中考数学专题题库∶旋转的综合题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、旋转 真题与模拟题分类汇编(难题易错题)

1.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .

(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .

(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;

(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1

,22

PM BE BE MN ==;(2)成立,理由见解析;(3)MN =17﹣1或17+1 【解析】 【分析】

(1)如图1中,只要证明PMN 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;

(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、

BD 、AB 的中点,推出//PM BE ,12PM BE =

,//PN AD ,1

2

PN AD =,推出PM PN =,90MPN ∠=︒,可得2

2222

BE PM MN MN ==⨯

=; (3)有两种情形分别求解即可. 【详解】 (1)如图1中,

∵AM =ME ,AP =PB ,

∴PM ∥BE ,1

2

PM BE =

, ∵BN =DN ,AP =PB ,

∴PN ∥AD ,1

2

PN AD =

, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,

∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,

∴△PMN 的等腰直角三角形, ∴2MN PM =,

∴1

22

MN BE =⋅, ∴2BE MN =

故答案为1

2

PM BE =

,2BE MN =. (2)如图2中,结论仍然成立.

理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90°

=90°, ∴BH ⊥AD ,

∵M 、N 、P 分别为AE 、BD 、AB 的中点,

∴PM ∥BE ,12PM BE =,PN ∥AD ,1

2

PN AD =, ∴PM =PN ,∠MPN =90°,

∴2

2222

BE PM MN MN ==⨯

=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,

当D 、E 、B 共线时,在Rt △BCG 中,()

2

222

6234BG BC CG =-=-

=,

∴342BE BG GE =-=-, ∴2

1712

MN BE =

=-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,

当D 、E 、B 共线时,在Rt △BCG 中,()

2

222

6234BG BC CG =-=-

=

∴342BE BG GE =+=, ∴2

1712

MN BE =

=.

综上所述,MN=17﹣1或17+1.

【点睛】

本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.

2.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG.

(1) 求证:EG=CG;

(2) 将图①中△BEF 绕B 点逆时针旋转 45∘,如图②所示,取DF 中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

(3) 将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).

【答案】解:(1)CG=EG

(2)(1)中结论没有发生变化,即EG=CG.

证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

在△DAG与△DCG中,

∵ AD=CD,∠ADG=∠CDG,DG=DG,

∴△DAG≌△DCG.

∴ AG=CG.

在△DMG与△FNG中,

∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,

∴△DMG≌△FNG.

∴ MG=NG

在矩形AENM中,AM=EN.

相关文档
最新文档