第四版运筹学部分课后习题解答

合集下载

运筹学(胡运权第四版及答案)

运筹学(胡运权第四版及答案)
管理运筹学
主讲:谢先达
2014.09
联系方式 办公室:QL643 87313663 手机: 13600512360 邮箱: xxdhz@


绪论
什么是运筹学?
运筹学发展历史 运筹学主要内容 运筹学的基本特征与基本方法
绪论
什么是运筹学?
定义:为决策机构在对其控制下业务活动进行决策 时,提供以数量化为基础的科学方法。
概念:可行解、最优解、最优值
第一章:线性规划及单纯形法
练习:靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天 500万m3,在两个工厂之间有一条流量为每天200万m3支流,第一化工厂每 天排放含有某种有害物质的工业污水2万m3 ,第二化工厂每天排放这种 工业污水1.4万m3 。从第一化工厂排出的工业污水流到第二化工厂以前, 有20%可自净化。根据环保要求,河流中工业污水的含量应不大于0.2%, 这两个工厂都需各自处理一部分工业污水,第一化工厂处理工业污水的 成本是1000元/万m3 。第二化工厂处理污水的的成本是800元/万m3 。现 问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工 厂总的处理工业污水费用最小。
-x1+x2+x3 = 4
-2x1+x2-x3 ≤ 6 x1 ≤ 0,x2 ≥ 0, x3取值无约束
第一章:线性规划及单纯形法
线性规划问题及其数学模型 线性规划图解法
单纯形法原理
单纯形法计算步骤
单纯形法的进一步讨论
第一章:线性规划及单纯形法
x2
目标函数: 约束条件: maxz=50x1+100x2 x1+x2≤300 2x1+x2≤400 x2≤250 x1≥0 ,x2≥0

第四版运筹学部分课后习题解答

第四版运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯=P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及应用习题解答z 3。

(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

(a)约束方程组的系数矩阵12 3 6 3 0A 8 1 4 0 23 0 0 0 0基基解是否基可行解目标函数值X1 X2 X3 X4 X5 X6P1 P2 P3163 7-60 0 0否P1 P2 P4 0 10 0 7 0 0 是10P1 P2 P50 3 0 0 72是 3习题一P46x i1-的所有X i,X2,此时目标函数值o(b)约束方程组的系数矩阵A 12 3 4A2 2 12⑻(1)图解法基 基解 是否基可行解 目标函数值X 1X 2X 3X 4P 1P 24 11否"2P 1P 3 2 0 110 是435 ~5~5P 1P 4111否—36P 2P 312是52P 2P 41否22P 3P 40 0 1 1是5最优解xT2 11 5吋omax z 10x 1 5x 2 0x 3 0x 4 3x i 4X 2 X 3st. 5x 1 2x 2 x 48 9 8 12。

min—,— — 5 3 5C j 105 0 0 C B基b X 1X 2X 3X 421143 0 X 3— 1—"5"5582110X 11C j 105 0 0 C B 基bX 1 X 2 X 3 X 4 0 X 3 9 341 0 0X 48[5] 20 1 C j Z j105令 X iX 20,0,9,8,由此列出初始单纯形表最优解即为3x1 4x2 9的解x5x 1 2x 2 81,-,最大值z 竺 2 2(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式则P 3,P 4组成一个基。

得基可行解xC j Z j0 1221 8320,min14 22新的单纯形表为C j 105 0 0 C B基b X 1X 2X 3X 435 3 5X 2— 01— —2141410X 11121—7525c jZ j14 143*35x i 1, x 2 - , X 3 0, X 4 0。

[运筹学第四版课后答案]课后答案

[运筹学第四版课后答案]课后答案

[运筹学第四版课后答案]课后答案课后答案一:《蜀道难》课后题答案《蜀道难》课后题答案一、这是一首乐府诗,以七言为主,却有不少杂言句,节奏多变化,与散文句法相似。

试给下面的诗句划分节奏,朗读几遍,说说它们对本诗的风格起什么作用。

1.噫吁戏,危乎高哉!蜀道之难,难于上青天!2.上有六龙回日之高标,下有冲波逆折之回川。

3.其险也如此,嗟尔远道之人胡为乎来哉!4.剑阁峥嵘而崔嵬,一夫当关,万夫莫开。

解题指导这首诗较长,且内容有一定难度所以先设计此题,目的是使你初步适应这首诗节奏的变化。

在完成本题时你一定要朗读几遍,读出一点韵味来。

但要注意:不要把这些句子读成散文,这对领会诗人炽烈奔放的感情和飘逸的风格极为必要。

这是一首杂言体诗,但跟其他诗人的这类体裁作品和李白的另一些这类体裁作品(如《将进酒》《梁甫吟》《庐山谣寄卢待御虚舟》等)相比,都有显著的不同。

这不同就在于:其中的某些句子,如练习中所列举的,如果孤立地看,确属散文句。

但我们不这样称它们,因为它们毕竟是诗的整体中的一部分,只能说它们是散文化的诗句,或句法与散文近似。

这当然不能随意而为,没有李白那样的气概,那样的英才,是驾驭不了的。

参考答案这些诗句都仿佛是诗人在炽烈感情的驱动下,不能自已,脱口而出,生动地表现了诗人奔放豪迈的风格。

二、“蜀道之难,难于上青天”这句诗有什么含义它重复出现三次,有什么作用解题指导这道题是为鉴赏诗的内容设计的。

重点是前一问,后一问是对前一问的补充,意思是可以从形式入手鉴赏诗的内容。

因此在完成本题时,你可以先思考后一问,然后分析“蜀道之难”一句的含义。

此题有一定的难度,你最好先理清课文的结构层次并了解诗的大意,在此基础上完成本题。

李白善于从民歌中吸取养料。

这首诗中“一咏三叹”的写法,明显地是对《诗经》中复沓形式的继承,同时又有很大的发展。

这一特点同你已学过的《君子于役》《无衣》等相同。

参考答案诗人创造性地继承了古代民歌中常见的复沓形式(又称反复),主旨句凡三见:开头、中间、结尾各出现一次。

管理运筹学(第四版)第三章习题答案

管理运筹学(第四版)第三章习题答案

3.1(1)解:, 53351042..715min 212112121≥≥+≥≥++=y y y y y y y t s y y ω(2)解:无限制32132131323213121,0,0 2520474235323..86max y y y y y y y y y y y y y y y t s y y ≤≥=++≤-=+≥+--≤++=ω3.4解:例3原问题6,,1,0603020506070..min 166554433221654321 =≥≥+≥+≥+≥+≥+≥++++++=j x x x x x x x x x x x x x t s x x x x x x z j对偶问题:6,,1,0111111..603020506070max 655443322161654321 =≥≤+≤+≤+≤+≤+≤++++++=j y y y x y y y y y y y y y t s y y y y y y j ω3.5解:(1)由最优单纯形表可以知道原问题求max ,其初始基变量为54,x x ,最优基的逆阵为⎪⎪⎪⎪⎭⎫ ⎝⎛-=-31610211B 。

由P32式(2.16)(2.17)(2.18)可知b B b 1-=',5,,1,,1 ='-=='-j P C c P B P j B j j j j σ,其中b 和j P 都是初始数据。

设⎪⎪⎭⎫ ⎝⎛=21b b b ,5,,1,21 =⎪⎪⎭⎫⎝⎛=j a a P j j j ,()321,,c c c C =,则⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-⇒='-25253161021211b b b B b ,即⎪⎩⎪⎨⎧=+-=2531612521211b b b ,解得⎩⎨⎧==10521b b ⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-⇒='-0211121031610212322211312111a a a a a a P B P j j ,即 ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=+-=-=+-==+-=03161121213161212113161021231313221212211111a a a a a a a a a ,解得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-====121130231322122111a a a a a a()()()⎪⎪⎪⎪⎭⎫⎝⎛---=---⇒'-=31612102121,0,0,2,4,4132c c c P C c j B j j σ,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=+--=+-2314612142121113132c c c c c c ,解得⎪⎩⎪⎨⎧==-=6102132c c c所以原问题为:,, 10352..1026max 32132132321≥≤+-≤++-=x x x x x x x x t s x x x z 对偶问题为:, 102263..105min 212121221≥≥+-≥-≥+=y y y y y y y t s y y ω(2)由于对偶问题的最优解为()()()2,4,,5454*=-=-=σσσc c C Y IB IB3.6解:(1)因为3x 的检验数0353≤⨯-c ,所以3c 的可变范围是153≤c 。

《管理组织运筹学》第四版课后知识题目解析

《管理组织运筹学》第四版课后知识题目解析

.⎨= 0.6《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B 点,最优解 x =12,x15 1727图2-1 ;最优目标函数值 69。

72.解:(1)如图2-2所示,由图解法可知有唯一解 x 10.2,函数值为3.6。

x 2图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

.⎨(5)无穷多解。

x(6)有唯一解 1203 ,函数值为 92 。

8 3 x 233.解:(1)标准形式max f3x 12x 20s 10s 20s 39x 1 2x 2 s 1 30 3x 1 2x 2 s 2 13 2x 12x 2s 39x 1, x 2 , s 1, s 2 , s 3 ≥ 0(2)标准形式min f4x 16x 20s 10s 23x 1 x 2s 1 6 x 12x 2s 210 7x 1 6x 24x 1, x 2 , s 1, s 2 ≥ 0(3)标准形式minfx 12x 22x 20s 1 0s23x 1 5x 25x 2s1702x 15x 25x250 3x 12x 22x 2s 230x 1, x 2, x 2, s 1, s 2 ≥ 04.解:.标准形式max z 10x1 5x2 0s1 0s2 3x1 4x2s1 95x1 2x2 s2 8x1, x2 , s1, s2 ≥0.≤松弛变量(0,0)最优解为 x 1 =1,x 2=3/2。

5.解:标准形式min f11x 18x 20s 10s 20s 310x 1 2x 2 s 1 20 3x 1 3x 2 s 2 18 4x 19x 2s 336x 1, x 2 , s 1, s 2 , s 3 ≥ 0剩余变量(0, 0, 13) 最优解为 x 1=1,x 2=5。

6.解:(1)最优解为 x 1=3,x 2=7。

《管理运筹学》第四版课后习题解析[下]

《管理运筹学》第四版课后习题解析[下]
与 相邻的弧有 , , , = = 。
给 标号 ,同理 标号 。得到最短路线为 ,最短时间为1.35小时。
4.解:
以 为起始点, 标号为 ;

边集为 =
且有
所以, 标号(4,1)。
则 ,
边集为
且有
所以, 标号(5,1)。
则 ,
边集为
且有
所以, 标号(7,2)。
则 ,
边集为
且有
所以, 、 标号(8,2)。
则 ,
边集为
且有
所以, 标号(9,4)。
则 ,
边集为
且有
所以, 标号(11.5,6)。
则 ,
边集为
且有
所以, 标号(12,7)。
, 为空集。
所以,最短路径为
5.解:
(1)从 出发,令 ={ },其余点为 ,给 标号 。 的所有边为 ,
累计距离最小为 ,给 标号为 ,令 。
(2) 的所有边为 ,累计距离最小为 ,令 。
(2)
图解法求解如图9-1所示,目标1,2可以达到,目标3达不到,所以有满意解为A点(150,120)。
6、解:
假设甲乙两种产品量为x1,x2,建立数学规划模型如下。
用管理运筹学软件求解得:
所以,甲乙两种产品量分别为8.333吨,3.333吨,该计划内的总利润为250元。
7、解:
设该汽车装配厂为达到目标要求生产产品A 件,生产产品B 件。
图解法略,求解得 。
(2)目标规划模型如下。
图解法略,求解得 。
由此可见,所得结果与(1)中的解是不相同的。
(3)加权目标规划模型如下,
求解得 。
9、解:
假设甲乙两种洗衣机的装配量分别是x1,x2,建立数学规划模型如下。

《管理运筹学》第四版课后习题解析[下]

《管理运筹学》第四版课后习题解析[下]
4
0
900
最大利润为13500。
17.解:
最优策略为(1,2,3)或者(2,1,3),即该厂应订购6套设备,可分别分给三个厂1,2,3套或者2,1,3套。每年利润最大为18万元。
第11章 图与网络模型
1、解:
破圈法的主要思想就是在图中找圈,同时去除圈中权值最大的边。因此有以下结果:
圈 去除边 ;圈 去除边 ;圈 去除边 ;圈 去除边 ;得到图(a1)。
圈 去除边 ;圈 去除边 ;圈 去除边 ;得到图(a2)。
圈 去除边 ;圈 去除边 ;得到图(a3)。
圈 去除边 ;得到图(a4)。即为最小生成树,权值之和为23。
同样按照上题的步骤得出最小生成树如图(b)所示,权值之和为18。
2.解:
这是一个最短路问题,要求我们求出从 到 配送的最短距离。用Dijkstra算法求解可得到该问题的解为27。我们也可以用管理运筹学软件进行计算而得出最终结果,计算而得出最终结果如下。
从节点1到节点6的最大流
*************************
起点 终点 流量 费用
----------------
1 2 1 3
1 3 4 1
2 4 2 43 2 1 13 5源自3 343024502
4624
5 6 3 2
此问题的最大流为5。
此问题的最小费用为39。
第12章 排序与统筹方法
由管理运筹学软件求解得
3、解:
设x1,x2分别表示购买两种基金的数量,按要求建立如下的目标规划模型。
用管理运筹学软件求解得,
所以,该人可以投资A基金113.636份,投资B基金159.091份。
4、解:
设食品厂商在电视上发布广告 次,在报纸上发布广告 次,在广播中发布广告 次。目标规划模型为

第四版运筹学部分课后习题解答

第四版运筹学部分课后习题解答

第四版运筹学部分课后习题解答篇一:运筹学基础及应用第四版胡运权主编课后练习答案运筹学基础及应用习题解答习题一P461.1(a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。

(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

1.2(a)约束方程组的系数矩阵?1236300A??81?4020??30000?1最优解x??0,10,0,7,0,0?T。

(b) 约束方程组的系数矩阵?1234?A2212?????211?最优解x??,0,,0?。

5??5T1.3(a)(1) 图解法最优解即为??3x1?4x2?935?3?的解x??1,?,最大值z?5x?2x?822??2?1(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?10x1?5x2?0x3?0x4?3x?4x2?x3?9s.t. ?1?5x1?2x2?x4?8则P3,P4组成一个基。

令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表?1??2。

??min?,89??53?8 5?2?0,??min??218?3,??142?2?335?1,?2?0,表明已找到问题最优解x1?1, x2?,x3?0 ,x4?0。

最大值z*?22(b)(1) 图解法6x1?2x2x1?x2?最优解即为??6x1?2x2?2417?73?的解x??,?,最大值z?2?22??x1?x2?5(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?2x1?x2?0x3?0x4?0x5?5x2?x3?15?s.t. ?6x1?2x2?x4?24?x?x?x?5?125则P3,P4,P5组成一个基。

令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表?1??2。

??min??,??245?,??461?3?3?15,24,??2?2?5?2?0,??min?新的单纯形表为篇二:运筹学习题及答案运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

清华大学胡运权运筹学

清华大学胡运权运筹学

cx°-cx* >0;
V是maxZ = C*X的S优解, 故 /
C*X*-C'X°>0;
Jr
(C*-C)(X*-X°)
= C(X°-X*) + C*(X*-X°)>0
page 25 7 April 2015
25
School of Management
第一章习题解答
1.11考虑线性规划问题

minZ =叫 +2JC2 + — 4X4

行域的每个顶点依次使目标函数达到最优。 鲤. 锒剎曷錄里姉取妾加下.
c广
cd
0
0
基b Xi x2
x3
d
x2 3/ 0 1
5/14
2
X4 j
-3/4
c
page 14
7 April 2 ns
Xi 1 1 0
Qi—'0
0
-2/14 ^W35
-
3/14d- i
第一章习题解答
□ □
当c/d在3/10到5/2之间时最优解为图中 的A 点;当c/d大于5/2且c大于等于0时最优解 为图中 的B点;当c/d小于3/10且d大于0时最优 解为图中
Bi. ■
规划问题的 maxZ = C1 X (AX =b

最优解, 证明[在x >0这两点连线

上的所有点也是 对于任何0 < a < 1, 两点连线」:的点¥满足:
X =aX⑴+(l-a)JT2)也是可行解, 且
CTX = CTaXG) +Cf\l-a)X(2y
=CTaXay -aCrX(2} +CrX
School of Management

运筹学清华大学第四版答案

运筹学清华大学第四版答案

运筹学清华大学第四版答案【篇一:运筹学作业2(清华版第二章部分习题)答案】s=txt>2.1 题(p. 77)写出下列线性规划问题的对偶问题:????(1)?????maxz?2x1?2x2?4x3s.t.x1?3x2?4x3?22x1?x2?3x3?3x1?4x2? 3x3?5x1?0,x2?0,x3无约束;解:根据原—对偶关系表,可得原问题的对偶规划问题为:?maxw?2y1?3y2?5y3?s.t.y1?2y2?y3?2??3y1?y2?4y3?2 ? ?4y1?3y2?3y3?4?y1?0,y2?0,y3?0??mn?minz???cijxij?i?1j?1?n???cijxij?ai,i?1,?,m(2)? j?1?n??cijxij?bj,j?1,?,n?j?1???xij?0,i?1,?,m;j?1,?,n解:根据原—对偶关系表,可得原问题的对偶规划问题为:mn??maxw??aiui??bjvji?1j?1??ui?vj?cij ??i?1,?,m;j?1,?,n???ui无约束,vj无约束2.2判断下列说法是否正确,为什么?(1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解;答:错。

因为:若线性规划的原问题存在可行解,且其对偶问题有可行解,则原问题和可行问题都将有最优解。

但,现实中肯定有一些问题是无最优解的,故本题说法不对。

maxz?3x1?x2例如原问题s.t.?x1?x2?1?x2?3??x?0,x?02?1有可行解,但其对偶问题minw?y1?3y2s.t.?3?y1?y2?1?y1??y?0,y?02?1无可行解。

(2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解;答:错,如(1)中的例子。

(3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或求极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值。

答:错。

正确说法是:在互为对偶的一对原问题与对偶问题中,求极大的问题可行解的目标函数值一定不超过求极小的问题可行解的目标函数值。

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及应用第四版胡运权主编课后练习答案一、线性规划1. 求解下列线性规划问题:max z = 3x1 + 2x2s.t.2x1 + x2 ≤ 8x1 + 2x2 ≤ 6x1, x2 ≥ 0答案:首先将约束条件化为标准形式,得到:max z = 3x1 + 2x2 + 0s1 + 0s2s.t.2x1 + x2 + s1 = 8x1 + 2x2 + s2 = 6x1, x2, s1, s2 ≥ 0通过单纯形法求解,得到最优解为:x1 = 2, x2 = 2,最优值为8。

2. 求解下列线性规划问题的对偶问题:min z = 2x1 + 3x2s.t.x1 + 2x2 ≥ 42x1 + x2 ≥ 6x1, x2 ≥ 0答案:原问题的对偶问题为:max z' = 4y1 + 6y2s.t.y1 + 2y2 ≤ 22y1 + y2 ≤ 3y1, y2 ≥ 0通过单纯形法求解,得到最优解为:y1 = 1, y2 = 1,最优值为10。

二、非线性规划1. 求解下列非线性规划问题:min f(x) = x^2 + 2x + 3s.t.x ∈ [0, 4]答案:首先求导数,得到f'(x) = 2x + 2。

令导数等于0,得到x = -1。

由于x ∈ [0, 4],所以只需考虑x = 0和x = 4。

计算f(0) = 3,f(4) = 31。

因此,最小值为3,对应的x = 0。

2. 求解下列非线性规划问题:max f(x) = x^3 - 3x^2 + 4s.t.x ∈ [0, 3]答案:首先求导数,得到f'(x) = 3x^2 - 6x。

令导数等于0,得到x = 0或x = 2。

计算f(0) = 4,f(2) = 2,f(3) = 2。

因此,最大值为4,对应的x = 0。

三、整数规划1. 求解下列整数规划问题:max z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 8x1, x2 ∈ Z答案:通过分支定界法求解,得到最优解为:x1 = 2, x2 = 3,最优值为10。

《管理运筹学》第四版课后习题解析[下]

《管理运筹学》第四版课后习题解析[下]
4
0
900
最大利润为13500。
17.解:
最优策略为(1,2,3)或者(2,1,3),即该厂应订购6套设备,可分别分给三个厂1,2,3套或者2,1,3套。每年利润最大为18万元。
第11章 图与网络模型
1、解:
破圈法的主要思想就是在图中找圈,同时去除圈中权值最大的边。因此有以下结果:
圈 去除边 ;圈 去除边 ;圈 去除边 ;圈 去除边 ;得到图(a1)。0 Nhomakorabea0
9.解:
前两年生产乙,后三年生产甲,最大获利2372000元。
10.解:
最优解(0,200,300,100)或(200,100,200,100)或者(100,100,300,100)或(200,200,0,200)。总利润最大增长额为134万。
11.解:
在一区建3个分店,在二区建2个分店,不在三区建立分店。最大总利润为32。
得 ,将其作为约束条件求解下述问题。
得最优值 ,将其作为约束条件计算下述问题。
得最优值 ,将其作为约束条件计算下述问题。

所以,食品厂商为了依次达到4个活动目标,需在电视上发布广告9.474次,报纸上发布广告20次,广播中发布广告2.105次。(使用管理运筹学软件可一次求解上述问题)
5、解:
(1)设该化工厂生产 升粘合剂A和 升粘合剂B。则根据工厂要求,建立以下目标规划模型。
图解法略,求解得 。
(2)目标规划模型如下。
图解法略,求解得 。
由此可见,所得结果与(1)中的解是不相同的。
(3)加权目标规划模型如下,
求解得 。
9、解:
假设甲乙两种洗衣机的装配量分别是x1,x2,建立数学规划模型如下。
用管理运筹学软件解得:

运筹学清华第4版答案解析

运筹学清华第4版答案解析

运筹学清华第4版答案解析1. 引言本文是针对《运筹学清华第4版》这本教材的答案解析。

运筹学是一门研究在资源有限的情况下如何做出最优决策的学科。

该教材由清华大学出版社出版,是运筹学领域的经典教材之一。

通过对每章习题的解析,读者可以更好地掌握运筹学的基本知识和解题方法。

2. 第1章线性规划问题2.1 习题解析2.1.1 习题1题目描述:某公司生产两种产品A和B,每单位A产品的利润为30元,每单位B产品的利润为50元。

公司每天可支配的生产时间为8小时,A产品每单位需要2小时的生产时间,B产品每单位需要4小时的生产时间。

问应该生产多少单位的A和B产品,才能使利润最大化?解析:这是一个经典的线性规划问题。

我们可以用数学模型描述如下:目标函数:最大化利润,即 max Z = 30A + 50B约束条件:2A + 4B <= 8变量范围:A >= 0, B >= 0根据上述模型,我们可以使用线性规划求解器来求解最优解。

最终的答案是A=2, B=1,此时利润最大。

2.2 课后练习解析2.2.1 习题2题目描述:某公司生产三种产品A、B和C,每单位A产品的利润为10元,每单位B产品的利润为20元,每单位C产品的利润为30元。

公司每天可支配的生产时间为10小时。

A产品每单位需要1小时的生产时间,B产品每单位需要2小时的生产时间,C产品每单位需要3小时的生产时间。

问应该生产多少单位的A、B和C产品,才能使利润最大化?解析:同样是一个线性规划问题。

我们可以建立以下数学模型:目标函数:最大化利润,即 max Z = 10A + 20B + 30C约束条件:A + 2B + 3C <= 10变量范围:A >= 0, B >= 0, C >= 0通过求解上述模型,我们可以得到最优解为A=4, B=3, C=0,此时利润最大。

3. 第2章整数规划问题3.1 习题解析3.1.1 习题1题目描述:某公司有5个项目需要投资,每个项目的投资额为500万元。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案
(2)标 准形式
min f 4 x1 6x2 0s1 0s2
3x1 x2 s1 6 x1 2 x2 s2 10 7 x1 6 x2 4 x1, x2 , s1, s2 ≥ 0
(3)标 准形式
min f x1 2 x2 2 x2 0s1 0s2
3x1 5x2 5x2 s1 70 2 x1 5 x2 5x2 50 3x1 2 x2 2x2 s2 30 x1, x2 , x2 , s1 , s2 ≥ 0
推 导 出 x1 18000 ,x2 3000 ,故基金 A 投 资 90 万元,基金 B 投 资 30 万元。
第 3 章 线性规划问题的计算机求 解
1.解: ⑴甲、乙两种柜的日 产量是分 别是 4 和 8,这时 最大利 润 是 2720 ⑵每多生 产一件乙柜,可以使 总利润 提高 13.333 元 ⑶常数 项 的上下限是指常数 项在指定的范 围内 变化时,与其对应 的约 束条件的 对 偶价格不 变。比如油漆时间变为 100,因为 100 在 40 和 160 之间,所以其对偶价格 不 变仍为 13.333 ⑷不 变,因为还 在 120 和 480 之间。
《管理运筹学》第四版课后习题解析(上 )
第 2 章 线性规划的图解法
1.解: (1)可行域为 OABC。
(2)等值线为图 中虚 线 部分。
(3)由图 2- 1 可知,最优解为 B 点,最优解 x = 12 ,x ;最优目标 函数 值 69 。
15
7
1
7
2
7
图 2-1
2.解:
(1)如图 2- 2 所示,由图 解法可知有唯一解
(8)总 利润增加了 100×50=5 000,最优产 品组 合不 变。 (9)不能,因为对 偶价格 发生变 化。

(NEW)运筹学教材编写组《运筹学》(第4版)笔记和课后习题(含考研真题)详解

(NEW)运筹学教材编写组《运筹学》(第4版)笔记和课后习题(含考研真题)详解

线性规划问题的共同特征:
(1)每一个问题都用一组决策变量
表示某一方案,这组
决策变量的某一确定值就代表一个具体方案。一般这些变量的取值是非
负且连续的。
(2)存在有关的数据,如资源拥有量、消耗资源定额、创造新价值 量等,同决策变量构成互不矛盾的约束条件,这些约束条件可以用一组 线性等式或线性不等式来表示。
1.2 课后习题详解
本章无课后习题。
1.3 考研真题详解
本章只是对本课程的一个简单介绍,不是考试重点,所以基本上没 有学校的考研试题涉及到本章内容,因此,读者可以简单了解,不必作 为复习重点,本部分也就没有可选用的考研真题。Leabharlann 第2章 线性规划与目标规划
2.1 复习笔记
1.线性规划模型的概念及其一般形式
目 录
第1章 运筹学概论 1.1 复习笔记 1.2 课后习题详解 1.3 考研真题详解
第2章 线性规划与目标规划 2.1 复习笔记 2.2 课后习题详解 2.3 考研真题详解
第3章 对偶理论与灵敏度分析 3.1 复习笔记 3.2 课后习题详解 3.3 考研真题详解
第4章 运输问题 4.1 复习笔记 4.2 课后习题详解
2.线性规划问题的标准型及标准化 (1)线性规划的标准型

(2-4) (2-5) 线性规划的标准型要求:目标函数是Max型;约束条件是等式约 束;决策变量非负。 (2)线性规划的标准化方法
① 若要求目标函数实现最小化,即
,则只需将目标函数最
小化变换为求目标函数最大化,即令 ,于是得到
第13章 排队论
13.1 复习笔记 13.2 课后习题详解 13.3 考研真题详解 第14章 存储论 14.1 复习笔记 14.2 课后习题详解 14.3 考研真题详解 第15章 对策论基础 15.1 复习笔记 15.2 课后习题详解 15.3 考研真题详解 第16章 单目标决策 16.1 复习笔记 16.2 课后习题详解 16.3 考研真题详解 第17章 多目标决策 17.1 复习笔记

《管理运筹学》第四版课后习题答案解析

《管理运筹学》第四版课后习题答案解析

范文范例 指导参考学习资料整理《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1 •解:(1) 可行域为OABC (2) 等值线为图中虚线部分。

(3) 由图2-1可知,最优解为B 点,最优解Lx = 12_,最优目标函数值_69157x1727(1) 如图2-2所示,由图解法可知有唯一解x 2 = 0.62•解: (2) 无可行解。

(3) 无界解。

(4) 无可行解。

0.2,函数值为3.6范文范例指导参考(5)无穷多解3•解: (1)标准形式max f3x i2x 20S i0S 20S 39x i 2x 2 S i 303x i 2x 2 S 2 i32x i2x 2S 39x i , X 2 , S i , S 2 , S 3 > 0(2) 标准形式(3) 标准形式4•解: 标准形式max z10 x i5X 20S i0S 2x(6)有唯一解20|,函数值为3 924x 16x 20s 10 S 23x iX 2S i6 X i2X 2S2i0 7x i6x 24X i , X 2 ,S i , S 2》02x 2 0s i O S 23x i5X 2 5X 2S i 702x i5x 25x 2503x i 2x 22x 2S 2 30s 1, s 2 > 0min fmin fx i 2x 2 X i , X 2X 2范文范例指导参考3X i4X2S195x i2X2S2X i,X2 ,S1, S2> 0学习资料整理松弛变量(0, 0) 最优解为x i =1, x 2=3/2。

5•解: 标准形式min f 11x i 8x 2O s iO S 2O S 310x i 2X 2 S i 20 3x i 3X 2 S 2 18 4x 19x 2S 3 36X i ,S1 , S2 ,S 3 > 0剩余变量(0, 0, 13 ) 最优解为x i =1,X 2=5。

(完整版)运筹学基础及应用第四版胡运权主编课后练习答案【精】

(完整版)运筹学基础及应用第四版胡运权主编课后练习答案【精】

运筹学基础及应用习题解答习题一P461.1(a)x244x1 2 x243210123x14x1 6 x26该问题有无量多最优解,即满足 4 x16x26且0x21x1 ,x2,此时目标函数值的所有2z 3 。

(b)x232014x1用图解法找不到满足所有拘束条件的公共范围,因此该问题无可行解。

1.2(a)拘束方程组的系数矩阵1236300A814020300001基基解可否基可行解目标函数值x1x2x3x4x5x6p1p 2p30167000否3-6p1p 2p 40 100700是10p1p 2p503007是3 2p1p 2p 67400021否44p1p3p4005800否2p1p3p5003080是3 2p1p3p6101003否2p1p 4p50 00350是0p1p 4p 65002015否44最优解 x0,10,0,7,0,0T。

(b)拘束方程组的系数矩阵1 2 34A2 2 12基基解x1x2x3x4p1p241100 2p1p3201155p1p41001136p2p30120 2p2p 40102 2p3p 40011211T,0最优解 x,0,。

551.3(a)(1)图解法可否基可行解目标函数值否是435否是5否是5x 24 3 2 1 0123x 1最优解即为3x 1 4x 29的解 x1,3,最大值 z355x 1 2 x 2 822(2) 单纯形法第一在各拘束条件上增加废弛变量,将问题转变为标准形式 max z10x 1 5x 2 0 x 3 0x 43x 1 4x 2 x 39 s.t.5x 1 2x 2x 48则 P 3 , P 4 组成一个基。

令 x 1 x 2 0 得基可行解 x 0,0,9,8 ,由此列出初始单纯形表c j105 0 0c B 基 bx 1x 2x 3x 40 x 3 9 3410 x 4 8[ 5] 2 0 1 c jz j10512。

min 8 ,985 35c j105 0 0 c B 基bx 1x 2x 3x 4x 321 0143551510x 18 12 01 555c j z j0 1 0 20 ,21 8 32min ,214 2新的单纯形表为c j105 0 0 c B基b x 1x 2x 3x 45x 23 015 3 2141410x 1111 277c jz j5 2514141 ,2 0 ,表示已找到问题最优解 x 1 1, x 23 , x 3 0 , x4 0 。

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及丨、V:用习题解答习题一 P461.1(a)2 = 3。

(b)用亂解法找+到满足所打约柬条仲的公:it•范W,所以该问题无可行解。

1.2(a)约束方程组的系数矩阵最优解A.=(o,i a o,7,o,o)r(b)约束方程组的系数矩阵 f I 2 3 4、4 = l2 2 I 2,最优解1 = (^,0,11,0^ V55 )"1.3(a)(1)图解法⑵单纯形法首先在各约朿条件上添加松弛变铽,将问题转化为标准形式max z = 10a-, +5a'2 +0x3 +0a4[3a-. +4 义2 + A3 = 9 si.<[5a-j + 2X2 + a'4 = 8则A,P4组成个猫《=令 A = ;c2 = 0得-站可行解a_ = (0.0.9,8),山此列出初始单纯形表cr 2 >0, 0 - minj 2Ax2xi =~,a-3 =0, a 4最优解即为严+2X2=24的解x =卩,2V 最大值z : IA"i + X y =5I 2 2 /新的单纯形农为A', Xo X A14 14_5_ _25M ~T?q.qcO ,表明已找到问题垴优解.(b)(1)图解法17(2)单纯形法苘先在外约朿条件.h 添加松弛变M ,将问题转化为标准形式 max z = 2.v, + x 2 + Ox 3 + 0.v 4 + Oa 5 5a'2 + = 15 6.y, + 2x 2 + .v 4 = 240 00 --2 *^4o A :5、Q 0 一4(7,^2 <0,表明已找到问题最优解^ =1,X 2=- , A-32L估• 17Hi Z =——21.6(a)在约朿条件中添加松弛变量或剩余变量,且令k = jc 2 -a :; (a*2 > 0,.v ; > o)Xx = ~X->该问题转化为max z' = -3a, - x 2 + .v 2 - 2a 3 + 0.v 4 + (Xv 5 2x | + 3a -2 - 3a 2+ 4a 3 +a 4 =12攀 M I4a'| +x 2 -A*2 -2a*3 —^5 =8 3a*, -X 2 +X 2 — 3a*3 = 6A*,, A '2,X 2, x 3,A-4 , A 3 ^ 0-K 约朿系数矩陴为23 -34 I 0 4 丨-1-20-13 -丨丨一3 0 0在A 屮人为地添加两列单位向虽/>7,2 3 -3 4 1 0 0 0 4 丨-1 -2 t) -1 丨 0 3-1 I -3 0 0 0 1令 max z'= -3a -i - x 2 +x 2- 2.v 3 + Oa:., + 0.v 5 - Mx 6 - Mx 7 得初始单纯形表15最大a 4 = 0,x 5SS ^ Xi x 2x 4 x 5 x 6-2 0 0M -M4 10 -I 0 00 0 0-3 + 7M -J 1 -2-5M 0 -M 0 0-I-5(b)在约朿条件中添加松弛变M 或剩余变M ,.R 令a:3 (jc 3>0,.x ;>0)该问题转化为max z • = 一3^ - 5.v 2 + x ?- x ? + 0,v 4 + Ox 5 x, + 2X 2 + x^- x^-x 4 =6 2.v, + x 2- 3jc 3 - 3^:3 + a*5 = 16 x 2+ 5 a*3 一 5a*3= 10 •v p A :2,“x 4,A 5^0艽约柬系数矩阵为213-30-1 115-50 0v/ft A 屮人为地添加两列单位向觉p 7, 121-1-1010、2 13-30 100 115 -5 0 0 01、 /令 max z , = -3a*, 一 5,v 2 + .v 3 一 x 3 + 0x 4 + 0x s 一 Mx b - Mx 1衍初始单纯形表0 0 -M - M X. X, X,X, X, X, X, x n-A/ x 616-M x 7 10-3 + 2A/ 5 + 3M 1+6M -1-6M -M 0 0 0(a)解1:大\1法在上述线性规划问题中分别减去剩余变萤x 4,x 6,〜再加上人工变蛩15,17,',得max z = 2x t - x2 + 2x3 + 0,v4 - Mx s + 0,v6 - Mx7 + 0a8- Mx^-3 + 7M -J 1 -2-5M 0 -M 0 0A', + X 2 + A :3 - + JC 5 = 6 -2x l + jc 3 — a*6 + x 1 —2 2x z — j c 3 - a *8+ j c 9 =0a-,,.v 2,a*3,j:4,a:5,^6,x 7,x 8,a-9 >0,r,其中MS 个任意人的正数-据此可列出单纯形表22MMMjc, x 2x 4X5 X6 A-M x s 6 -M x 7一2 —Ma 、00 0 0[2]0 M 02-M 3A/-1 2 + A/ -M 1/2 -1/2 0 0-1/2 -1/2x s-M x,—Ix\ [1]1/2^ 5M 3 … ^… A/ I 1 3A/ 2-M0 ----- + — - M0 -M 0 ------------------ 一十 ---2 2 2 2 2 2-M jr 5 3 2 .v 3 2 -I x 2 I 3/2 -3/2 1/2 -1/2 -11-1/2 1/2 -1/2 1/20 0 0 1 1 03/40 0?>M +3 -5M -3 M-3M4Af+5 0 ■M22 2x, 3/4 A 3 7/2 7/40 00 1 0| 43/8 - 8 8-5/4 -M8山单纯形表计算结果可以ft 出,ct 4 >0且%<0(/ =丨,2,3),所以该线性规划问题有无界解 解2:两阶段法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学部分课后习题解答P47 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min3z=23032⨯+⨯= P47 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩<解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105、B CB X b 1x 2x3x4x0 3x \9 3 4 1 0 04x8[5] 2 .0 1 j j C Z -105 00 0 3x 21/5 .0 [14/5] 1 -3/5 101x8/512/5 0 (1/5 j j C Z -1 0 -25 2x 3/2 0 ;1 5/14 -3/14 101x11 0-1/7 2/7 (j j C Z --5/14-25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

|解:(1)该线性规划问题的对偶问题为:1234124123434131234min8669223411,,,0w y y y y y y y y y y y y y y y y y y y =+++++≥⎧⎪+++≥⎪⎪+≥⎨⎪+≥⎪≥⎪⎩(2)由原问题最优解为)0,4,2,2(*=X ,根据互补松弛性得:12412343422341y y y y y y y y y ++=⎧⎪+++=⎨⎪+=⎩把)0,4,2,2(*=X 代入原线性规划问题的约束中得第四个约束取严格不等号,即4224890y ++=<⇒=从而有12123322341y y y y y y +=⎧⎪++=⎨⎪=⎩得123443,,1,055y y y y ====所以对偶问题的最优解为*43(,,1,0)55T y =,最优值为min 16w =.P79 考虑如下线性规划问题:123123123123123min 6040803224342223,,0z x x x x x x x x x x x x x x x =++++≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩(1)写出其对偶问题;(2)用对偶单纯形法求解原问题; 解:(1)该线性规划问题的对偶问题为:123123123123123max 2433426022403280,,0w y y y y y y y y y y y y y y y =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩(2)在原问题加入三个松弛变量456,,x x x 把该线性规划问题化为标准型:123123412351236max 60408032243422230,1,,6j z x x x x x x x x x x x x x x x x j =------+=-⎧⎪---+=-⎪⎨---+=-⎪⎪≥=⎩*max(,,0),604080063633T x z ==⨯+⨯+⨯=P81 某厂生产A 、B 、C 三种产品,其所需劳动力、材料等有关数据见下表。

要求:(a )确定获利最大的产品生产计划;(b )产品A 的利润在什么范围内变动时,上述最优计划不变;(c )如果设计一种新产品D ,单件劳动力消耗为8单位,材料消耗为2单位,每件可获利3元,问该种产品是否值得生产 (d ) 如果劳动力数量不增,材料不足时可从市场购买,每单位 元。

问该厂要不要购进原材料扩大生产,以购多少为宜。

解:由已知可得,设j x 表示第j 种产品,从而模型为:123123123123max 3463545..34530,,0z x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎨⎪≥⎩a) 用单纯形法求解上述模型为:!得到最优解为*(5,0,3)T x =;最优值为max 354327z =⨯+⨯=b )设产品A 的利润为3λ+,则上述模型中目标函数1x 的系数用3λ+替代并求解得:要最优计划不变,要求有如下的不等式方程组成立20310533053λλλ⎧-+≤⎪⎪⎪--≤⎨⎪⎪-+≤⎪⎩解得:3955λ-≤≤从而产品A 的利润变化范围为:393,355⎡⎤-+⎢⎥⎣⎦,即242,455⎡⎤⎢⎥⎣⎦C )设产品D 用6x 表示,从已知可得16661/5B c c B P σ-=-=?'1661128334122555P B P -⎡⎤-⎡⎤⎢⎥⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦把6x 加入上述模型中求解得:j jCZ --2 0 ·-1/5 -3/5 1/5 3 6x 5/2 1/2 -1/6 0 1/6&-1/6 1 43x52/513/151-1/15 4/15|0 j j C Z --1/10 -59/30 0 -7/30-17/30从而得最优解*(0,0,5,0,0,5/2)T x =;最优值为max 545327.5272z =⨯+⨯=> 所以产品D 值得生产。

)P101 已知运输问题的产销量与单位运价如下表所示,用表上作业法求各题的最优解及最小运费。

《表3-35B 1 B 2 B 3 B 4 产量 A 1/A 2 A 3 10 12 2 2 7 14 20 9 、 16 11 20 18 15 25 5 销量515< 1510解:因为∑∑===4131j j i i b a ,即产销平衡.所以由已知和最小元素法可得初始方案为B1 B2 B3 【B4 产量 A1A2 A35 15 0…15 0 1015 25 5 】销量515 1510检验:产地 销地 产地 销地B1B2B3B4产量A1A2A3.51501510¥15255销量5151510—检验:由于还有检验数小于零,所以需调整,调整二:(B1B2B3B4产量A1A2A3~55101510—15255销量5151510检验:【—销地产地销地从上表可以看出所有的检验数都大于零,即为最优方案 最小运费为:min 25257109151110180335z =⨯+⨯+⨯+⨯+⨯+⨯=表3-36 B 1 B 2 !B 3 B 4 产量 A 1 A 2 A 3 8 6 5 4 { 9 3 1 4 4 2 7 3 7 25 * 26 销量10102015解:因为34115855i j i j a b ===>=∑∑,即产大于销,所以需添加一个假想的销地,销量为3,构成产销平衡问题,其对应各销地的单位运费都为0。

B1B2B3B4B5 产量 A1 A2 A3 <8 6 54 9 31 4 42 | 7 30 0 0 7 25 26 销量 10*1020 153由上表和最小元素法可得初始方案为 @B1B2 B3 B4 B5产量 A1 A2 A3 | 9 110 7 1315》37 25 26产地 销地 产地& 产地 销地销量10 10 20 15|3检验:从上表可以看出所有的检验数都大于零,即为最优方案最小运费为:min 69513101741331503193z =⨯+⨯+⨯+⨯+⨯+⨯+⨯=表3-37B1 B2 B3 B4 B5 产量 A1A2 ) A38 5 6 6 M 3 3 8 9 ,7 4 6 5 7 8 20 30 30 销量、2525201020解:因为351180100i j i j a b ===<=∑∑,即销大于产,所以需添加一个假想的产地,产量为20,构成产销平衡问题,其对应各销地的单位运费都为0。

)B1B2 B3 B4 B5 产量 A1 A2 A3 A4 — 8 5 6 0 6 M 3 0 3 8 | 9 0 7 4 6 0 57 8 0 > 20303020销量 2525 20 10 20 。

由上表和最小元素法可得初始方案为…销地产地 销地B1B2B3B4B5#产量A1A2A3A4520$252010:15520303020销量2525"201020检验::B1B2B3B4B5产量A1A2A3A4(2052520;1051520|303020销量2525201020{检验:产地销地产地销地B1B2B3B4¥B5产量A1A2A3A4205《252010$ 02020303020销量:2525201020从上表可以看出所有的检验数都大于零,即为最优方案最小运费为:min320520410653258002000305 z=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=?P127 用割平面法求解整数规划问题。

产地销地a ) 12121212max 7936735,0,z x x x x x x x x =+-+≤⎧⎪+≤⎨⎪≥⎩且为整数解:该问题的松弛问题为:12121212max 7936735,0z x x x x x x x x =+-+≤⎧⎪+≤⎨⎪≥⎩`割平面1为:234(31/2)(07/22)(01/22)x x x +=++++3421713022222x x x ⇒--=-≤34571122222x x x ⇒+-=割平面2为:145(44/7)(01/7)(16/7)x x x +=+++-+;451541640777x x x x ⇒--=--≤456164777x x x ⇒+-=由上表可知该问题已经达到整数解了,所以该整数解就是原问题的最优解,即()*4,3Tx =,最优值为max 749355z =⨯+⨯=P144 用图解分析法求目标规划模型c )解:由下图可知,满足min d 1-的满意解为区域X2CDX1;满足min d 2+的满意解为闭区域BCDEB ; 满足min 2d 3-的满意解为图中的A 点,满足min d 4-的满意解为图中的A 点,所以该问题的满意解为图中的点A (24,26) 。

相关文档
最新文档