频谱泄露的分析及其处理方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频谱泄露的分析及其处理方法

在现代信号处理中,由于信号的频域分析比时域分析具有更加清晰的物理概念和深刻含义,因而在信息技术领域中,FFT运算和频谱分析是一种常用的分析手段。对信号进行频谱分析首先需要通过信号的傅里叶变换计算出信号对应的频谱函数,但是由于实际应用中接触到的大量非周期连续信号x(t)的频谱函数X(j ω)是连续函数,利用计算机对其进行频谱分析时往往需要对信号进行离散化处理以近似分析相应的频谱。在离散化处理过程中由于被处理信号的有限记录长度和时域、频域的离散性往往造成在频谱分析中会出现一些特殊的效应,例如混叠现象、泄漏现象以及栅栏现象,频谱泄漏就是这样出现的。

一.频谱泄漏的分析

所谓频谱泄露,就是信号频谱中各谱线之间相互影响,使测量结果偏离实际值,同时在谱线两侧其他频率点上出现一些幅值较小的假谱,导致频谱泄漏的原因是采样频率和信号频率的不同步,造成周期采样信号的相位在始端和终端不连续。

设X(t)为实际信号,T0为信号周期,f0=1/T0为信号频率,Ts为采样周期,fs=1/Ts为采样频率,L是截取的周期数,N是采样点数,L、N均为正整数,X(t)经过长度为LT0的时间窗后得到离散序列X(n),必须满足采样频率和信号频率同步,即同步采样的要求: LT0/Ts=Nfs/f0。

当信号X(t)的频率f0是fs/N的整数倍时,这说明在处理长度NT内有信号的K个整周期。这时由X(t)构成的以NT为周期的周期性信号是连续的。当信号X(t)的频率f0不是fs/N的整数倍时,则在NT的处理长度内,就不是恰好为信号周期的整数倍,有X(t)以NT为周期进行周期延拓所得到的周期性信号就出现了不连续点,造成了频谱分量从其正常频谱扩展开来,就这样形成了频谱泄漏现象。

在对信号做FFT分析时,如果采样频率固定不变,由于被采样信号自身频率的微小变化以及干扰因素的影响,就会使数据窗记录的不是整数个周期。从时域来说,这种情况在信号的周期延拓时就会导致其边界点不连续,使信号附加了高频分量;从频域来说,由于FFT算法只是对有限长度的信号进行变换,有限长度信号在时域相当于无限长信号和矩形窗的乘积,也就是将这个无限长信号截短,对应频域的傅里叶变换是实际信号傅里叶变换与矩形窗傅里叶变换的卷积。

当信号被截矩后的频谱不同于它以前的频谱。例如,对于频率为fs的正弦序列,它的频谱应该只是在fs处有离散谱。但是,在对它的频谱做了截短后,结果使信号的频谱不只是在fs处有离散谱,而是在以fs为中心的频带范围内都有谱线出现,它们可以理解为是从fs频率上泄漏出去的,这种现象就是频谱泄漏。泄漏现象对功率谱估计及正弦分量的检测均带来有害的影响,因为弱信号的主瓣很容易被强信号泄漏到邻近的副瓣所淹没及畸变的,从而造成谱的模糊与失真。通过LABVIEW信号处理实验室可以看到当边界点不连续时出现的频谱泄漏的情况如下图1所示:

图1 信号边界点不连续时

接下来举例说明以上的情况。假设连续信号X(t)的周期为T,现在对它进行采样,采样时间为t,采样N个点,那么T=N*t,因为f(t)的频率f0=2*pi/T,同时又有T=N*t、fs=2*pi/t,则有f0=2*pi/N*t=fs/N。接着我们假设对一个周期采样N=32个点,则有f0=fs/N;当对一个周期采样N1=64个点,那么N1=2*N,有f0=fs/N=fs/N1/2,即f0=2*fs/N1;同理当N2=128,f0=4*fs/N2…

也就是说如果采样的不是整数倍的信号周期,那么这32个点、64个点、128个点....就不是在一个整周期内采到的,那么上面的等式也就不成立了,因此也就发生了频谱泄漏。如果原始信号的频谱成份与FFT中的谱线完全一致,这种情

况下采样数据的长度为信号周期的整数倍,频谱中只有主瓣。没有出现旁瓣的原因是旁瓣正处在窗函数主瓣两侧采样频率间隔处的零分量点。如果时间序列的长度不是周期的整数倍,窗函数的连续频谱将偏离主瓣的中心,频率偏移量对应着信号频率和FFT频率分辨率的差异,这个偏移导致了频谱中出现旁瓣,所以窗函数的旁瓣特性直接影响着各频谱分量向相邻频谱的泄漏宽度。下图2是信号边界连续时的频谱图,可以看到此时频谱未发生泄漏。

图2 信号边界点连续时

因此,综上所述,当采样同步时,窗口宽度等于整数个周期,矩形框的过零点与离散频点正好对齐,没有泄漏。采样不同步时,窗口宽度不是整数个周期,谐波频谱分布不再是一条谱线而是在整个频域内分布,频谱之间相互干扰,出现频谱泄漏。

由以上分析可以看出,采样不同步是造成频谱泄漏的根本原因,减少采样的同步误差是抑制频谱泄漏的根本措施。

二.消除频谱泄漏的处理方法

1.利用插值FFT方法减少频谱泄漏

1.1 窗函数

应用在谐波测量中的窗函数很多,不同的窗函数对谐波测量的影响各不相

同,即使同一个窗函数,参数选择不一样,影响也不一样。在相同的条件下,采样次数N和窗宽L同时增大时,频谱泄漏减小,如图3所示。窗函数不同,各插值算法对应参数也不同。在实际测量中用的最多的是矩形窗和海宁窗,海宁窗在减小泄漏时效果更好,而且计算量相对其他窗函数偏小。

图3 不同参数下对应的频谱泄漏

1.2插值算法的推导(窗函数为海宁窗)

给定一下多频率信号g(k∆t)=A m*exp(2πi fm k t∆),其中k=0,1,2,…N-1。

加海宁窗以后的离散傅里叶变换(DFT)为:

G H(n f∆)=0.5|G(n f∆)-0.5[G((n+1)f∆)+ G((n-1)f∆)]|,其中G(n f∆)为给定信号的DFT表达式,又设fm=(lm+xm)f∆,lm为整数,且0≤xm<1,利用相邻的两个峰值点的表达式G H[(lm+1)f∆],G H(lm f∆),可推导出复幅值的计算式如下:Am=2πxm(1-xm)/sin(πxm)* exp(πixm)*(1+xm)*G H(lm f∆)

ψ=arctan[Im(Am)/Re(Am)]

而相角则可以由下式得出:m

相应的遵循上述指导过程,可以得到其他函数的插值公式。

在这种方法下,虽然增加采样点可以在一定程度上减小泄漏,但是其计算量会加大。同样,使用加窗函数和内插技术来减小泄漏误差,以提高测量的精度,但算法复杂计算量较大。

2.利用频率同步装置减少频谱泄漏

利用硬件装置实现频率同步的装置很多,其中下图4所示的是利用数字式锁相器(DPLL)实现频率同步的框图。图中带通滤波器用来滤除噪声干扰,数字式相位比较器把取自系统电压信号的相位和频率与锁相环输出的同步反馈信号进行相位比较。当失步时,数字式相位比较器输出与两者相位差和频率差有关的

相关文档
最新文档