几何概型经典练习题
几何概型练习
一.与长度有关的几何概型例1 如图,A,B两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A与C,B与D之间的距离都不小于10米的概率是多少?练习1:点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为__________二.与面积有关的几何概型例2 如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?三.求会面问题中的概率例3 两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.练习3:甲、乙两人约定在6点到7点之间在某处会面,并约定先到者应等候另一人15分钟,过时即可离去。
求两人能会面的概率。
几何概型例1、取一根长为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m 的概率是多少?例2、等腰Rt △ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率。
例3、将长为1的棒任意折成三段,求:三段的长度都不超过a (1132a ≤≤)的概率。
1、在区间[-1,1]上随机取一个数x ,cos 2xπ的值介于0到12之间的概率是( ) A 、13 B 、2πC 、12D 、23 2、四边形ABCD 为长方形,AB=2,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 点的距离大于1的概率为( )A 、4πB 、14π-C 、8π D 、18π- 4、在平面直角坐标系xOy 中,若D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是_____________5、设有关于x 的一元二次方程 2220x ax b ++=.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率。
高中几何概型试题及答案
高中几何概型试题及答案一、选择题1. 几何概型的概率公式是()。
A. P(A) = 长度(或面积、体积)之比B. P(A) = 面积(或长度、体积)之比C. P(A) = 体积(或长度、面积)之比D. P(A) = 长度(或面积、体积)之比答案:A2. 一个圆的半径为1,随机地在圆内取一点,该点到圆心的距离小于1的概率是()。
A. 0B. 1/2C. 1/4D. 1答案:C3. 一个长方体的长、宽、高分别为3、2、1,随机地在长方体内取一点,该点到长方体的任意一面的距离都小于1的概率是()。
A. 1/2B. 1/3C. 1/6D. 1/9答案:D二、填空题4. 一个圆的半径为2,随机地在圆内取一点,该点到圆心的距离小于1的概率是_________。
答案:1/45. 一个正方体的棱长为4,随机地在正方体内取一点,该点到正方体的任意一面的距离都小于1的概率是_________。
答案:3/8三、解答题6. 一个圆的半径为3,随机地在圆内取一点,求该点到圆心的距离小于2的概率。
解答:首先,我们需要计算圆的面积和半径为2的圆的面积。
圆的面积公式为A = πr²,其中r为半径。
大圆的面积:A1 = π × 3² = 9π小圆的面积:A2 = π × 2² = 4π该点到圆心的距离小于2的概率等于小圆面积与大圆面积之比,即:P(A) = A2 / A1 = 4π / 9π = 4/9答案:4/97. 一个正方体的棱长为5,随机地在正方体内取一点,求该点到正方体的任意一面的距离都小于1的概率。
解答:首先,我们需要计算正方体的体积和棱长为4的正方体的体积。
正方体的体积公式为V = a³,其中a为棱长。
大正方体的体积:V1 = 5³ = 125小正方体的体积:V2 = 4³ = 64该点到正方体的任意一面的距离都小于1的概率等于小正方体体积与大正方体体积之比,即:P(A) = V2 / V1 = 64 / 125答案:64/1258. 一个长方体的长、宽、高分别为6、4、2,随机地在长方体内取一点,求该点到长方体的任意一面的距离都小于1的概率。
几何概型的经典例题
几何概型的经典例题
一、例题
在区间[ - 1,2]上随机取一个数x,则| x|≤slant1的概率为多少?
二、解析
1. 首先确定全部结果构成的区域长度
- 区间[ - 1,2]的长度为2-( - 1)=3。
2. 然后确定满足条件| x|≤slant1,即-1≤slant x≤slant1的区域长度
- 区间[ - 1,1]的长度为1-( - 1)=2。
3. 最后根据几何概型的概率公式P(A)=(构成事件A的区域长度(面积或体积))/(试验的全部结果所构成的区域长度(面积或体积))
- 这里是在数轴上的区间问题,属于长度型几何概型,所以P = (2)/(3)。
三、例题
已知正方形ABCD的边长为2,在正方形ABCD内随机取一点P,求点P到正方形各顶点的距离都大于1的概率。
四、解析
1. 首先确定全部结果构成的区域面积
- 正方形ABCD的边长为2,则其面积S = 2×2 = 4。
2. 然后确定满足条件的区域面积
- 点P到正方形各顶点的距离都大于1,那么点P在以正方形各顶点为圆心,1为半径的四个四分之一圆的外部(这些圆在正方形内部的部分)。
- 四个四分之一圆的面积之和相当于一个半径为1的圆的面积,即
S_1=π×1^2=π。
- 满足条件的区域面积S_2=4 - π。
3. 最后根据几何概型的概率公式
- 这里是平面区域问题,属于面积型几何概型,所以P=frac{S_2}{S}=(4 - π)/(4)。
几何概型例题及解析
几何概型例题及解析题目:在边长为2的正方形内随机取一个点,则该点到正方形四个顶点的距离都大于1的概率是( )。
A. 1/2B. 1/4C. 3/4D. 1/16解析:在边长为2的正方形内,到四个顶点距离都大于1的区域是一个边长为1的正方形。
因此,所求概率为小正方形的面积与大正方形面积之比,即1/4。
题目:在半径为2的圆内随机取一条弦,则弦长小于等于2√3的概率为( )。
A. 1/4B. 1/2C. 3/4D. √3/2解析:在半径为2的圆内,弦长小于等于2√3的弦对应的圆心角为120°。
因此,所求概率为120°/360° = 1/3,但选项中并没有这个值,可能题目有误或选项不完整。
题目:在区间[0, 2]上随机取两个数x和y,则满足x^2 + y^2 ≤ 2的概率是( )。
A. π/4B. π/2C. 1 - π/4D. 1 - π/2解析:在区间[0, 2]上随机取两个数x和y,对应的平面区域是一个边长为2的正方形。
满足x^2 + y^2 ≤ 2的区域是一个半径为√2的圆在正方形内的部分。
所求概率为圆的面积与正方形面积之比,即π*(√2)^2 / (2*2) = π/2。
题目:在边长为1的正方形内随机取一个点,则该点到正方形中心的距离小于1/2的概率为( )。
A. 1/4B. 1/2C. 3/4D. √2/2解析:在边长为1的正方形内,到中心距离小于1/2的区域是一个边长为1/2的正方形。
因此,所求概率为小正方形的面积与大正方形面积之比,即(1/2)^2 = 1/4。
题目:在三维坐标系中,随机取一个点P(x, y, z),其中x, y, z ∈ [0, 1],则点P到原点O的距离小于等于√2/2的概率为( )。
A. π/6B. π/4C. π/3D. π/2解析:在三维坐标系中,到原点距离小于等于√2/2的点构成一个半径为√2/2的球在[0, 1]^3内的部分。
所求概率为球的体积与[0, 1]^3的体积之比,即(π*(√2/2)^3) / 1^3 = π/6。
几何概型练习苏教版必修3精选
第6课时7 几何概型(1)分层训练1、在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是()A.0.5 B.0.4 C.0.004 D.不能确定2、在长为10cm的线段AB上任取一点M,并以线段AM为边作正方形,则正方形的面积介于236cm与281cm之间的概率是( )A.0.3 B.0.6 C.0.7 D.0.93、水面直径为的金鱼缸的水面上飘着一块面积为20.02米的浮萍,则向缸里随机洒鱼食时,鱼食掉在浮萍上的概率约为 ( )A. 0.1019B.0.2038C.0.4076D.0.02554、以假设△ABC为圆的内接三角形,AC=BC,AB 为圆的直径,向该圆内随机投一点,则该点落在△ABC内的概率是 ( )A. 1πB.2πC.4πD.12π5、设标靶的半径为10cm,则中弹点与靶心的位置小于5cm的概率为.拓展延伸6、一海豚在水池中自由游弋,水池为长30m,宽20m m的概率.7、如果在一个5万平方公里的海域里有表面积达40平方公里的大陆架贮藏着石油,假如在这海领域里随意选定一点钻探,问钻到石油的概率是多少?8、平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.本节学习疑点:几何概型(1)1、C(提示:由于取水样的随机性,所求事件MA :“在取出2ml 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004) 2、A 3、A 4、A 5、2251104P ππ⋅==⋅6、整个区域面积为30×20=600(2m ), 事件A 发生的区域面积为30×20-26×16=184(2m ), 所以18423()0.3160075P A ==≈. 7、如果在一个5万平方公里的海域里有表面积7、由于选点的随机性,可以认为该海域中各点被选中的可能性是一样的,因而所求概率自然认为等于贮油海域的面积与整个海域面积之比,即等于40/50000=0.0008.8、解:把“硬币不与任一条平行线相碰”的事件记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如图所示,这样线段OM 长度(记作OM )的取值范围就是[o,a],只有当r <OM ≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=的长度的长度],0[],(a a r =ara -。
《3.3 几何概型》(同步训练)高中数学必修3_人教A版_2024-2025学年
《3.3 几何概型》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、在掷一枚公平的六面骰子的实验中,事件A为“掷出的点数为偶数”,事件B 为“掷出的点数大于3”。
那么事件A与事件B的关系是:A、互斥事件B、对立事件C、相互独立事件D、互不相交事件2、在掷一枚均匀的骰子两次的实验中,事件A:“至少掷出一个6点”与事件B:“两次掷出的点数相同”的概率分别为P(A)和P(B),则下列结论正确的是()A、P(A) > P(B)B、P(A) < P(B)C、P(A) = P(B)D、无法确定P(A)与P(B)的大小关系3、在区间[0,4]上随机取一个实数,则该数大于1的概率是())A.(14)B.(34)C.(12)D.(134、从装有5个红球、4个蓝球和3个黄球的袋子里,随机取出2个球,取出的两个球颜色相同的概率是:A. 5/21B. 8/21C. 12/21D. 15/215、在一个圆盘上随机投针,圆盘的半径为10cm,针的长度为6cm,恰好针完全落在圆盘内的概率是多少?A. 0.3B. 0.4C. 0.5D. 0.66、在下列四个事件中,属于古典概型的是()A、抛掷一枚硬币,它落地时是正面的概率B、从一副52张的扑克牌中,随机抽取一张,抽取到红桃的概率C、从0,1,2,3,4中任取两个不同的自然数,所取得的两个数的和为偶数的概率D、从10000个零件中随机抽取一个,它是合格品的概率7、在等边三角形ABC中,D为BC边上的中点,E为AD上的中点,F为CE的延长线与AB的交点,若AB=6,则AF与BF的比值是:A. 1:1B. 2:1C. 3:1D. 4:18、在一个正方形中,随机取一点,该点距离正方形中心的距离与正方形边长的比值是:A. 0.5B. 0.1C. 0.4D. 0.6二、多选题(本大题有3小题,每小题6分,共18分)1、在下列事件中,属于几何概型的是()A. 抛掷一枚均匀的硬币,出现正面的概率B. 从一副52张的扑克牌中随机抽取一张,抽到红桃的概率C. 从0到1之间随机取一个数,这个数小于0.5的概率D. 从5个不同的球中随机抽取3个,抽到3个特定颜色的概率2、设在长为2的线段上随机取两个点,将线段分为三段,若这三段可以构成三角形的概率为P,则P的值为:A、1/4B、1/2C、1/3D、1/63、在一个等边三角形ABC中,内角A的对边长度为8cm,现从顶点A向BC边引一高AD,并假设在BC边上有一点P使得AP与AD垂直。
几何概型、古典概型常考经典好题(史上最全面含答案)
几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。
高中几何概型试题及答案
高中几何概型试题及答案一、选择题1. 已知一个圆的半径为r,随机取圆内一点,该点落在半径为r/2的同心圆内的概率是多少?A. 1/4B. 1/2C. 1/8D. 1/16答案:A2. 从长度为1的线段上随机取两点,将线段分为三段,求这三段能构成三角形的概率。
A. 1/2B. 1/3C. 1/4D. 1/6答案:C3. 在一个边长为1的正方形内随机投掷一个半径为1/2的圆盘,求圆盘完全落在正方形内的概率。
A. 1/4B. 1/2C. 1/8D. 1/16答案:A二、填空题4. 一个圆的面积为π,随机取圆内一点,该点落在半径为1的同心圆内的概率是______。
答案:1/45. 从长度为3的线段上随机取两点,将线段分为三段,这三段能构成三角形的概率是______。
答案:1/26. 在一个边长为2的正方形内随机投掷一个半径为1的圆盘,圆盘完全落在正方形内的概率是______。
答案:1/4三、解答题7. 一个圆的半径为2,随机取圆内一点,求该点到圆心的距离小于1的概率。
答案:设圆心为O,随机点为P,OP<1,则P点落在半径为1的同心圆内。
由于大圆面积为4π,小圆面积为π,所以概率为π/4π=1/4。
8. 从长度为4的线段上随机取两点,将线段分为三段,求这三段能构成三角形的概率。
答案:设线段为AB,随机取点C和D,使得AC+CD+DB=4。
要构成三角形,必须满足AC+CD>DB,AC+DB>CD,DB+CD>AC。
这等价于C和D位于线段AB的中点两侧,且不同时位于AB的中点。
因此,构成三角形的概率为1/2。
9. 在一个边长为3的正方形内随机投掷一个半径为1的圆盘,求圆盘完全落在正方形内的概率。
答案:设正方形为ABCD,圆心为O,圆盘完全落在正方形内,即O点到正方形任意一边的距离都小于1。
由于正方形的对角线长度为√(3²+3²)=3√2,半径为1的圆盘可以完全落在正方形内,因此概率为1。
几何概型
几何概型习题(含答案)一、单选题1.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π2.在区间[-2,2]上随机取一个数b,若使直线与圆有交点的概率为,则a =A.B.C.1D.23.在区间上随机取两个数x,y,记P为事件“”的概率,则A.B.C.D.4.甲乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停泊位时必须等待的概率( )A.B.C.D.5.如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为.则阴影区域的面积约为( )A.B.C.D.无法计算6.在区间上随机取两个实数,记向量,,则的概率为()A.B.C.D.7.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为()A.B.C.D.8.在上任取一个个实数,则事件“直线与圆”相交的概率为( )A.B.C.D.9.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.B.C.D.二、填空题10.任取两个小于1的正数x、y,若x、y、1能作为三角形的三条边长,则它们能构成钝角三角形三条边长的概率是________.11.已知,,,都在球面上,且在所在平面外,,,,,在球内任取一点,则该点落在三棱锥内的概率为__________.12.已知,点的坐标为,则当时,且满足的概率为__________.13.在区间上随机地取一个数,则事件“”发生的概率为_______。
几何概型 - 简单 - 习题
几何概型一、选择题(共12小题;共60分)1. 下列关于几何概型的说法错误的是A. 几何概型是古典概型的一种,基本事件都具有等可能性B. 几何概型中事件发生的概率与它的位置或形状无关C. 几何概型在一次试验中可能出现的结果有无限多个D. 几何概型中每个结果的发生都具有等可能性2. 已知是长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于的概率为A. B. C. D.3. 若将一个质点随机投入如图所示的长方形中,其中,,则质点落在以为直径的半圆内的概率是A. B. C. D.4. 张卡片上分别写有数字,,,,从这张卡片中随机抽取张,则取出的张卡片上的数字之和为奇数的概率为A. B. C. D.5. 设在上随机地取值,则关于的方程有实数根的概率为A. B. C. D.6. 如图,在半径为,弧长为的扇形中,以为直径作一个半圆.若在扇形内随机取一点,则此点取自阴影部分的概率是A. B. C. D.7. 在中,,,,在边上任取一点,则为钝角三角形的概率为A. B. C. D.8. 如图,在边长为的正方形内有区域(阴影部分所示),张明同学用随机模拟的方法求区域的面积.若每次在正方形内随机产生个点,并记录落在区域内的点的个数.经过多次试验,计算出落在区域内点的个数的平均值为个,则区域的面积约为A. B. C. D.9. 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则A. B. C. D.10. 某个路口交通指示灯,红灯时间为秒,黄灯时间为秒,绿灯时间为秒,黄灯时间可以通行,当你到达路口时,等待时间不超过秒就可以通行的概率为A. B. C. D.11. 在长为的线段上任取一点,则点与线段两端点的距离都大于的概率等于A. B. C. D.12. 在区间内随机取出一个数,使得的概率为A. B. C. D.二、填空题(共5小题;共25分)13. 某路公共汽车每发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过的概率为.14. 在区间上随机选取一个数,则的概率为.15. 已知事件“在矩形的边上随机取一点,使的最大边是”发生的概率为,则.16. 在边长为的正三角形内任取一点,则使点到三个顶点的距离至少有一个小于的概率是.17. 已知一只蚂蚁在边长分别为,,的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于的地方的概率为.三、解答题(共5小题;共65分)18. 设有一个等边三角形网格,其中各个等边三角形的边长都是,现将直径等于的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.19. 已知在等腰直角三角形中,.(1)在线段上任取一点,求使的概率;(2)在内任作射线,求使的概率.20. 在等腰的斜边上任取一点,求小于的概率.21. 如图,两盏路灯之间的距离是米,由于光线较暗,想在其间再随意安装两盏路灯、,问与,与之间的距离都不小于米的概率是多少?22. 在的水中有一个草履虫,现从中随机取出水放到显微镜下观察,求发现草履虫的概率.答案第一部分1. A 【解析】几何概型与古典概型是两种不同的概率模型,无包含关系.2. B3. B 【解析】长方形的面积,以为直径的半圆的面积,所以.4. C 【解析】采用列举法得所有的基本事件有,,,,,六种情况,其中两数字之和为奇数的有,,,四种情况,故所求概率为.5. C【解析】方程有实根,则,解得或(舍去).由几何概型的概率计算公式可知所求的概率为.6. B 【解析】阴影部分的面积为,扇形的面积为,所以在扇形内随机取一点,则此点取自阴影部分的概率.7. C 【解析】过点作,垂足为,则;过点作,交于点,则,,易知当点在线段和上时(不包括线段端点,,),为钝角三角形,故所求概率为.8. B 【解析】设区域的面积约为,根据题意有,所以,,所以区域的面积约为.9. A10. A11. D 【解析】将线段平均分成段,设中间两点分别为,,则当点在线段上时符合题意,所以概率.12. D第二部分13.【解析】本题可以看成向区间内均匀投点,求点落入内的概率.设某乘客候车时间不超过,所以.14.15.【解析】如图,设,根据对称性,由题中条件知,点的活动范围为,即.当时,,解得,所以.16.【解析】分别以点,,为圆心,以为半径作圆,与构成三个扇形,如图中阴影部分所示,当点落在其内时符合要求.所以.17.【解析】由题意可知,三角形的三条边长的和为,而蚂蚁要在离三个顶点的距离都大于的地方爬行,则它爬行的区域长度为,根据几何概型的概率计算公式可得所求概率为.第三部分18. 记事件为“硬币落下后与格线没有公共点”,如图所示,在等边三角形内作小等边三角形,使其三边与原等边三角形三边的距离都为,则小等边三角形的边长为.由几何概型的概率计算公式得.19. (1)设,,则.若,则,故的概率.(2)设,则.若,则,故的概率.20. 在上截取,于是,.21. 记:“与,与之间的距离都不小于米”,把三等分,由于中间长度为米所以.22. 记事件在取出的水中有草履虫,由几何概型的概率计算公式得.。
几何概型经典练习及解答
几何概型1.几何概率模型定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;2.几何概型的概率公式P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; 3.几何概型的特点1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.4.几何概型和古典概型的区别与联系联系:两种概率模型的思路是相同的,同属于“比例解法”,并且都是在随机事件“等可能”的前提下; 区别:古典概型中试验的基本事件的个数是有限的,而几何概型中试验的基本事件的个数是无限的,在具体问题的求解中要严格区别.5.计算几何概型的概率的步骤1)判断是否是几何概率,尤其是判断等可能性;2)计算基本事件空间与事件A 所含的基本事件对应的区域的几何度量(长度、面积或体积);3)代入公式计算.1.下列概率模型中,几何概型的个数为( C )注:①不是几何概型①从区间[10,10]-内任取出一个数,求取到1的概率;②从区间[10,10]-内任取出一个数,求取到绝对值不大于1的数的概率;③从区间[10,10]-内任取出一个数,求取到大于1而小于2的数的概率;④向一个边长为4cm 的正方形ABCD 内投一点P ,求点P 离中心不超过1cm 的概率.A .1B . 2C . 3D .42.某公共汽车站每隔5min 有一辆汽车到达,乘客到达汽车站的时刻是任意的,则一个乘客候车时间不超过3min 的概率为( C )A .51 B . 52 C . 53 D .54 3.在棱长为3的正方体内任取一点,则这个点到各面的距离大于1的概率为( C ) A .13 B .19 C .127 D .344.在面积为S 的ABC ∆的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率是( C ) A .14 B .12 C . 34 D .235.在区间[1,1]-上随机取一个数x ,cos 2x π的值介于0到12之间的概率为( A ) A .13 B .2π C .12 D .23 6.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( A )A .π21- B .π121- C .π2 D .π1 7.在区间[1-,2]上随机取一个数x ,则||x ≤1的概率是 .328.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 .)(161431613+= 9.分别计算下列三个小题的概率:①设p 在[0,5]上随机地取值,求方程21042p x px +++=有实根的概率. ②在[1,1]-上任取两个实数,a b ,求二次方程2220x ax b ++=有两个非负实根的概率.③在区间[0,1]上任取三个实数,,x y z ,事件222{(,,)|1}A x y z x y z =++<.(1)构造出此随机事件A 对应的几何图形;(2)利用此图形求事件A 的概率. 答案:①35 ;②14 ;③6π.。
几何概型练习及答案
几何概型[自我认知]:1.如果每个事件发生的概率只与构成事件区域的___,____成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.在几何概型中,事件A的概率的计算公式为__________________. 3.古典概型与几何概型中基本事件发生的可能性都是____,但古典概型要求基本事件有_____,几何概型要求基本事件有_______. 4.某广播电台每当整点或半点时就会报时,某人睡完觉后想知道时间就打开收音机调到该广播电台,问这人等待的时间不超过5min 的概率是______.5.已知地铁列车每10min 一班,在车站停1min ,则乘客到达站台立即乘上车的概率为_.6.在线段[0,3]上任取一点,其坐标小于1的概率是_____________.7.在地球上海洋占70.9%的面积,陆地占29.1%的面积,现在太空有一颗陨石正朝着地球的方向飞来,将落在地球的某一角.你认为陨石落在陆地的概率约为_____________,落在我国国土内的概率为________.(地球的面积约为5.1亿平方千米) [课后练习]8.从区间(0,1)内任取两个数,则这两个数的和小于56的概率是 ( ) A.35 B. 45 C. 1625 D.17259.A 是圆上固定的一定点,在圆上其他位置任取一点B,连接A 、B 两点,它是一条弦,它的长度大于等于半径长度的概率为 ( ) A.12 B. 23 C. 32 D. 1410.已知集合A={}9,7,5,3,1,0,2,4,6,8-----,在平面直角坐标系0x y 中,点(),x y 的坐标,x A y A ∈∈,点(),x y 正好在第二象限的概率是 ( )A.13 B. 14 C. 15 D. 2511.取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大? 12.在1万平方千米的海域中有80平方千米的大陆架贮藏着石油.假设在海域中的任意一点钻探,钻到油层面的概率是多少?13.在10立方米的沙子中藏有一个玻璃球,假定这个玻璃球在沙子中的任何一个位置是等可能的,若取出1立方米的沙子.求取出的沙子中含有玻璃球的概率.14.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即可离去,求两人能会面的概率.15.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达码头的时刻是等可能的,如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.1.长度、面积或体积; 2.()()() AP A=构成事件的区域长度面积或体积试验的全部所构成的区域长度面积或体积;3.相等的、有限个、无限多个;4.165.1116.137.29.1%, 0.0198.D 9.B 10.C11.解:设事件A={剪得两段的长都不小于1m},把绳子三等分,当剪断位置处在中间一段时,事件A发生.由于中间一段的长度为1m,所以由几何概率公式得:P(A)=13.12.解:记“钻到油层面”为事件则P(A)=800.00810000==贮藏石油的大陆架面积所有海域大陆架面积答:钻到油层的概率是0.008.13.解:记事件A为“取1立方米沙子中含有玻璃球”, 则事件A发生对应的沙子体积与原沙子体积之比为1:10.∵玻璃球在沙子中任何位置等可能,∴由几何概型概率计算公式得P(A)=110.14.解:以x 和y 分别表示甲、乙两人到达约会地点的时间, 则两人能会面的充要条件是||15x y -≤.在平面上 建立直角坐标系如图所示,则(x ,y )的所有可能结 果是边长60的正方形,而可能会面的时间由图中的 阴影部分所表示,这是一个几何概型问题.15.解:设甲、乙两艘船到达码头的时刻分别为x 与y,A 为两艘船都不需要码头空出,()[]{},|0,24x y x Ω=∈,要满足A,则1y x -≥或2x y -≥∴A=()[]{},|12,0,24x y y x x y x -≥-≥∈或∴()22211(241)242506.5220.8793424576A A S P S Ω-⨯+-⨯====.14题图几何概型巩固练习重难点:掌握几何概型中概率的计算公式并能将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题.考纲要求:①了解几何概型的意义,并能正确应用几何概型的概率计算公式解决问题. ②了解随机数的意义,能运用模拟方法估计概率.经典例题:如图,60AOB ∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.15 6015 60当堂练习:1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( )A .0.62B .0.38C .0.02D .0.682.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2与49 cm 2之间的概率为( )A .310B .15C .25D .453.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A .116B .216C .316 D.144.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( )A .34B .38C .14D .185.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( ) A .13B .49C .59D .7106如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( )A .2πB .1πC .23D .137.如图,有一圆盘其中的阴影部分的圆心角为45,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为( )A .18B .14C .12D .34甲 乙 1 2 34 1 23 48.现有100ml的蒸馏水,假定里面有一个细菌,现从中抽取20ml的蒸馏水,则抽到细菌的概率为()A.1100 B.120C.110D.159.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午5:00至6:00,则该船在一昼夜内可以进港的概率是()A.14 B.18 C.110 D.11210.在区间[0,10]中任意取一个数,则它与4之和大于10的概率是()A.15 B.25 C.35 D.2711.若过正三角形ABC的顶点A任作一条直线L,则L与线段BC相交的概率为()A.12 B.13 C.16 D.11212.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是()A.0.5 B.0.4 C.0.004 D.不能确定13.平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率( c )A.ra B.2ra C.ara-D.2a ra-14.已知地铁列车每10min一班,在车站停1min.则乘客到达站台立即乘上车的概率为.15.随机向边长为2的正方形ABCD中投一点P,则点P与A的距离不小于1且与CPD∠为锐角的概率是__________________.16.在区间(0,1)中随机地取出两个数,则两数之和小于56的概率是.17.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间为早上7:00~8:00之间,你父亲在离开家前能拿到报纸的概率为_______.18.飞镖随机地掷在下面的靶子上.(1)在靶子1中,飞镖投到区域A、B、C的概率是多少?(2)在靶子1中,飞镖投在区域A或B中的概率是多少?在靶子2中,飞镖没有投在区域C 中的概率是多少?A BCABC19.一只海豚在水池中游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边不超过2m 的概率.20.在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.21.利用随机模拟方法计算曲线1y x=,1x =,2x =和0y =所围成的图形的面积.§3.2 几何概型经典例题:解:如图,由平面几何知识: 当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形 记"AOC ∆为钝角三角形"为事件M ,则11()0.45OD EB P M OB ++===即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角, 记"AOC ∆为锐角三角"为事件N ,则3()0.65DE P N OB === 即AOC ∆为锐角三角形的概率为0.6.当堂练习:1.B;2.B;3.C;4.A;5.C;6.A;7.A;8.B;9.C; 10.C; 11.C; 12.B; 13.B; 14.111; 15.4arcsin52π; 16. 2572; 17. 87.5%; 18.(1)都是13;(2)23;34。
几何概型小练习
几何概型专项训练
一、选择题
1如图所示,在边长为1的正方形OABC 中任取一点P ,
则点P 恰好取自阴影部分的概率为( ) A .
4
1 B .
51 C .61 D .7
1
2如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
在扇形OAB 内随机取一点,则
此点取自阴影部分的概率是A. 2
1-
π
B.
11-2π
C.
2
π
D.
1
π
3在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.
信号的概率是( ). A .
π14-
B .π
1
2- C .
π22-
D .π4 二、填空题
1利用计算机产生0~1之间的均匀随机数a ,则时间“”发生的概率为
2在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为
13
. 3在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为 _________ .
310a ->2
3
4正方形的四个顶点()1,1A --,()1,1B -,()1,1C ,()1,1D -,分别在抛物线2y x =-和2
y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .
2
2
x。
几何概型(答案).doc
假如在海域中任意一点钻探,钻到2A 5005050250 几何概型一、选择题1、取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于Im的概率是(B )A. -B.丄C. -D.不确定2 3 42、在1万乃沪的海域中有40脑2的大陆架储藏着石油,油层的概率是(C )A. —B. —C. —D.—251 249 250 2523.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是A4.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,灯与两端距离都大于2m 的概率。
B5.在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是BA 0.003B 0.004C 0.005D 0.0066.在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是AA 0.01B 0.02C 0.03D 0.04二、填空题7.已知地铁列车每lOmin —班,在车站停lmin,乘客到达站台立即乘上车的概率_1/11 __ 。
8.某路公共汽车5分钟一班准时到达某车站,任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上)_3/5 ____ •三、解答题9.在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率解:设构成三角形的事件为A,长度为10的线段被分成三段的长度分别为x, y, 10— (x+y),0 < x < 10< 0 < y < 100<10-(x+y)<100< x< 10 即Jo<y<lO0<x+y<10由一个三角形两边之和大于第三边,有x +y〉10 - (x +y),即5 < x + y < 10 .又由三角形两边之斧小于第三边,有x <5 ,即0 <x<5,同理0<y<5.0 < .r < 5构造三角形的条件为<0<y<55 < x + y <10•••满足条件的点P (x, y)组成的图形是如图所示中的阴影区域(不包括区域的边界).1 25 1S^=~'52=~; 5AOAB=--1°2=50- •"-F(4)=...... 10分10.如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?解:因为均匀的粒子落在正方形内任何一点是等可能的所以符合几何概型的条件。
几何概型典型例题
几何概型1.(2009年高考福建卷)点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧的长度小于1的概率为________.答案:23解析:设事件M 为“劣弧的长度小于1”,则满足事件M 的点B 可以在定点A 的两侧与定点A 构成的弧长小于1的弧上随机取一点,由几何概型的概率公式得:P (M )=23.2.(2010年苏、锡、常、镇四市调研)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.答案:36解析:设所求的面积为S ,由题意得6001000=S5×12,∴S =36.3.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为________.解析:P =18×43πa 3a 3=π6.答案:π64.(2010年扬州调研)已知集合A {x |-1<x <5},B ={x |x -23-x>0},在集合A 中任取一个元素x ,则事件“x ∈A ∩B ”的概率是________.解析:由题意得A ={x |-1<x <5},B ={x |2<x <3},由几何概型知:在集合A 中任取一个元素x ,则x ∈A ∩B 的概率为P =16.答案:165.某公共汽车站每隔10分钟就有一趟车经过,小王随机赶到车站,则小王等车时间不超过4分钟的概率是________.答案:256.如图,M 是半径为R 的圆周上一个定点,在圆周上等可能地任取一点N ,连结MN ,则弦MN 的长度超过2R的概率是________.答案:12解析:连结圆心O 与M 点,作弦MN 使∠MON =90°,这样的点有两个,分别记为N 1,N 2,仅当点N 在不包含点M 的半圆弧上取值时,满足MN >2R ,此时∠N 1ON 2=180°,故所求的概率为180°360°=12. 7.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},E ={(x ,y )|x -2y ≥0,x ≤4,y ≥0},若向区域Ω内随机投一点P ,则点P 落入区域E 的概率为________.解析:如图,区域Ω表示的平面区域为△AOB 边界及其内部的部分,区域E 表示的平面区域为△COD 边界及其内部的部分,所以点P 落入区域E 的概率为S △CODS △AOB=12×2×412×6×6=29.答案:298.已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]任取的一个数,则f (1)>0成立的概率是________.解析:f (1)=-1+a -b >0,即a -b >1,如图:A (1,0),B (4,0),C (4,3),S △ABC =92,P =S △ABC S 矩=924×4=932.答案:9329.在区间[0,1]上任意取两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率为________.解析:f ′(x )=32x 2+a ,故f (x )在x ∈[-1,1]上单调递增,又因为函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点,即有f (-1)·f (1)<0成立,即(-12-a -b )(12+a -b )<0,则(12+a+b )(12+a -b )>0,可化为⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b >012+a +b >0或⎩⎪⎨⎪⎧0≤a ≤1≤b ≤112+a -b <0,12+a +b <0由线性规划知识在平面直角坐标系aOb 中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点的概率为可行域的面积除以直线a =0,a =1,b =0,b =1围成的正方形的面积,计算可得面积之比为78.答案:7810.设不等式组⎩⎪⎨⎪⎧ 0≤x ≤60≤y ≤6表示的区域为A ,不等式组⎩⎪⎨⎪⎧0≤x ≤6x -y ≥0表示的区域为B .(1)在区域A 中任取一点(x ,y ),求点(x ,y )∈B 的概率;(2)若x ,y 分别表示甲、乙两人各掷一次骰子所得的点数,求点(x ,y )在区域B 中的概率. 解:(1)设集合A 中的点(x ,y )∈B 为事件M ,区域A 的面积为S 1=36,区域B 的面积为S 2=18,∴P (M )=S 2S 1=1836=12.(2)设点(x ,y )在区域B 为事件N ,甲、乙两人各掷一次骰子所得的点(x ,y )的个数为36个,其中在区域B 中的点(x ,y )有21个,故P (N )=2136=712.11.(2010年江苏南通模拟)已知集合A ={x |-1≤x ≤0},集合B ={x |ax +b ·2x -1<0,0≤a ≤2,1≤b ≤3}.(1)若a ,b ∈N ,求A ∩B ≠∅的概率; (2)若a ,b ∈R ,求A ∩B =∅的概率.解:(1)因为a ,b ∈N ,(a ,b )可取(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共9组.令函数f (x )=ax +b ·2x -1,x ∈[-1,0], 则f ′(x )=a +b ln2·2x .因为a ∈[0,2],b ∈[1,3],所以f ′(x )>0, 即f (x )在[-1,0]上是单调递增函数.f (x )在[-1,0]上的最小值为-a +b2-1.要使A ∩B ≠∅,只需-a +b2-1<0,即2a -b +2>0.所以(a ,b )只能取(0,1),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)7组.所以A ∩B ≠∅的概率为79.(2)因为a ∈[0,2],b ∈[1,3],所以(a ,b )对应的区域为边长为2的正方形(如图),面积为4.由(1)可知,要使A ∩B =∅,只需f (x )min =-a +b2-1≥0⇒2a -b +2≤0,所以满足A ∩B =∅的(a ,b )对应的区域是如图阴影部分.所以S 阴影=12×1×12=14,所以A ∩B =∅的概率为P =144=116.12.将长为1的棒任意地折成三段,求:三段的长度都不超过a (13≤a ≤1)的概率.解:设第一段的长度为x ,第二段的长度为y , 第三段的长度为1-x -y ,则基本事件组所对应的几何区域可表示为Ω={(x ,y )|0<x <1,0<y <1,0<x +y <1},此区域面积为12.事件“三段的长度都不超过a (13≤a ≤1)”所对应的几何区域可表示为A ={(x ,y )|(x ,y )∈Ω,x <a ,y <a,1-x -y <a }.即图中六边形区域,此区域面积:当13≤a ≤12时,为(3a -1)2/2,此时事件“三段的长度都不超过a (13≤a ≤1)”的概率为P=(3a -1)2/21/2=(3a -1)2;当12≤a ≤1时,为12-3(1-a )22.此时事件“三段的长度都不超过a (13≤a ≤1)”的概率为P =1-3(1-a )2.。
几何概型习题附答案
1.在区间[0,2]上随机地取出一个数x ,则事件“-1≤log 12⎝⎛⎭⎫x +12≤1”发生的概率为( )A .34 B.23 C .13D .14解析:选A .不等式-1≤log 12⎝⎛⎭⎫x +12≤1可化为log 122≤log 12⎝⎛⎭⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.2.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A .16 B.13 C .23D .45解析:选C .设AC =x (0<x <12),则CB =12-x ,所以x (12-x )<32,解得0<x <4或8<x <12. 所以P =4+412=23.3.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A .2-33πB.4-63πC .13-32πD .23解析:选B .设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24⎝⎛⎭⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B .4.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为( )A .12 B.13 C .23D .34解析:选A .由题设知,区域D 是以原点为中心的正方形,直线y =kx 将其面积平分,如图,所求概率为12.5.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径的概率为( )A .12 B.32C .13D .14解析:选C .当AA ′的长度等于半径长度时,∠AOA ′=π3,A ′点在A 点左右都可取得,故由几何概型的概率计算公式得P =2π32π=13,故选C .6.某人随机地在如图所示的正三角形及其外接圆区域内部投针(不包括三角形边界及圆的外界),则针扎到阴影区域(不包括边界)的概率为________.解析:设正三角形的边长为a ,圆的半径为R ,则正三角形的面积为34a 2. 由正弦定理得2R =a sin 60°,即R =33a ,。
几何概型同步练习
内有一个半径为 a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为
P1,P2,则 P1,P2 的大小关系是( )
A.P1=P2
B.P1>P2
C.P1<P2
D.无法比较
5.已知一只蚂蚁在边长为 4 的正三角形内爬行,则此蚂蚁到三角形三个顶点的距离均超过 1
的概率为( )
A.1-
3π 12
9.《广告法》对插播广告的时间有一定的规定,某人对某台的电视节目进行了长期的统计后
得出结论,他在一小时内的任意时间打开电视机看该台节目时,看不到广告的概率为190,那
么该台每小时约有________分钟的广告.
10.设 A 为圆周上一点,在圆周上等可能地任取一点 B 与点 A 连接,则弦长超过半径的 2倍()A.Fra bibliotek5B.25
C.35
D.45
3.如图,在一个边长分别为 a,b(a>b>0)的矩形内画一个梯形,梯形的上、下底边长分别
为a3,a2,且高为 b.现向该矩形内随机投一点,则该点落在梯形内部的概率是( )
7
5
5
5
A.10
B.7
C.12
D.8
4.如图,两个正方形的边长均为 2a,左边正方形内四个半径为a2的圆依次相切,右边正方形
2.答案 A 解析 因为直线 y=x+b 的横截距-b∈[-2,3],所以纵截距 b∈[-3,2],故 b>1 的概率 P =2-2--13=15.
3.答案 C 解析 S 梯形=12(a3+a2)b=152ab,S 矩形=ab.
所以 P=SS梯 矩形 形=152.
4.答案 A
解析 由题意知,P1=1-4×π4×a22a2=1-π4,P2=1-π4aa22=1-π4,∴P1=P2.
几何概型随堂练习(含答案)
几何概型一、选择题1. [2013·信阳模拟]如图,M 是半径为R 的圆周上一个定点,在圆周上等可能的任取一点N ,连接MN ,则弦MN 的长度超过2R 的概率是( )A. 15 B. 14 C. 13 D. 12答案:D解析:由题意知,当MN =2R 时,∠MON =π2,所以所求概率为2×π22π=12.2. [2013·镇江模拟]某校航模小组在一个棱长为6米的正方体房间内试飞一种新型模型飞机,为保证模型飞机安全,模型飞机在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为( )A. 127B. 116C. 38 D. 827 答案:D解析:依题意得,模型飞机“安全飞行”的概率为(6-26)3=827,选D.3. 如图,是一个算法程序框图,在集合A ={x |-10≤x ≤10,x ∈R }中随机抽取一个数值做为x 输入,则输出的y 值落在区间(-5,3)内的概率为( )A. 0.4B. 0.5C. 0.6D. 0.8答案:D解析:f (x )=⎩⎪⎨⎪⎧x +3(x <0),x -5(x >0),0(x =0),当-5<x +3<3⇒-8<x <0,-5<x -5<3⇒0<x <8,所以有解的概率为P =8+810-(-10)=0.8.4. 如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A. 12 B. 16 C. 14 D. 13答案:D解析:依题意知,题中的正方形区域的面积为12=1,阴影区域的面积等于⎠⎛01(x -x 2)d x=(23x 32-13x 3)⎪⎪⎪10=13.因此所投的点落在叶形图内部的概率等于13,选D . 5. [2013·郑州模拟]分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )A . 4-π2 B. π-22 C .4-π4D. π-24答案:B解析:设AB =2,则S 阴影=2π-4. ∴2π-44=π-22,故选B 项. 6. [2012·四川资阳高三模拟]已知实数x ∈[-1,1],y ∈[0,2],则点P (x ,y )落在区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内的概率为( )A. 316B. 38C. 34 D. 12答案:B解析:如图所示,(x ,y )在矩形ABCD 内取值,不等式组所表示的区域为△AEF ,由几何概型的概率公式,得所求概率为38,故选B .二、填空题7.[2013·大理模拟]如图,曲线OB 的方程为y 2=x (0≤y ≤1),为估计阴影部分的面积,采用随机模拟方式产生x ∈(0,1),y ∈(0,1)的200个点(x ,y ),经统计,落在阴影部分的点共134个,则估计阴影部分的面积是________.答案:0.67解析:由落入阴影部分的点的个数与落入正方形区域的点的个数比得到阴影部分的面积与正方形的面积比为134200,又正方形的面积为1,所以阴影部分的面积为0.67.8. [2013·邵阳模拟]在[-6,9]内任取一个实数m ,设f(x )=-x 2+mx +m -54,则函数f(x )的图象与x 轴有公共点的概率等于________.答案:35解析:若函数f (x )=-x 2+mx +m -54的图象与x 轴有公共点,则Δ=m 2+4(m -54)≥0,又m ∈[-6,9],得m ∈[-6,-5]或m ∈[1,9],故所求的概率为P =[(-5)-(-6)]+(9-1)9-(-6)=35. 9. [2013·商丘模拟]已知函数f (x )=log 2x ,x ∈[12,2],在区间[12,2]上任意一点x 0,使f(x 0)≥0的概率为________.答案:23解析:由f (x 0)≥0,得log 2x 0≥0. ∴x 0≥1,即使f (x 0)≥0的区域为[1,2], 故所求概率为P =2-12-12=23.三、解答题10. [2013·伊春模拟]已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),求x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.分析:由题意画出图象可求面积之比.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).∴所求的概率P 1=14π×224×4=π16.11. 已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0.(1)若a ,b 是一枚骰子先后投掷两次所得到的点数,求方程有两个正实数根的概率; (2)若a ∈[2,6],b ∈[0,4],求一元二次方程没有实数根的概率.解:(1)基本事件(a ,b )共有36个,且a ,b ∈{1,2,3,4,5,6},方程有两个正实数根等价于a -2>0,16-b 2>0,Δ≥0,即a >2,-4<b <4,(a -2)2+b 2≥16.设“一元二次方程有两个正实数根”为事件A ,则事件A 所包含的基本事件数为(6,1),(6,2),(6,3),(5,3)共4个,故所求的概率为P (A )=436=19.(2)试验的全部结果构成区域Ω={(a ,b )|2≤a ≤6,0≤b ≤4},其面积为S (Ω)=16. 设“一元二次方程无实数根”为事件B ,则构成事件B 的区域为B ={(a ,b )|2≤a ≤6,0≤b ≤4,(a -2)2+b 2<16},其面积为S (B )=14×π×42=4π,故所求的概率为P (B )=4π16=π4.12. [2013·锦州模拟]已知复数z =x +y i(x ,y ∈R )在复平面上对应的点为M .(1)设集合P ={-4,-3,-2,0},Q ={0,1,2},从集合P 中随机取一个数作为x ,从集合Q 中随机取一个数作为y ,求复数z 为纯虚数的概率;(2)设x ∈[0,3],y ∈[0,4],求点M 落在不等式组:⎩⎪⎨⎪⎧x +2y -3≤0,x ≥0,y ≥0所表示的平面区域内的概率.解:(1)记“复数z 为纯虚数”为事件A .∵组成复数z 的所有情况共有12个:-4,-4+i ,-4+2i ,-3,-3+i ,-3+2i ,-2,-2+i ,-2+2i,0,i,2i ,且每种情况出现的可能性相等,属于古典概型,其中事件A 包含的基本事件共2个:i,2i ,∴所求事件的概率为P (A )=212=16.(2)依条件可知,点M 均匀地分布在平面区域{(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0≤x ≤30≤y ≤4内,属于几何概型,该平面区域的图形为右图中矩形OABC 围成的区域,面积为S =3×4=12.而所求事件构成的平面区域为 {(x ,y )|⎩⎪⎨⎪⎧x +2y -3≤0x ≥0y ≥0},其图形如图中的三角形OAD (阴影部分).又直线x +2y -3=0与x 轴、y 轴的交点分别为A (3,0)、D (0,32),∴三角形OAD 的面积为S 1=12×3×32=94.∴所求事件的概率为P =S 1S =9412=316.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何概型题目选讲1.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )解析:设AC =x ,由题意知x (12-x )<32⇒0<x <4或8<x <12,所求事件的概率P =4-0+12-812=23.2.已知圆C :2212,:4325x y l x y +=+=在圆上任取一点P,设点P 到直线l 的距离小于2的事件为A 求P(A)的值。
解:P(A)=163.设不等式组⎩⎪⎨⎪⎧0≤x≤20≤y≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是解析:坐标系中到原点距离不大于2的点在以原点为圆心,2为半径的圆内及圆上,⎩⎪⎨⎪⎧0≤x≤2,0≤y≤2表示的区域D 为边长为2的正方形及其内部,所以所求的概率为4-π×444=4-π4.4.在区间[0,9]上随机取一实数x ,则该实数x 满足不等式1≤log 2x≤2的概率为__________.解析:由1≤log 2x≤2,得2≤x≤4,根据区间长度关系,得所求概率为29.5.在[-6,9]内任取一个实数m ,设f(x)=-x 2+mx +m ,则函数f(x)的图像与x 轴有公共点的概率等于__________.解析:函数f(x)的图像与x 轴有公共点应满足Δ=m 2+4m≥0,解得m≤-4或m≥0,又m∈[-6,9],故-6≤m≤-4或0≤m≤9,因此所求概率P =2+915=1115.6.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率;(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.解析:(1)设甲、乙两船到达时间分别为x 、y ,则0≤x<24,0≤y<24且y -x≥4或y -x≤-4.作出区域⎩⎪⎨⎪⎧0≤x<24,0≤y<24,y -x >4或y -x <-4.设“两船无需等待码头空出”为事件A ,则P(A)=2×12×20×2024×24=2536.(2)当甲船的停泊时间为4小时,乙船的停泊时间为2小时,两船不需等待码头空出,则满足x -y≥2或y -x≥4.设在上述条件时“两船不需等待码头空出”为事件B ,画出区域⎩⎪⎨⎪⎧0≤x<24,0≤y<24,y -x >4或x -y >2.P(B)=12×20×20+12×22×2224×24=442576=221288.7.知k ∈[-2,2],则k 的值使得过A(1,1)可以作两条直线与圆x 2+y 2+kx -2y -54k=0相切的概率等于 【解析】.∵圆的方程化为222k 5k k (x )(y 1)1244++-=++,∴5k+k 2+4>0,∴k<-4或k>-1.∵过A(1,1)可以作两条直线与圆222k 5k k (x )(y 1)1244++-=++相切,∴A(1,1)在圆外,得222k 5k k (1)(11)1244>++-++,∴k<0,故k ∈(-1,0),其区间长度为1,因为k ∈[-2,2],其区间长度为4,所以P =14.8.已知k ∈[-2,2],则k 的值使得过A (1,1)可以作两条直线与圆x 2+y 2+kx -2y -54k =0相切的概率等于 解析:∵圆的方程化为⎝⎛⎭⎪⎫x +k 22+(y -1)2=5k 4+k24+1,∴5k +k 2+4>0,∴k <-4或k >-1.∵过A (1,1)可以作两条直线与圆⎝⎛⎭⎪⎫x +k 22+(y -1)2=5k 4+k 24+1相切,∴A (1,1)在圆外,得⎝⎛⎭⎪⎫1+k 22+(1-1)2>5k 4+k24+1,∴k <0,故k ∈(-1,0),其区间长度为1,因为k ∈[-2,2],其区间长度为4,∴P =14.9.已知集合A ={x |-3<x <1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +2x -3<0.(1)求A ∩B ,A ∪B ; (2)在区间(-4,4)上任取一个实数x ,求“x ∈A ∩B ”的概率; (3)设(a ,b )为有序实数对,其中a 是从集合A 中任取的一个整数,b 是从集合B 中任取的一个整数,求“b -a ∈A ∪B ”的概率.解:(1)由已知B ={x |-2<x <3},A ∩B ={x |-2<x <1},A ∪B ={x |-3<x <3}.(2)设事件“x ∈A ∩B ”的概率为P 1,这是一个几何概型,则P 1=38.(3)因为a ,b ∈Z ,且a ∈A ,b ∈B ,所以,基本事件共12个:(-2,-1),(-2,0),(-2,1),(-2,2),(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2).设事件E 为“b -a ∈A ∪B ”,则事件E 中包含9个基本事件,事件E 的概率P (E )=912=34.10.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值; (2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b . ①记事件A 表示“a +b =2”,求事件A 的概率; ②在区间[0,2]内任取2个实数x ,y ,求事件“x 2+y 2>(a -b )2恒成立”的概率.解:(1)由题意可知:n1+1+n =12,解得n =2. (2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A 包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.∴P (A )=412=13.②记“x 2+y 2>(a -b )2恒成立”为事件B ,则事件B 等价于“x 2+y 2>4”,(x ,y )可以看成平面中的点,则全部结果所构成的区域Ω={(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R},而事件B 所构成的区域B ={(x ,y )|x 2+y 2>4,(x ,y )∈Ω},∴P (B )=S B S Ω=2×2-π2×2=1-π4.11、“已知圆C :x2+y2=12,设M 为此圆周上一定点,在圆周上等可能地任取一点N ,连接MN.”求弦MN 的长超过26的概率.解:如图,在图上过圆心O 作OM ⊥直径CD.则MD =MC =2 6.当N 点不在半圆弧CM D 上时,MN >2 6.所以P(A)=π×232π×23=12.12.(1)已知A 是圆上固定的一点,在圆上其他位置上任取一点A′,则AA′的长度小于半径的概率为________.(2)在Rt △ABC 中,∠BAC =90°,AB =1,BC =2.在BC 边上任取一点M ,则∠AMB≥90°的概率为________.解析:(1)如图,满足AA′的长度小于半径的点A′位于劣弧BA C 上,其中△ABO 和△ACO 为等边三角形,可知∠BOC =2π3,故所求事件的概率P =2π32π=13.(2)如图,在Rt △ABC 中,作AD ⊥BC ,D 为垂足,由题意可得BD =12,且点M 在BD 上时,满足∠AMB≥90°,故所求概率P =BD BC =122=14.答案:(1)13 (2)1413.在体积为V 的三棱锥S —ABC 的棱AB 上任取一点P ,则三棱锥S —APC 的体积大于V3的概率是________. 解析:如图,三棱锥S —ABC 的高与三棱锥S —APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM 、BN 分别为△APC 与△ABC 的高,所以VS —APCVS —ABC =S △APC S △ABC =PM BN ,又PM BN =AP AB ,所以AP AB >13时,满足条件.设AD AB =13,则P 在BD 上,所求的概率P =BD BA =23.14.在区间[0,1]上任取两个数a ,b ,则函数f(x)=x2+ax +b2无零点的概率为 解析:要使该函数无零点,只需a2-4b2<0,即(a +2b)(a -2b)<0. ∵a ,b ∈[0,1],a +2b >0,∴a -2b <0.作出⎩⎪⎨⎪⎧0≤a≤1,0≤b≤1,a -2b <0的可行域,易得该函数无零点的概率P =1-12×1×121×1=34.15.设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段. (1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. 解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB.若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为P =S △DEF S △AOB =14.。