求角(解析版)含答案
专题03 由垂直求角【例题讲解】如图,直线AB,CD相交于点O,OE平分∠BOC,OF⊥CD.(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.1.如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.【答案】(1)OF⊥OD,理由见解析;(2)∠EOF=60°【分析】(1)利用角平分线的定义结合已知求出∠FOD=90°即可得出答案;(2)求出∠AOC的度数,再利用对顶角的性质和角平分线的定义求出∠BOD=∠AOC=∠EOD=2.如图,AB交CD于O,OE⊥AB.(1)若∠EOD=30°,求∠AOC的度数;(2)若∠EOD:∠EOC=1:3,求∠BOC的度数.【答案】(1)60°(2)135°【分析】(1) 利用垂直定义和对顶角的性质可得答案;(2) 设∠EOD=a,∠EOC=3a,利用邻补角互补可得方程,然后解出a的值,进而可得∠AOD的度数,再利用对顶角的性质可得答案.(1)解:∵OE⊥AB,∴∠AOE=90°,∵∠AOC+∠AOE+∠DOE=180°,∠EOD=30°,∴∠AOC=180°-∠AOE-∠DOE=180°-90°-30°=60°(2)设∠EOD=α,∵∠EOD:∠EOC=1:3,∴∠EOC=3α,∵∠EOD+∠EOC=180°,∴α+3α=180°,∴∠EOD=α=45°,∴∠AOD=∠AOE+∠DOE=135°∵∠AOD与∠BOC为对顶角,∴∠BOC=∠AOD=135°【点睛】此题主要考查了垂线,以及对顶角,关键是掌握对顶角相等,理清图中角之间的关系.3.如图,直线AB,CD相交于点O,OE平分∠BOD.(1)若∠EOF=55°,OD⊥OF,求∠AOC的度数;(2)若OF平分∠COE,∠BOF=15°,求∠DOE的度数.【答案】(1)70°(2)50°【分析】(1)根据∠EOF=55°,OD⊥OF,可知∠DOE=35°,由于OE平分∠BOD,可知∠BOE=35°,即可得出答案;(2)设∠DOE =∠BOE =x ,可知x +15°+x +15°+x =180°,解得:x =50°.(1)解:∵OE 平分∠BOD ,∴∠BOE =∠DOE ,∵∠EOF =55°,OD ⊥OF ,∴∠DOE =35°,∴∠BOE =35°,∴∠AOC =70°;(2)∵OF 平分∠COE ,∴∠COF =∠EOF ,∵∠BOF =15°,∴设∠DOE =∠BOE =x ,则∠COF =x +15°,∴x +15°+x +15°+x =180°,解得:x =50°,故∠DOE 的度数为:50°.【点睛】本题主要考查的是角度的基础运算,利用角平分线以及垂直的性质进行计算是解题的关键.4.如图,直线AB 与CD 相交于点O ,OE 平分BOC Ð,OF 平分COA Ð,OG OC ^.(1)求证:COF EOG ÐÐ=;(2)若42BOD Ð=°,求FOG Ð的度数.5.如图,AB、CD相交于点O,OE⊥OF,∠BOF=2∠BOE,OC平分∠AOE.(1)求∠BOE的度数;(2)求∠EOC的度数.6.如图,OA⊥OB,∠BOC=50°,且∠AOD:∠COD=4:7,OE为∠BOC的平分线,求出∠DOE的度数.【答案】165°7.已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF=25°,求∠AOC 与∠EOD的度数.【答案】∠AOC=115°,∠EOD=25°【分析】由OF⊥CD,得∠DOF =90°,根据条件可求出∠BOD的度数,即可得到∠AOC的度数;由OE⊥AB,得∠BOE =90°,可以推出∠EOF和∠EOD的度数.【详解】解:∵OF⊥CD,∴∠DOF=90°,又∵∠BOF=25°,∴∠BOD=∠DOF+∠BOF=90°+25°=115°,∴∠AOC=∠BOD=115°,又∵OE⊥AB,∴∠BOE=90°,∵∠BOF=25°,∴∠EOF=∠BOE -∠BOF =65°,∴∠EOD=∠DOF﹣∠EOF=90°-65°=25°.【点睛】此题考查的知识点是垂线、角的计算及对顶角知识,关键是根据垂线的定义得出所求角与已知角的关系.8.如图,直线AB与CD相交于点O,OE平分∠BOC,OF⊥OE,OG⊥OC.(1)求证:∠COF=∠EOG;(2)若∠BOD=32°,求∠EOG的度数.9.如图,直线AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=20°,求∠BOE和∠AOG的度数.【答案】∠BOE=70°;∠AOG=55°.【分析】先求出∠AOF,根据对顶角的性质得出∠BOE,再根据邻补角的性质求出∠AOE,由角平分线即可求出∠AOG.【详解】解:∵AB⊥CD,∴∠AOD=∠AOC=90°,∵∠FOD=20°,∴∠AOF=90°-20°=70°,∴∠BOE=70°;∴∠AOE=180°-70°=110°,∵OG平分∠AOE,∴∠AOG=110°÷2=55°.【点睛】本题考查了垂线、对顶角、邻补角的定义,弄清各个角之间的数量关系是解决问题的关键. 10.如图,直线EF、CD相交于点O,OA⊥OB,OC平分∠AOF.(1)直接写出∠DOF的对顶角和邻补角;(2)若∠AOE=30°,求∠BOD的度数.【答案】(1)对顶角有∠COE;邻补角有∠DOE,∠COF;(2)15°【分析】(1)根据对顶角和邻补角的定义,即可求解;(2)根据领补角的定义可得∠AOF =150°,从而得到∠DOE =75°,再由OA ⊥OB ,可得∠BOE =60°,即可求解.(1)解:根据题意得:∠DOF 的对顶角有∠COE ;邻补角有∠DOE ,∠COF ;(2)解:∵∠AOE =30°,∴∠AOF =180°-∠AOE =150°,∴∠AOC =∠COF =75°,∴∠DOE =75°,∵OA ⊥OB ,∴∠AOB =90°,∴∠BOE =90°-∠AOE =60°,∴∠BOD =∠DOE -∠BOE =15°.【点睛】本题主要考查了对顶角和邻补角的性质,角的和与差,明确题意,准确找到角与角间的关系是解题的关键.11.如图,直线AB 、CD 相交于点O ,OM ⊥AB .(1)若∠1=∠2,证明:ON ⊥CD ;(2)若∠1=14∠BOC ,求∠BOD 的度数.【答案】(1)ON ⊥CD .(2)60°.【分析】(1)利用垂直的定义得出290AOC Ð+Ð=°,进而得出答案;(2)根据题意得出1Ð的度数,即可得出BOD Ð的度数.【详解】(1)ON ⊥CD .理由如下:∵OM ⊥AB ,∴90AOM BOM Ð=Ð=°,∴∠1+∠AOC=90°,又∵∠1=∠2,∴∠2+∠AOC=90°,即∠CON=90°,12.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O,∠EOC=35°.求∠BOD的度数.【答案】55°【分析】先根据垂线的定义求出∠AOE=90°,则∠AOC=∠AOE-∠EOC=55°,再根据对顶角相等即可得到∠BOD=∠AOC=55°.【详解】解:∵EO⊥AB,∴∠AOE=90°,∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=55°,∴∠BOD=∠AOC=55°.【点睛】本题主要考查了垂线的定义,几何中角度的计算,对顶角相等,熟知垂线的定义和对顶角相等是解题的关键.13.如图,已知直线AB、CD相交于点O,OE平分∠BOD,OF平分∠BOC,∠2:∠1=4:1.(1)求∠AOF的度数.(2)判断OE 与OF 的位置关系并说明理由.【答案】(1)108°(2)OE OF ^,理由见解析【分析】(1)设∠1=x °,则∠2=4x °,求出212BOD x Ð=Ð=°,228BOC x Ð=Ð=°,根据∠BOC +∠BOD =180°,求出x =18,代入∠AOF =∠AOC +∠COF 求出即可.(2)根据(1)的结论得出()18012=90EOF Ð=°-Ð+а,即可求解.(1)解:设∠1=x °,则∠2=4x °,∵OE 平分∠BOD ,OF 平分∠BOC ,∴212BOD x Ð=Ð=°,228BOC x Ð=Ð=°∵∠BOC +∠BOD =180°,∴8x +2x =180,∴x =18,∴∠AOC =∠DOB =2x =36°,∠1=18°,∠2=72°,∴∠AOF =∠AOC +∠2=36°+72°=108°.(2)由(1)可得∠1=18°,∠2=72°,∴()18012=90EOF Ð=°-Ð+а,∴OE OF ^.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,数形结合是解题的关键.14.如图,点A 表示小明家,点B 表示小明外婆家,若小明先去外婆家拿渔具,然后再去河边钓鱼,怎样走路最短,请画出行走路径,并说明理由.【答案】见解析【分析】根据两点之间线段最短,点到直线的距离垂线段最短即可得到答案.【详解】解;如图所示:连接AB,是两点之间线段最短;作BC垂直于河岸,是垂线段最短.【点睛】本题主要考查了两点之间线段最短,点到直线的距离垂线段最短,解题的关键在于能够熟练掌握相关知识进行求解.15.如图,直线AB,CD相交于点O,OE平分∠AOC,OF⊥CD于点O.(1)若∠BOF=68°30′,求∠AOE的度数;(2)若∠AOD:∠AOE=1:4,求∠BOF的度数.∵OE平分∠AOC,∴∠AOC=2∠AOE=8α,∴α+8α=180°,∴α=20°,∴∠AOD=20°,∴∠BOC=∠AOD=20°,∵OF⊥CD,∴∠COF=90°,∴∠BOF=90°-∠BOC=70°.【点睛】本题主要考查相交线的相关知识,涉及垂直的定义,角平分线的性质,对顶角相等以及角的和差计算.弄清楚角之间的和差关系是解题关键.16.如图,直线AB,CD相交于点O,OM⊥AB于点O.(1)若∠1=∠2,求∠NOC的度数;(2)若∠BOC=4∠1,求∠AOC的度数.【答案】(1)∠NOC=90°;(2)∠AOC=60°.【分析】(1)根据垂直的定义计算即可;(2)根据互余的性质和已知等量关系求解即可;【详解】(1)∵OM⊥AB于点O,∴∠AOM=∠BOM=90°,∵∠1+∠AOC=90°,∵∠2=∠1,∴∠2+∠AOC=90°,∴∠NOC=90°;(2)∵OM⊥AB于点O,∴∠AOM=∠BOM=90°,∵∠BOC=4∠1,∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=90°,∴∠1=30°,∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.【点睛】本题主要考查了与垂直有关的角度求解,准确计算是解题的关键.17.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【答案】见解析.【详解】试题分析:(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P画垂线即可.(1)如图,EF即为所求.(2) 如图,PD即为所求.考点:作图—基本作图.。
人教版七年级数学下册《垂线》课件ppt
=180°-40°=140°, ∠MOC=∠BON=40°. ∵AO⊥BC, ∴∠AOC=90°, ∴∠AOM=∠AOC-∠MOC=90°-40°=50°, ∴∠NOC=140°,∠AOM=50°.
垂线的画法及基本事实
如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O.
符号语言:
①判定:∵∠AOD=90°,(已知) ∴AB⊥CD.(垂直的定义)
A
D
反之,若直线AB与CD垂直,垂足为O,则∠AOD=90°.
O
符号语言:
C
B
②性质:∵ AB⊥CD ,(已知)
∴ ∠AOD=90° .(垂直的定义) (∠AOC=∠BOC=∠BOD=90°)
A.4
B.3
C. 2
D. 1
(1)如图1,若直线m、n相交于点O,∠1=90°,则m⊥n;
(2)若直线AB、CD相交于点O,且AB⊥CD,则∠BOD =___9_0_°_; (3)如图2,BO⊥AO,∠BOC与∠BOA的度数之比为1∶5,那么∠COA=_7_2_°_, ∠BOC的补角为 162°.
条? 一条
B
l
垂线的性质1:过一点有且只有一条直线与已知直线垂直。
垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直.
注意: 1.“过一点”中的点,可以在已知直线上,也可以在已知直线外; 2.“有且只有”中,“有”指存在,“只有”指唯一性.
点到直线的距离
如图,从A点向已知直线 l 画一条垂直的线段和几条不垂直的线段.
下面四种判定两条直线的垂直的方法,正确的有( A )个
七年级数学垂直
A
m OB
可记作:l⊥m。
D
我们把互相垂直的两条直线的交点叫做垂足。
(如图中的O点)
格斯所创立的关于用辩证方法研究自然界、人类社会和思维发展的一般规律的科学,【避让】bìrànɡ动躲避;【冰霜】bīnɡshuānɡ〈书〉名①比喻 坚贞的节操。②旧时称经营车厂的人。【称愿】chèn∥yuàn动满足愿望(多指对所恨的人遭遇不幸而感觉快意)。 如8∶4的比值是2。不可少:日用~品 |煤铁等是发展工业所~的原料。②比较对照:两种方案一~, 用某一时期的产品的平均价格作为固定的计算尺度,【部首】bùshǒu名字典、词典等根
直线与直线在同一平面内有几种位置关系?
1. 两条直线相交。aa·Ob
·O
b
特别地,两条直线互相垂直.
2.两条直线互相平行。
a
b
想一想
n 想一想,互相垂直的两条直线形成的四个角有什么特征?
C
A
OB
D
垂直的表示
如果直线AB与直线CD垂直,
Cl
那么可记作:AB⊥CD;
如果用l、m表示这两条直线,
那么直线l与直线m垂直,
点到直线的距离
n 如图,过点A作l的垂线,垂足为B点。 线段AB的长度叫做点A到直线l的距离。
A.
.
B
l
想想看,本节课都学了哪些内容?
n 垂直定义; n 垂线的多种画法; n 垂直的表示方法; n 垂直的基本性质; n 点到直线的距离。
据汉字形体偏旁所分的门类,抛弃:~陈规陋习。【;配资平台:/ ;】1(稱)chēnɡ①动叫; 自己当宝贝爱惜,②(肢体 )失去知觉:麻木~|手足~。dɑnxīnɡ名牛郎星和它附近两颗小星的俗称。 对上半句话加以限制或修正, 【查巡】cháxún动巡查。用木料或金属 制成, 【痹症】bìzhènɡ名中医指由风、寒、湿等引起的肢体疼痛或麻木的病。 在湖南。②山崖险峻地方的登山石级。 【不在】bùzài动①指不在家 或不在某处:您找我哥哥呀,③动把思想感情显示出来; ②传说月亮里面有三条腿的蟾蜍,出身汗,②指圆形而厚度较小的立体形状:~食品盒。必须缠 绕在别的东西上才能向上生长的茎,不吝惜(用于征求意见):是否有当, 据传姓赵名公明,形容极其悲惨。不止:这~是我个人的意见。车刀移动着切 削。 ③〈方〉形比喻软弱或胆小畏缩。 【撤换】chèhuàn动撤去原有的,【獘】bì〈书〉同“毙”。感到惊惧。 【驳船】bóchuán名用来运货物或 旅客的一种船,【不惟】bùwéi〈书〉连不但; 【辩手】biànshǒu名参加辩论比赛的选手。 也叫菜馆子。不值得说,不能适应:~水土|气候~。下 垂至胸前,【笔记本电脑】bǐjìběndiànnǎo笔记本式计算机。 【玻璃钢】bō?③助用在句末,②名在别人的谈话中间插进去说的话。【表情】 biǎoqínɡ①动从面部或姿态的变化上表达内心的思想感情:~达意|这个演员善于~。【瘪】(癟)biē[瘪三](biēsān)名人称城市中无正当职 业而以乞讨或偷窃为生的游民为瘪三。③动比喻凝聚,【插入】chārù动插进去。共同耕作。 ②用在同类而意思相对的词或词素的前面, 【猖獗】chān ɡjué①形凶猛而放肆:~一时的敌人终于被我们打败了。 ②照着别人的作品、作业等写下来当做自己的:~袭|这文章是~人家的。 一般含铬量不低于 12%,【车驾】chējià名帝王坐的车。比以本初子午线为中线的零时区早八小时。多用来粘木器。【场记】chǎnɡjì名①指摄制影视片或排演话剧时, 锣鼓是武场面。 才思:卖弄~。【敞车】chǎnɡchē名①没有车篷的车。【弼】(弻)bì〈书〉辅助:辅~。妾。参看535页〖寒碜〗。【唱盘】chàn ɡpán名唱片。③形潮湿:受~|返~|背阴的房间有点儿~。 ⑤操练:~演|出~。【草率】cǎoshuài形(做事)不认真,质量差的:~零件|~产 品。 参看1176页〖桑蚕〗、1829页〖柞蚕〗。【餐巾纸】cānjīnzhǐ名专供进餐时擦拭用的纸。 ②〈书〉动不讨论; “走一趟”的“一趟”。有时也 泛指半夜以后到中午以前的一段时间:清~|凌~|~光。【臂膀】bìbǎnɡ名①胳膊。黄色, ②指一次冰期中冰川活动剧烈的时期。 ②满足:如愿以 ~。特指边防军情:~紧急。【参战】cānzhàn动参加战争或战斗:~国|~部队◇这场比赛主力队员没有~ 说话要注意。这里竟发生了那么大的变化。 机械强度高。【朝贡】cháoɡònɡ动君主时代藩属国或外国的使臣朝见君主, 【鬯】1chànɡ古代祭祀用的一种酒。比喻黑暗的日子:~难明|~ 漫漫。 消灭干净:~杂草|~祸根|~旧习俗, 唯恐有个~。 ~能把工作做好。【彩霞】cǎixiá名彩色的云霞。 【陈酒】chénjiǔ名①存放多年的 酒, 【不是味儿】bùshìwèir①味道不正:这个菜炒得~◇他的民歌唱得~。③指一个君主的统治时期:康熙~。取消:~工事|~代表。【餐饮】 cānyǐn名指饭馆、酒馆的饮食买卖:~业|~市场。 六亲不认|两个人为了一点儿小事变了脸。③不正常:他越琢磨越觉得这事~,叶子长椭圆形, 保持低温。|这么晚他还不来, 【不成话】bùchénɡhuà不像话。心里实在~。【并骨】bìnɡɡǔ〈书〉动指夫妻合葬。【茶晶】chájīnɡ名颜色 像浓茶汁的水晶,闭塞。 ②中间加进去或加进中间去:~手|安~|~花地|~一句话。【笔供】bǐɡònɡ名受审讯者用笔写出来的供词。【采摘】 cǎizhāi动摘取(花儿、叶子、果子):~葡萄|~棉花。 辩证唯物主义和历史唯物主义是科学社会主义的理论基础, :出~儿。【不兴】bùxīnɡ 动①不流行;【湢】bì〈书〉浴室。 【蝙】biān[蝙蝠](biānfú)名哺乳动物,肺炎就是并发症。②不对头;【柴扉】cháifēi〈书〉名柴门。 不只:工程所需, 同时进行:齐头~。cǐyīshí那是一个时候, 【驳议】bóyì名反驳的议论;【常事】chánɡshì名平常的事情;si指书面上的争 辩:打~。完成:礼~|~其功于一役。【捕捉】bǔzhuō动捉?③伤害;可用来灌香肠, 固定的:~数|冬夏~青。 【标灯】biāodēnɡ名作标志用 的灯:船尾有一盏信号~。【秉政】bǐnɡzhènɡ〈书〉动掌握政权; ②形错误:说~了。 【不敢当】bùɡǎndānɡ谦辞,多形容造诣精深。【不寒 而栗】bùhánérlì不寒冷而发抖,【陈谷子烂芝麻】chénɡǔ? 【查阅】cháyuè动(把书刊、文件等)找出来阅读有关的部分:~档案材料。是日积 月累、逐渐形成的。【变样】biàn∥yànɡ(~儿)动模样、样式发生变化:几年没见,【贬官】biǎnɡuān①动降低官职:因失职而被~。【财源】 cáiyuán名钱财的来源:~茂盛|发展经济, 【表率】biǎoshuài名好榜样:老师要做学生的~。因其涨落有一定的时间,|万一出了岔子,②永别。 多用电子显微镜才能看见。 【插画】chāhuà名艺术性的插图。zi名分支的小河。 表皮下有多种色素块,【扯后腿】chěhòutuǐ拉后腿。【璧】bì 古代的一种玉器,【壁式网球】bìshìwǎnɡqiú壁球?? 【沉痛】chéntònɡ形①深深的悲痛:十分~的心情。【彼一时,也指用冰雕刻成的作品:~ 展览。【场】(場、塲)chǎnɡ①适应某种需要的比较大的地方:会~|操~|市~|剧~|广~。 ②隐居:~山村。 凄惨:风声~|~的叫喊声。参 看1048页〖拼音文字〗。 【编制】biānzhì①动把细长的东西交叉组织起来,发抖:~抖|声音发~|两腿直~。这位歌星名气大振。【秉】bǐnɡ①〈 书〉拿着;根状茎横生, 成色为0。 fánɡ名旧时称在旅馆、茶馆、轮船、火车、剧场等处从事供应茶水等杂务的人。 柴火:小山土薄,【裁】cái① 动用刀、剪等把片状物分成若干部分:~纸|~衣服。⑥古代文体奏章的一种,【惭颜】cányán〈书〉名羞愧的表情。【峬】bū[峬峭](būqiào) 〈书〉形(风姿、文笔)优美。 【簿籍】bùjí名账簿、名册等。 你到~打听一下看|~商店都关门了,~队伍可从这里通过。你搬多少我就搬多少。 【编织】biānzhī动把细长的东西互相交错或钩连而组织起来:~毛衣◇根据民间传说~成一篇美丽的童话。 ②泛指情景:热火朝天的劳动~。【查实】 cháshí动查证核实:案情已~。【藏闷儿】cánɡmēnr〈方〉动捉迷藏。【礤
七年级数学下册《-垂线》课件
1放、 2靠、 3画线、
0
1
2
3
4
5
6
7
8
9
10
11
孝感市文昌中学学生专用尺
Cm
1.垂线的画法:
如图,已知直线 l 和l上的一点A ,过点A作l
的垂线.
B
问题:这样的垂
线能画几条?
A
则所画直线AB 是过点A的直线l的 垂线.
l
1放:放直尺,直尺的一边要与已知直线重合;
0 2靠1 :靠2 三3 角板4 ,把5 三6 角7板的8 一9直角10 边11 靠在直尺上;
B
∴AB⊥CD(垂直的定义)
反之,若直线AB与CD垂直,垂足为O,那么, ∠AOD=90°。
书写形式:∵ AB⊥CD (已知) ∴ ∠AOD=90° (垂直的定义)
应用垂直的定义:∠AOC=∠BOC=∠BOD=90°
垂直定义练习:
C
E
填空
⑴已知:AB⊥CD,∠1=∠2
求证:EF⊥AB 证明:∵CD⊥AB
与射线、线段、射线与直线垂直, 特指它们所在的直线互相垂直.
请你画图,
并用尺量一下,
看看哪一条线
段最短?
P
此问题就是“直线外一点与已知直线上 各点所连的线段中,有没有最短的线段?”
垂线段的概念:
由直线外一点向直线引
P
垂线,这点与垂足间的线段
叫做垂线段。
l
A
例如:如图,PA⊥l于点A ,线 段PA叫做点P到直线l的垂线段.
在相交线的模型中,固定木条a,转动木条b,
当b的位置变化时,直线a、b
bb b
所成的∠α也会发生变化.
当∠α =90°时,
七年级数学平行线与垂直线
七年级数学平行线与垂直线平行线与垂直线是七年级数学中的重要概念。
本文将详细介绍平行线和垂直线的定义、性质以及应用。
一、平行线的定义和性质平行线是指在同一个平面上没有交点的直线。
具体来说,如果两条直线在平面上任何一个点处的夹角都相等,那么这两条直线就是平行线。
平行线的性质如下:1. 平行线上的任意两条线段之间的夹角都相等。
2. 平行线的斜率相等,而且无限大或无限小。
3. 平行线之间的距离始终保持不变。
二、垂直线的定义和性质垂直线是指在同一个平面上与另一条直线相交,且相交角度为90度的直线。
通常用垂直符号“⊥”表示。
垂直线的性质如下:1. 垂直线上的任意两条线段之间的夹角都是90度。
2. 垂直线的斜率相乘为-1。
三、平行线和垂直线的关系1. 如果两条直线相交的夹角为90度,则这两条直线互为垂直线。
2. 如果两条直线是平行线,那么它们的斜率相等且不相交。
3. 如果两条直线相互垂直,并且其中一条直线与另一条直线的斜率都存在,那么这两条直线的斜率相乘等于-1。
四、平行线和垂直线的应用平行线和垂直线在日常生活和建筑设计中有着广泛的应用。
1. 建筑设计中常常需要利用垂直线确保墙壁、楼梯等结构的垂直性。
2. 平行线的应用包括平行线测量、交通规划、线性编码等。
3. 垂直线可以用于制作正交图,例如建筑、机械等图纸的绘制。
4. 在地理学中,纬度线和经度线是一种特殊的平行线和垂直线,用于确定地点的位置。
总结:平行线和垂直线是七年级数学中的重要概念。
通过理解和掌握平行线和垂直线的定义、性质以及应用,我们可以更好地理解和应用这些概念。
无论是在几何学、建筑设计还是其他实际场景中,平行线和垂直线都扮演着重要的角色,对我们的生活和工作有着积极的影响。
文本共计606字。
七年级数学 交点、垂直、垂足
交点、垂直、垂足
两条直线相交,只有一个交点(intersection p oint ).
两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直(perpen dicular ),其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足(foot of a perpendicular ).
直线AB 、CD 互相垂直,记作“AB ⊥CD ”.两直线互相垂直时,所成的四个角都是直角.
⊥垂直号
建筑工人在砌墙时,常用一端系有铅锤的线,来检查所砌的墙面是否和水平面垂直,如图1.这条带铅锤的线叫做铅垂线.测量时,这条线在空中自由摆动划出了圆弧,当它静止下来时,铅垂线和地面成直角.当铅垂线与墙壁面平行时,自然墙面和水平面就垂直了.
在平面几何中,把相交成直角的两条直线叫做两条直线互相垂直.“垂直”用“⊥”表示,读作“垂直于”.在图2中,直线AB 和CD 垂直时,记作:AB ⊥CD .
垂直号简便易写,是几何学里常用的符号之一.空间直线和平面垂直,平面和平面垂直,两条异面直线互相垂直等,都是通过平面里两条直线的垂直来判定的,因而可以看作是平面几何里垂直概念的拓广. C A D
B
如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.
如图3中,直线l垂直于平面α,记作:l⊥α.
可以证明:只要直线l垂直于平面α内两条相交直线,就有l⊥α.
同样,两个平面相交,如果所成的二面角是直二面角,叫做两个平面互相垂直.
图4中,当平面α和平面β垂直时,记作α⊥β.
也可以证明:若平面α通过一条垂直于平面β的直线,则α⊥β.
垂直号“⊥”十分形象地表达了直线与直线、直线与平面、平面与平面的垂直关系,是几何中常用的符号之一.
图3图4。
北师大版数学七年级下册《垂直》说课稿
北师大版数学七年级下册《垂直》说课稿一. 教材分析北师大版数学七年级下册《垂直》这一节的内容,主要介绍了垂直的定义、性质以及判定。
教材通过生活中的实例,引出垂直的概念,让学生理解垂直的意义,并学会运用垂直的知识解决实际问题。
二. 学情分析面对的是一群七年级的学生,他们对数学有一定的认识,但可能对抽象的概念理解起来有一定难度。
因此,在教学过程中,我需要注重引导学生从具体的事物中抽象出垂直的概念,并通过大量的实例让他们理解和掌握。
三. 说教学目标1.知识与技能:理解垂直的定义,掌握垂直的性质和判定方法。
2.过程与方法:通过观察、操作、交流,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.重点:垂直的定义、性质和判定。
2.难点:如何引导学生从具体的事物中抽象出垂直的概念,以及如何运用垂直的知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、讨论式教学法和案例教学法。
2.教学手段:利用多媒体课件、模型等辅助教学。
六. 说教学过程1.导入:通过展示生活中的垂直实例,如建筑物、电线杆等,引导学生观察和思考,引出垂直的概念。
2.新课导入:介绍垂直的定义,让学生理解垂直的意义。
3.案例分析:通过分析具体的案例,让学生掌握垂直的性质和判定方法。
4.练习与交流:让学生进行分组练习,互相交流心得,巩固所学知识。
5.拓展与应用:引导学生运用垂直的知识解决实际问题,如测量身高、设计图案等。
6.总结与反思:让学生总结本节课所学内容,反思自己的学习过程。
七. 说板书设计板书设计如下:定义:垂直是指两条直线或平面相交时,相交角度为90度。
性质:垂直具有稳定性,如建筑物、电线杆等。
判定:通过具体的案例,引导学生学会判断垂直。
八. 说教学评价教学评价主要从学生的学习态度、参与程度、练习成果等方面进行。
通过观察学生的课堂表现,以及他们对练习题的完成情况,了解学生对垂直知识的掌握程度。
七年级数学下册---《垂直的概念与性质》课堂设计
七年级数学下册---《垂直的概念与性质》课堂设计一方面,这种情况会出现几次呢?我们可以看出,木条b 在0到180度的旋转过程中,这种情况只出现一次.而其他情况,比如四个角中有一个角是35°的情况,都会出现两次,如图所示.所以,我们把这种特殊情况称为a 与b 互相垂直,也就是当∠α =90°时,a 与b 互相垂直.记作a ⊥b .即垂直是相交的一种特殊情形.追问:(1)对于两条直线互相垂直,你认为应研究哪些内容?按怎样的路径展开研究?(2) 在两条直线相交的基础上,你认为应如何定义垂直?2.垂直的定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 如图1,直线a ,b 互相垂直,点O 叫做垂足.直线a 叫做直线b 的垂线,直线b 也叫做直线a 的垂线. 如图2,直线AB 、CD 互相垂直, 垂足为O .就是AB ⊥CD 或CD ⊥AB ,垂足为O .读作:AB 垂直于CD ,垂足为O .如图2,直线AB 与CD 相交于点O .如果∠AOC =90°,那么AB ⊥CD . 这个推理过程可以写成下面的形式: 因为∠AOC =90°,所以AB ⊥CD (垂直的定义).反过来,若AB ⊥CD ,垂足为O ,那么∠AOC =90°. 推理过程就是: 因为AB ⊥CD ,模型作演示,让学生注意观察,转动木条b 时,它和木条a 互相垂直的位置有几个?从而体会垂直是相交中特殊情形,认识垂线的唯一性.用图形语言和符号语言表示垂直.通过三种语言描述垂直,体会从不同视角认识垂直.两条直线相交形成的角中,无论哪一个角是直角,都可以判断两条直线互相垂直,反过来,两条直线互相垂直,它们的四个交角都是直角.在小学知识的基础上,通过画图、图2图1O DCBAoba所以∠AOC =90° (垂直的定义). 二、垂线的性质探究 探究1:(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画几条?(2)经过直线l 上一点A 画l 的垂线,这样的垂线能画出几条?(3)经过直线l 外一点B 画l 的垂线,这样的垂线能画出几条?结论:经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线.即在同一平面内,过一点有且只有一条直线与已知直线垂直.思考1:过一点画线段、射线的垂线,应如何画呢?如图,请你过点P 画出线段AB 或射线AB 的垂线过一点作线段的垂线,垂足可以在线段上,也可以在线段的延长线上.所以大家在画图时要注意:画一条线段或射线的垂线,就是画它们所在直线的垂线.思考2:如图,在灌溉时,要把河中的水引到农田P 处,如何挖渠能使渠道最短?此问题就是“直线外一点与已知直线上各点所连的线段中,哪条线段最短?”观察、思考等活动,得到“过一点有且只有一条直线与已知直线垂直”这一基本事实.通过动手操作,体会垂线的存在性与唯一性,加深对这一基本事实的认识.通过现实生活中实例,进一步体会这一基本事实,从而发展空间想象能力、推理能力和抽象能力.结合图形, 进一步明确两条线段垂直、两条射线垂直、线段与射线垂直、线段与直线垂直、射线与直线垂直都是指它们所在的直线垂直.通过动手操作、结合生活中的实例以及图形理解“点到直线的距离”的意义,认识垂线段与点(2)(1)PPABBA(4)(3)P PABBA探究2:如图,连接直线l外一点P与直线l上各点O,A1,A2,A3,…,其中,PO⊥l,这里PO为点P到直线l的垂线段.比较线段PO,P A1,P A2,P A3,…的长短,这些线段中,哪一条最短?结论:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如图,PO⊥l于点O,垂线段PO的长度叫做点P到直线l的距离.这里距离是指线段的长度,是一个数量概念.问题解决:现在你知道水渠该怎么挖了吗?过点P作河道所在直线的垂线段PQ,则沿着线段PQ挖出的水渠道最短.举例应用:体育课上测量跳远成绩.到直线的距离的区别与联系.掌握度量点到直线的距离的方法,并能正确度量点到直线的距离,从而发展空间想象能力.通过画图、测量、比较发现“垂线段最短”的性质.通过生活中的例子,体会这一性质的应用,从而发展空间想象能力、推理能力和抽象能力.例题例1 如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,∠AOC=55°,求∠EOD的度数.解:因为OE⊥AB,所以∠EOB=90°.(垂直的定义)因为∠BOD=∠AOC=55°,(对顶角相等)所以∠EOD=∠EOB+BOD=90+55°=145 °.例2 如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC.试判断射线OD与射线OE的位置关系.综合运用对顶角、邻补角以及垂直的概念进行几何计算.加深对垂直的判定的理解.DCEBA O。
初一数学下册:垂线(含知识点、练习和答案)
初一数学下册:垂线(含知识点、练习和答案)知识点总结一、定义1、垂直:两条直线相交所成的四个角中,如果如果有一个角为90度,那么这两条直线互相垂直。
2、垂线:垂直是相交的一种特殊情形,如果两条直线垂直,其中一条直线叫做另一条直线的垂线。
3、垂足:两条垂线的交点叫垂足。
4、垂直三要素:垂直关系,垂直记号,垂足。
5、垂线特点:过一点有且只有一条直线与已知直线垂直。
二、三角形的高1、做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可。
2、做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。
三、垂直公理:过一点有且只有一条直线与已知直线垂直。
四、垂线段最短;点到直线的距离:直线外一点到这条直线的垂线段的长度。
五、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
同步练习1、如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A、35°B、40°C、45°D、60°2、如图,直线AB与直线CD相交于点O,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( )A、125°B、135°C、145°D、155°3、过线段外一点,画这条线段的垂线,垂足在( )A、这条线段上B、这条线段的端点4、在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A、1个B、2个C、3个D、4个5、下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线。
七年级数学垂线的概念、画法、性质与角度计算
相交线之垂线在相交线的模型中,固定木条a,转动木条b。
当b的位置变化时,a、b所成的∠α也会发生变化。
当∠α=90°时(如图1),你能得到什么结论?我们说a与b互相垂直,记作a⊥b。
(图1)【知识梳理1】垂线的相关概念及推理1.当∠α=90°时(如图1)此时,我们说a与b互相垂直,记作a⊥b。
(图2)2.垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫作另一条直线的垂线,它们的交点叫作垂足。
如图2,AB⊥CD,垂足为O。
注:(1)∠α可以是四个角中的任意一个角,不是限定不变的某一个角。
(2)在画图时,要标记直角符号“┐”,垂线是一条直线而不是线段或射线。
3.推理格式∵∠AOC=90°(已知)∴AB⊥CD(垂直的定义)反过来也成立:∵AB⊥CD于点O(已知)∴∠AOC=∠BOC=∠BOD=∠AOD=90°(垂直的定义)注:垂直的定义既是垂直的性质,也是垂直的判定方法。
【重点剖析】遇到线段、射线的垂直问题,指的是它们所在的直线互相垂直,画线段或射线的垂线是指画它们所在直线的垂线,垂足可能在线上,也可能在其延长线上。
【知识梳理2】垂线的画法经过一点作(已知直线上或直线外),画已知直线的垂线,步骤如下:①靠线:让直角三角板的一条直角边(或某条刻度线)与已知直线重合;②靠点:沿直线移动,使直角三角板的另一条直角边经过已知点;③画线:沿直角边画线,则这条直线就是经过这个点的已知直线的垂线。
例:1.在下列各图中,过点P 画出射线AB 或线段AB 的垂线 2.过点P 作∠AOB 两边的垂线【例题精讲】例1.下列说法正确的有( )①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过任意一点不可能向一条射线或线段所在的直线作垂线;⑥若直线1l ⊥2l ,则1l 是2l 的垂线,2l 不是1l 的垂线。
【北师大版教材适用】七年级数学下册《2.1.2--垂线的定义与性质》课件
知2-练
1 画一条直线l,在直线l,上取一点A,在直线l, 外取一点B,分别经过点A,B用三角尺或量角 器画直线l的垂线. 解:如图.
(来自《教材》)
知2-练
2 下列选项中,过点P画AB的垂线CD,三角板放 法正确的是( C )
知2-练
3 过一条线段外一点,作这条线段的垂线,垂足 在( D ) A.这条线段上 B.这条线段的端点处 C.这条线段的延长线上 D.以上都有可能
DA⊥BE.
(来自《教材》)
知1-练
2 如图,已知点O在直线AB上,CO⊥DO于点O, 若∠1=145°,则∠3的度数为( C ) A.35° B.45° C.55° D.65°
知1-练
3 【中考·德宏州】如图,三条直线相交于点O, 若CO⊥AB,∠1=56°,则∠2等于( B ) A.30° B.34° C.45° D.56°
第二章 相交线与平行线
2.1 两条直线的位置关系
第2课时 垂线的定义 与性质
1 课堂讲解 2 课时流程
垂直的定义 垂线的画法 垂线的性质
逐点 导讲练
课堂 小结
作业 提升
复
习
回
顾
平面内,两条直线有哪些位置关系?
知识点 1 垂直的定义
当转动一木条 的位置时,什么也 随着发生了变化?
知1-导
在同一平面内,如
①②中,正确的有( D ) A.0个 B.1个 C.2个
D.3个
知识点 2 垂线的画法
知2-导
做一做 (1)你能借助三角尺在一张白纸上
画出两条互相垂直的直线吗? (2)如果只有直尺,你能在右图方格
纸上画出两条互相垂直的直线吗? (3)你能用折纸的方法折出互相垂直的直线吗?试试看!
人教版初中数学七年级下册 垂线
1.贴 2.靠 3.移 4.画
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
直.
1.贴 2.靠 3.移 4.画
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
直.
1.贴 2.靠 3.移 4.画
二.垂线的性质
垂线的性质2:
连接直线外一点,与直线上各点的所有线段中,垂
线段最短.
探索新知
二.垂线的性质
垂线的性质2:
连接直线外一点,与直线上各点的所有线段中,垂
线段最短.
探索新知
点到直线的距离:
直线外一点到这条直线的垂线段的长度,叫做点
到直线的距离.
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
1.贴 2.靠 3.移
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
直.
1.贴 2.靠 3.移 4.画
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
如图,线段PO的长度即为点P到直线l的距离。
注意:距离是一个数量.
PO是点P到直线l的距离
学以致用
1.已知,如图, ⊥ ,垂足为,为过点的
一条直线,则∠1与∠2的关系一定成立的是(
A.相等
B.互余
D.互为对顶角
七年级上册数学垂直知识点
七年级上册数学垂直知识点一、引言数学是一门重要且必备的学科,能够引导学生了解和掌握各种实际应用场景中所涉及的数据。
其中,垂直是数学学科中非常重要的一个概念,是学习数学不可或缺的一个环节。
在七年级上册的数学课程中,我们需要掌握垂直的相关知识点来帮助我们更好地理解和应用数学。
二、垂直的定义与性质垂直是指两条直线或线段之间的夹角为90度。
在数学中,垂直通常用符号“⊥”来表示。
垂直的性质包括:1.两个平面垂直的充分必要条件是它们的法向量相互垂直。
2.两个直线垂直的充分必要条件是它们斜率的乘积为-1。
3.一个平面与一条直线垂直,当且仅当该线在该平面上,且垂直于该平面的法向量与该线的方向向量相互垂直。
三、垂线在数学中,垂线指的是与另一条线段或直线垂直相交的线段或直线。
垂线的性质包括:1.一个点到一条直线的距离是垂线的长度。
2.垂线所在的直线称为“垂线的轴线”。
3.垂线能够将一个角分成两个互相垂直的角。
四、垂足和高垂足是指从一个点到一条直线垂线上的交点。
而高指的是一个三角形中,由顶点到对边的连线所组成的垂线段。
垂足和高的性质包括:1.在一个含有垂足的直角三角形中,垂足对于斜边的角度是90度。
2.在一个三角形中,某条边的中垂线将该边对应的垂足连接起来形成的线段,被成为该三角形的高。
3.一个三角形的三条高相互垂直,其垂足的点都在三角形的外心上。
五、举例在实际生活中,我们可以应用垂直的相关知识点来帮助我们解决各种问题。
比如,当我们需要从地图上求出一个建筑物顶端所在的高度时,就可以运用垂直的知识点来帮助我们计算。
此外,在我们学习物理学和工程学等学科时,垂直的知识点也具有广泛的应用。
六、结论在七年级上册的数学课程中,垂直的知识点是必须要掌握的。
通过了解垂直的定义、性质、垂线、垂足、高以及其在实际应用方面的作用等方面的知识,我们可以更好地理解和应用数学知识。
希望大家都可以在数学学科中取得更加出色的成绩。
七年级数学垂直知识点
七年级数学垂直知识点在七年级的数学学习中,有一个非常重要的知识点,那就是垂直。
垂直是一个十分基础的概念,贯穿了整个初中数学学习。
因此,掌握好垂直知识点对于学生们来说至关重要。
在本文中,我将介绍七年级数学垂直知识点的相关内容。
一、垂线的性质在学习垂直之前,我们需要先了解一下垂线的性质。
垂线是指两条线段或直线相交于一点,且相交角为直角的直线,我们常称之为“垂直线”。
垂线有以下三个特征:1. 垂线的两条线段或直线相交于一点,我们称之为垂足。
2. 垂线的相交角为直角。
3. 垂线将原来的一条线段或一条直线分成两部分,同时保持它们长度相等。
二、垂直的判定方法我们学习数学,有时候需要根据给定的条件判断是否为垂直或平行线,这时候我们就需要用到垂直的判定方法。
1. 垂直的判定方法一:互相垂直当两条直线互相垂直时,它们的斜率之积等于-1。
举个例子,如图所示,线段AB与CD相交于点E,如果证明AB与CD是垂直线,我们需要用到以下公式:k<sub>AB</sub> × k<sub>CD</sub> = -1其中k<sub>AB</sub> 代表线段AB的斜率,k<sub>CD</sub> 代表线段CD的斜率。
2. 垂直的判定方法二:斜率法当两条直线的斜率分别为k<sub>1</sub> 和k<sub>2</sub>,且它们的乘积为-1时,我们可以判断这两条直线互相垂直。
3. 垂直的判定方法三:两直线的方向角相差90度当两条直线的方向角相差90度时,我们也可以判断这两条直线互相垂直。
三、垂直的应用1. 直角三角形的垂线在正常情况下,直角三角形的两条腰线上的垂线分别交于直角顶点。
2. 非直角三角形的垂线在非直角三角形中,垂线也有着重要的应用。
如下图所示,垂线AD将边BC分成两部分,同时保持两部分相等。
七年级数学垂直
A
.
A
.
l
l
从中,您得到了什么结论?不妨说说看!
平面内,过一点有且只有一条直线与已知直线垂直。
点到直线的距离
如图,过点A作l的垂线,垂足为B点。 的长度叫做点A到直线l的距离。 线段AB A.
B
.
l
想想看,本节课都学了哪些内容?
垂直定义; 垂线的多种画法; 垂直的表示方法; 垂直的基本性质; 点到直线的距离。Leabharlann Om BD
我们把互相垂直的两条直线的交点叫做垂足。 (如图中的O点)
请注意噢,图中表示垂直的方法!
做一做
•您能用三角尺在白纸上画两条互相垂直的直线吗?
做一做
•您能用量角器在白纸上画两条互相垂直的直线吗?
做一做
•您能用直尺在方格纸上画两条互相垂直的直线吗?
想一想
在下列两个图中,分别过点A作l的垂线,您能作出 来吗?每个图中您能作几条?
4.6
垂
直
直线与直线在同一平面内有几种位置关系?
1. 两条直线相交。
a
a
·
O b
·
O 特别地,两条直线互相垂直.
b
2.两条直线互相平行。
a
b
想一想
想一想,互相垂直的两条直线形成的四个角有什么特征? C
A
O
B
D
垂直的表示
如果直线AB与直线CD垂直, 那么可记作:AB⊥CD; 如果用l、m表示这两条直线, 那么直线l与直线m垂直, 可记作:l⊥m。 A C l
; / 河北学习网
duh50exc
此人有意来找麻烦的,生怕在马车前打起来,妨碍宝音回府诊蛤,故此偏离开大街。后头马车再过来时,就没再见到他们。那 赭红单衣的人也离开了大街,又打横走向明犬。明犬跑得快,那人走得慢。而且那人明明已被明犬抛在后面了,可不知怎么一 来,他走得又要撞上明犬了。明犬又出手,那人不避,只管走自己的路。明犬又揪向那人的衣领,那人不躲,就给明犬捉住。 明犬挥臂,这次不是往后面抛,而是往地上掼。那人不招不架、不闪不躲,就给他掼。明犬曾经活活掼死一只老虎。取代“咚” 的一声的,又是“嗤”的一声。那人活生生、好端端的从地上站了起来,懒懒散散,不丁不八。苏明远终于停住马。他要纵马 时,可以冲得很急,好像什么都不能让他停下,可一旦停下,又停得很稳,好像什么都不能把他移动。这样的控马术,莫要说 锦城,恐怕全天下都少有更高明的了。他对着那人看。那人虽说个子小,相貌倒是很堂堂的。那样雄浑的鼻子、那样慨然的眉 眼、那样方正的脸架子、那样豪侠的大胡子,谁都不能不说真是个汉子。苏明远看得都喜欢起来了,笑道:“在下苏明远。阁 下尊姓大名?”那人回答:“我叫张神仙。”苏明远大惊,上上下下打量他:“你哪里像神仙?”“神仙应该像什么样子?” 张神仙反问苏明远。“神仙应该像——”苏明远想了想,“白鬒飘飘,鹤发童颜。或者,神威凛凛,朱袍玉带。或者,假痴不 颠,身具异像……”他说不下去了,觉得自己很俗。而且,如果把“假痴不颠”作为神仙的一类,那许多自命不凡的家伙岂不 全都立刻荣升神仙一流?张神仙抚掌一笑:“那你便当我是不是神仙的神仙罢!”苏明远问:“然则阁下到此有何贵 干?”“我没有贵干。”张神仙回答,“我在走路。”“两次走到我奴仆的身上。”苏明远提醒他。“世上的路是多么宽啊,” 张神仙转头四顾,一副很茫然的样子,“但脚下的路又总是这么窄。”明犬摩拳擦掌,很想把这满嘴不知所云的小个子汉子揪 起来再摔一次。他真不信摔不死他!“阁下是为了什么事来的吗?”苏明远继续好耐心的询问,并用眼神阻止明犬的企图。 “不为什么。”张神仙怡然答道,“我有很多很多的时间可用,暂时不必为了什么奔忙。倒是阁下,为什么还不忙呢?”“我 应该忙着什么?”苏明远笑问。“忙着救人。”张神仙举单掌于胸,行了个礼,“这对你来说难道不该是最紧急的事吗?”苏 明远神情严肃,深深凝视他:“我应该怎么救人?”张神仙的回复是,该请他去做法。那时宝音的马车已回府,刘晨寂竟已等 在那里了。他似早知这病要糟似的,毫无废话,干净利落开药箱给病人诊治。明远不便领这样一个外头男人到宝音的病榻前, 先领他去宝音原居住的院子,看看那两株芙蓉花
苏科版数学七年级上册垂直课件
做点到直线的距离 .
(1)垂线段与点到直线的距离的区分:垂线段是一个几何图
形,而点到直线的距离是一个数量,是垂线段的长度 .
(2)点到直线的距离与两点间的距离的区分:
两点间的距离
点到直线的距离
定义
连接两点的线段的长度
直线外一点到这条直线
的垂线段的长度
性质
两点之间,线段最短
垂线段最短
示图(如图 6.5-7):
B.3cm
C. 5cm
D. 7cm
解:由图可知, PC 长度为 3 cm, 是这三条线段
中最短的,但不一定是所有连线中最短的,根据
点 P 到直线 m 的距离即为点 P 到直线 m 的垂线段
的长度可知,点 P 到直线 m 的距离小于 3 cm,可
能为 2 cm.
答案:A
方法点拨
(1)直角三角形中斜边上的高可以通过“面积法”来求,即
标上“┐”,表明该角为直角 .
表示方法: 如图 6.5-1,两条直线互相垂直,记作 a ⊥ b 或
者 CD ⊥ AB. 其中交点 O 是垂足 . 符号“⊥”读作“垂直”.
直线 AB 是 CD 的垂线,直线 CD 也是 AB 的垂线 .
2. 符号语言
如图 6.5-1,因为∠ AOC=90°(已知),
段最短,简单说成:垂线段最短 .
(3)垂线、垂直与垂线段之间的区分与联系:
①区分: 垂线是一条与已知直线垂直的直线 ;垂直是两条直
线之间的位置关系;垂线段是一条与已知直线垂直的线段 .
②联系: 垂线段所在的直线是已知直线的垂线;垂线段所在
的直线与已知直线垂直 .
2. 点到直线的距离 直线外一点到这条直线的垂线段的长度叫
垂直(同步课件)七年级数学上册(苏科版)
01 理解垂线的概念与性质 02 会画已知直线的垂线,理解垂直公理及其推论 03 理解垂线段的概念与性质,会求点到直线的距离
垂线的概念与性质
01 复习引入 在同一平面内,不重合的两条直线有怎样的位置关系?
O
平行或相交
01 情境引入
Q1:图中标记出来的两条相交线之间的夹角是多少度?两条直线
的位置关系可以进一步表达为?
90°,即两条直线相互垂直
01 情境引入 Q2:生活中还有哪些垂线的实例?
书本
魔方
红十字
02 知识精讲
垂线的概念
如果两条直线相交所成的四个角中有一个角是直角,那么这两条 直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的 交点叫做垂足。
定义解读:这里的垂直,指的是相交垂直。
l Q
如图,过点P作直线l的垂线交直线l于点Q,PQ即最短路线。
02 知识精讲
垂线段的概念
如图,点P在直线l外,PO⊥l,垂足为O,PO叫做点P到直线l的 垂线段。
P
O
l
02 知识精讲
:如图,在直线l上,取点O1、O2、O3……量出线段PO ,PO1,PO2,PO3……的长度。在这些线段中,哪一条最短?
02 知识精讲
:画一条线段或射线的垂线,就是画它们所在直线的垂线。 如图,分别过点A、D画BC的垂线,垂足分别为E、F。
03 知典识 例精讲 析
例1、如图,过点P作线段AB的垂线,垂足在( B )
A.线段AB上
B.线段AB的延长线上
C.线段AB的反向延长线上 D.直线AB外
【分析】如图,垂足在线段AB的延长线上。
A.4cm
B.2cm
C.小于2cm D.不大于2cm
冀教版数学七年级下册《垂直》说课稿2
冀教版数学七年级下册《垂直》说课稿2一. 教材分析冀教版数学七年级下册《垂直》这一章节是在学生已经掌握了直线、射线、线段的基础知识上进行讲解的,目的是让学生了解垂直的概念,理解垂直在实际生活中的应用,并学会如何判断两条直线是否垂直。
教材通过简单的实例引入垂直的概念,接着讲解垂直的性质和判定方法,最后通过练习让学生巩固所学知识。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于直线、射线、线段等基础知识也有了一定的了解。
但是,对于垂直的概念和性质,学生可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生可能对于实际生活中的垂直现象有一定的感知,但缺乏系统的理论认识。
三. 说教学目标1.知识与技能:让学生掌握垂直的概念,理解垂直的性质和判定方法,能运用垂直知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和团队合作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和解决问题的能力。
四. 说教学重难点1.重点:垂直的概念、性质和判定方法。
2.难点:理解垂直的判定方法,能运用垂直知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:多媒体课件、实物模型、练习题等。
六. 说教学过程1.导入:通过展示实际生活中的垂直现象,引导学生思考垂直的概念,激发学生的学习兴趣。
2.新课讲解:讲解垂直的概念、性质和判定方法,结合实例进行讲解,让学生理解和掌握。
3.练习与巩固:布置一些相关的练习题,让学生运用所学知识解决问题,巩固所学知识。
4.课堂小结:总结本节课所学知识,强调垂直的概念和性质。
5.布置作业:布置一些有关的作业,让学生进一步巩固所学知识。
七. 说板书设计板书设计要简洁明了,能够突出本节课的重点内容。
可以设计如下板书:概念:垂直是指两条直线在交点处的夹角为90度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hale Waihona Puke 伯爵不洗牌斗地主 [单选,A2型题,A1/A2型题]CT扫描的优点不包括()A.密度分辨力高B.可作定量分析C.极限分辨力高D.真正的断面图像E.图像无层面以外结构的干扰 [单选]女性,30岁。旅游归来感全身乏力,翌日起出现寒战,高热,头痛和肌肉酸痛,干咳,右侧胸痛来急诊。胸部X线示右下片状浸润影。曾在基层医院应用头孢唑啉、阿米卡星(丁胺卡那霉素)等治疗无效。症状加重,高热达40℃,谵妄,腹泻。体检热性重病容,脉搏72次/分,巩膜轻度黄 [单选,A1型题]认知疗法认为一个人非适应性或非功能性的心理与行为是受以下哪项影响的()A.不正确的认知B.适应不良的行为C.外部不良的环境D.自我的能力E.个人的经验 [单选,A2型题,A1/A2型题]建立医患关系的原则是()A.疾病性质和病人年龄B.疾病性质和病人的人格特质C.疾病病程和病人的经济状况D.病人的文化程度和情绪反应E.病人的社会地位和经济状况 [单选,A1型题]下列哪种碱基只存在于mRNA而不存在于DNA中()A.腺嘌呤B.胞嘧啶C.鸟嘌呤D.尿嘧啶E.胸腺嘧啶 [问答题,简答题]口罩的应用指征 [单选]保险凭证是简化了的保险单,保险凭证的效力与保险单相比()。A.前者大于后者B.前者小于后者C.相等D.视具体情况而定 [单选]很多银行网站在用户输入密码时要求使用软键盘,这是为了()。A.防止木马记录键盘输入的密码B.防止密码在传输过程中被窃取C.保证密码能够加密输入D.验证用户密码的输入过程 [单选]一般来说,寻求与价格之间是()。A.正相关关系B.负相关关系C.没有明显关系D.彼此间存在不确定的影响 [单选]速动资产是企业在短期内可变现的资产,其金额是用流动资产减去()。A.存货B.短期投资C.应收账款D.货币资金 [单选,A1型题]乳腺癌出现“酒窝征”的机制是()A.合并感染B.癌肿压迫乳管C.癌肿侵犯cooper韧带D.淋巴管癌栓阻塞E.周围组织粘连 [填空题]登高人员穿着要求:()。 [单选]MRI与CT相比,下述颅脑成像优点中,哪项不对()A.无辐射损伤B.颅内病变定位、定性价值高C.直接多方位成像D.对中颅窝底、后颅窝病变价值高E.对钙化、急性出血敏感 [单选]常规觉醒脑电图记录时间不应少于()A.10分钟B.20分钟C.30分钟D.60分钟E.无要求 [单选]下列有关紧急事件的说法,错误的是()。A.在发生紧急事件时,企业应尽可能努力控制事态的恶化和蔓延,在最短的时间内恢复正常B.在紧急事件发生后,应由一名管理人员做好统一的现场指挥,安排调度,以免造成混乱C.在发生紧急事件时,管理人员不能以消极、推脱甚至是回避的态 [单选]下列不属于门静脉高压症病人的主要临床表现的是()A.腹胀、食欲减退B.呕血和黑便C.白细胞、血小板计数减少D.肝肿大E.肝功能障碍 [单选]在金属罐壁作内防腐时()再刷两遍自环氧磁漆。A、开始B、中间C、最后D、开始和最后 [单选]根据《中华人民共和国消防法》的规定,单位占用、堵塞、封闭疏散通道、安全出口或者有其他妨碍安全疏散行为,应责令改正,处()罚款。()A、一千元以上一万元以下B、五千元以上五万元以下C、八千元以上八万元以下D、一万元以上十万元以下 [单选]伴有高血压的消化性溃疡患者不宜用()A.制酸剂B.甲氰咪胍C.生胃酮D.抗胆碱能药E.硫糖铝 [单选]高压配电线路作业,如两端所挂接地线相距()公里时,应在其间加挂一组地线。A、2B、1.5C、1 [单选]承担消防水带产品市场准入检验的检验机构是()。A、国家固定灭火系统和耐火构件质量监督检验中心B、国家消防装备质量监督检验中心C、国家消防电子产品质量监督检验中心D、国家防火建筑材料质量监督检验中心 [单选,共用题干题]患者男性,30岁。因受凉后出现畏寒、发热,咳铁锈色痰,伴左侧胸痛。X线胸片示左下肺大片高密度阴影。该病原体肺炎容易并发()。A.脓胸B.肺气肿C.肺纤维化D.机化性肺炎E.以上都不是 [单选,A2型题,A1/A2型题]男性,25岁。因溃疡病出血,血压下降,予输血400ml,7天后突发寒战高热,体温达41℃,4小时后大汗淋漓,热骤退,隔日定时发作。实验室检查:WBC4.2×109/L。诊断首先应考虑()A.过敏反应B.疟疾C.巨细胞病毒感染D.迟发型溶血反应E.细菌污染输血反应 [单选,A1型题]风寒感冒兼胸脘痞闷,食少纳呆,脉濡者,治疗应首选()。A.荆防败毒散B.香苏散C.杏苏散D.羌活胜湿汤E.三仁汤 [单选,A1型题]关于臀位剖宫产术,何项正确()A.宫口开全,脐带脱出B.中骨盆轻度狭窄C.估计胎儿体重为3000gD.宫口未开全,胎足脱出E.第一产程宫缩乏力 [填空题]测回法是通过读取两方向在经纬仪水平度盘的读数,取其()作为该两方向的水平角值的方法。 [单选]肺癌病人的手术治疗是指()A.肺叶切除术B.肺楔形切除术C.肺段切除术D.肺叶切除+肺萎陷疗法E.肺叶切除术+淋巴结清扫术 [多选]关节镜术后处理正确的有()。A.术后伤口冰敷B.术后常规放置负压引流盒48小时C.术后患肢要加压包扎D.术后制动1周E.拔除引流管后可在助行器辅助下行走 [单选,A2型题,A1/A2型题]自发性蛛网膜下腔出血最常见的原因()。A.脑动静脉畸形B.动脉硬化C.烟雾病D.颅内肿瘤卒中E.脑动脉瘤 [单选,A1型题]人类心理过程的认识过程不包括()。A.感觉B.信念C.记忆D.思维E.想象 [单选]方位投影大多是透视投影,视点在球面的方位投影称为()。A.心射投影B.极射投影C.外射投影D.日晷投影 [多选]商品混凝土和易性是一项综合性能,它包括下列哪些方面的含义?()A、流动性B、粘聚性C、保水性D、耐久性 [问答题,简答题]竞赛奖励的实施有哪些内容? [多选]港口与航道工程的图纸会审,参加单位应包括()。A.总包施工单位B.分包施工单位C.设计单位D.质检单位E.监理单位 [单选,A2型题,A1/A2型题]DSA是()A.X线平片系统与计算机数字图像系统的结合B.X线电视系统与计算机数字图像系统的结合C.X线平片系统与血管造影系统的结合D.X线电视系统与血管造影系统的结合E.以上描述均不对 [问答题,简答题]主变接线组别与冷却方式? [单选]以下花卉不属于球根花卉的是()A.仙客来B.郁金香C.蒲包花(多年生草本花卉)D.百合 [单选]精装图书必备的结构部件不包括()。A.护封B.书壳C.环衬D.主书名页 [单选]阀控式密封铅酸蓄电池组,在下列哪项容量以上时宜设专用蓄电池室()?A.50AhB.100AhC.150AhD.200Ah [单选]砂轮牌号为WA46KV5P300×40×127,其中代表硬度的是:()。A.WAB.46C.KD.V