完全版电磁场与电磁波习题解读

合集下载

电磁场与电磁波课后习题及答案一章习题解答

电磁场与电磁波课后习题及答案一章习题解答

一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z+-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。

滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。

设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。

设、、,求回路中的感应电动势。

解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。

讨论这两种情况下导线内的电场强度E。

解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。

故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。

一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。

设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。

解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。

流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。

解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。

解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。

电磁场与电磁波例题详解1

电磁场与电磁波例题详解1

第1章 矢量分析例1.1 求标量场z y x -+=2)(φ通过点M (1, 0, 1)的等值面方程。

解:点M 的坐标是1,0,1000===z y x ,则该点的标量场值为0)(0200=-+=z y x φ。

其等值面方程为 :0)(2=-+=z y x φ 或 2)(y x z += 例1.3 求函数xyz z xy -+=22ϕ在点(1,1,2)处沿方向角3,4,3πγπβπα===的方向导数。

解:由于1)2,1,1(2)2,1,1(-=-=∂∂==M M yzy xϕ,02)2,1,1()2,1,1(=-=∂∂==M M xz xy y ϕ,32)2,1,1()2,1,1(=-=∂∂==M M xyz zϕ,21cos ,22cos ,21cos ===γβα 所以1cos cos cos =∂∂+∂∂+∂∂=∂∂γϕβϕαϕϕzy x lM例1.4 求函数xyz =ϕ在点)2,1,5(处沿着点)2,1,5(到点)19,4,9(的方向导数。

解:点)2,1,5(到点)19,4,9(的方向矢量为1734)219()14()59(z y x z y x a a a a a a l++=-+-+-=其单位矢量314731433144cos cos cos z y x z y x a a a a a a l ++=++=γβα 5,10,2)2,1,5()2,1,5()2,1,5()2,1,5()2,1,5()2,1,5(==∂∂==∂∂==∂∂xy zxz yyz xϕϕϕ所求方向导数314123cos cos cos =⋅∇=∂∂+∂∂+∂∂=∂∂ l z y x lMϕγϕβϕαϕϕ 例1.5 已知z y x xy z y x 62332222--++++=ϕ,求在点)0,0,0(和点)1,1,1( 处的梯度。

解:由于)66()24()32(-+-++++=∇z a x y a y x a z y xϕ 所以 623)0,0,0(z y x a a a---=∇ϕ,36)1,1,1(y x a a +=∇ϕ例1.6 运用散度定理计算下列积分:⎰⋅++-+=Sz y x S d z y xy a z y x a xz a I)]2()([2322S 是0=z 和2222y x a z --=所围成的半球区域的外表面。

电磁场与电磁波_课后答案(冯恩信_著)

电磁场与电磁波_课后答案(冯恩信_著)

第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=求:(a) A ; (b); (c); (d); (e)(f)解:(a) ; (b) 14132222222=++=++=z y x A A A A )ˆ2ˆˆ(61ˆz y x BB b -+==( c) ; (d) 7=⋅B A z y xC B ˆ4ˆ7ˆ---=⨯(e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯(f)19)(-=⋅⨯C B A1.2;求:(a) A ; (b) ; (c) ; (d) ; (e) BA+解:(a) ;(b) ;(c) 25π+=A )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ43-=⋅πB A (d)z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ(e)z B A ˆˆ)3(ˆ-++=+ϕπρ1.3; 求:(a) A ; (b); (c); (d); (e)解:(a) ; (b) ; (c) ;254π+=A )ˆˆ(11ˆ2θππ-+=rb22π-=⋅B A(d) ; (e) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ϕπˆ2ˆ3-=+rB A 1.4 ;当时,求。

解:当时,=0, 由此得 5-=α1.5将直角坐标系中的矢量场分别用圆柱和圆球坐标系中的坐标分量表示。

解:(1)圆柱坐标系由(1.2-7)式,;ϕϕϕρsin ˆcos ˆˆ1-==xF ϕϕϕρcos ˆsin ˆˆ2+==y F(2)圆球坐标系由(1.2-14)式, ϕϕϕθθϕθsin ˆcos cos ˆcos sin ˆˆ1-+==r xFϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆ2++==r yF1.6将圆柱坐标系中的矢量场用直角坐标系中的坐标分量表示。

解:由(1.2-9)式,)ˆˆ(2ˆsin 2ˆcos 2ˆ2221y y xx yx y x F ++=+==ϕϕρ)ˆˆ(3ˆcos 3ˆsin 3ˆ3222y x xy yx y x F +-+=+-==ϕϕϕ1.7将圆球坐标系中的矢量场用直角坐标系中的坐标分量表示。

电磁场与电磁波习题答案资料讲解

电磁场与电磁波习题答案资料讲解

电磁场与电磁波习题答案第四章习题解答★【4.1】如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ==;② (,0)0x ϕ=; ③ 0(,)x b U ϕ= 根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑ 由条件③,有 01sinh()sin()n n n b n xU A a a ππ∞==∑两边同乘以sin()n xa π,并从0到a 对x 积分,得到002sin()d sinh()an U n x A x a n b a a ππ==⎰ 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩,故得到槽内的电位分布 01,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:22(,0)(,)0x x b ϕϕ==① 2(,)0()x y x ϕ=→∞②③ 002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩; 根据条件①和②,可设2(,)x y ϕ的通解为21(,)sin()en x bn n n yx y A b ππϕ∞-==∑;由条件③有 00100(0)sin()()n n U U y y d n y b A U U b y yd y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n ybπ,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d bππ 故得到 (,)x y ϕ=0022121sin()sin()e n x b n U bU n d n y y b d nb b ππππ∞-=+∑ 4.4 如题4.4图所示的导体槽,底面保持电位0U ,其余两面电位为零,求槽内的电位的解。

电磁场与电磁波课后习题及答案七章习题解答

电磁场与电磁波课后习题及答案七章习题解答

《电磁场与电磁波》习题解答 第七章 正弦电磁波7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中cos cos cos n x y z x y z x y zαβγ=++=++e e e e r e e e故(cos cos cos )()cos cos cos n x y z x y z x y z x y z αβγαβγ⋅=++⋅++=++e r e e e e e e则j()[(cos cos cos )]22222[(cos cos cos )]2e ()()n r t j x y z t m m x x y y z zj x y z t m e j e j βωβαβγωβαβγωββ⋅-++-++-==∇=∇+∇+∇==e E E E E e E e E e E E E而22j[(cos cos cos )]222{e }x y z t m t t βαβγωω++-∂∂==-∂∂E E E故222222()(0j j t μεβμεωμεω∂∇-=+=+=∂EE E E E E 可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程2220t με∂∇-=∂EE故E 表示沿e n 方向传播的平面波。

7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

解 表征沿+z 方向传播的椭圆极化波的电场可表示为12()j z x x y y E jE e β-=+=+E e e E E式中取121[()()]21[()()]2j zx x y y x y j zx x y y x y E E j E E e E E j E E e ββ--=+++=---E e e E e e显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

电磁场与电磁波习题分析

电磁场与电磁波习题分析

第二章(选择)1、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将(A )A升高B降低C不会发生变化D无法确定2、下列关于高斯定理的说法正确的是(A)A如果高斯面上E处处为零,则面内未必无电荷。

B如果高斯面上E处处不为零,则面内必有静电荷。

C如果高斯面内无电荷,则高斯面上E处处为零。

D如果高斯面内有净电荷,则高斯面上E处处不为零3、以下说法哪一种是正确的(B)A电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B电场中某点电场强度的方向可由E=F/q确定,其中q0为试验电荷的电荷量,q0可正可负,F为试验电荷所受的电场力C在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D以上说法都不正确4、当一个带电导体达到静电平衡时(D)A表面曲率较大处电势较高B表面上电荷密度较大处电势较高C导体内部的电势比导体表面的电势高D导体内任一点与其表面上任一点电势差等于零5、下列说法正确的是(D)A场强相等的区域,电势也处处相等B场强为零处,电势也一定为零C电势为零处,场强也一定为零D场强大处,电势不一定高6、就有极分子电介质和无极分子电介质的极化现象而论(D)A、两类电介质极化的微观过程不同,宏观结果也不同B、两类电介质极化的微观过程相同,宏观结果也相同C、两类电介质极化的微观过程相同,宏观结果不同D、两类电介质极化的微观过程不同,宏观结果相同7、下列说法正确的是( D )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷B闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零C闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。

D闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零8、根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( D )A若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷B若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零C若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷D介质中的电位移矢量与自由电荷和极化电荷的分布有关9、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将(A)A升高B降低C不会发生变化10、一平行板电容器充电后与电源断开,再将两极板拉开,则电容器上的(D)A、电荷增加B、电荷减少C、电容增加D、电压增加(判断)1、两个点电荷所带电荷之和为Q,当他们各带电量为Q/2时,相互间的作用力最小(×)2、已知静电场中某点的电势为-100V,试验电荷q0=3.0x10-8C,则把试验电荷从该点移动到无穷远处电场力作功为-3.0x10-6J (√)3、电偶极子的电位与距离平方成正比,电场强度的大小与距离的二次方成反比。

电磁场与电磁波课后习题及答案七章习题解答 (2)

电磁场与电磁波课后习题及答案七章习题解答 (2)

《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。

试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。

解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。

与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。

当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。

解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。

解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。

考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。

当该电磁波进入某理想介质后,波长变为0.09m 。

设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。

电子科技大学,电磁场与电磁波,典型例题解读

电子科技大学,电磁场与电磁波,典型例题解读
满介电常数为 1和 2的两种均匀媒质。设内导体带电荷为q,外
球壳接地,求球壳间的电场和电位分布。
分析:电场平行于v 介质分界面,由边界条件 可知,介质两边 E 相等。
解:令电场强度为
v E
,由高斯定律
Ñ v v
DgdS

q

2
r
2
( D1

D2
)

q
S
2 r2 (1E 2E) q

v E

2
(1
q
2 )r 2
evr
(r) b Evgdrv
q
(1 1)
r
2 (1 2 ) r b
2 a
1
b
例 同轴线填充两种介质,结构如图所示。两
种介质介电常数分别为 1和 2 ,导电率分别为 1和 2
2c
,设同轴线内外导体电压为U。
2b
vv 求:(1)导体间的 E ,J
) )
(r a) (r a)
v gE

0

3Q
40a3

0
0 (r a)


1
r2
r
(r 2

Qr
40a3 )
(r a)
3)
v E


Q
4 0


(1) r

Q
4 0 a3


rv

0
例 半径为a的球形电介质体,其相对介电常数 r 4 ,
若在球心处存在一点电荷Q,求极化电荷分布。
Ñ 解:由高斯定律,可以求得
vv

电磁场与电磁波课后习题及答案三章习题解答

电磁场与电磁波课后习题及答案三章习题解答

电磁场与电磁波课后习题及答案三章习题解答三章习题解答3.1 真空中半径为a 的⼀个球⾯,球的两极点处分别设置点电荷q 和q -,试计算球⾚道平⾯上电通密度的通量Φ(如题3.1图所⽰)。

解由点电荷q 和q -共同产⽣的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球⾚道平⾯上电通密度的通量d d zz SSS Φ====??D S D e22322232()[]2d 4()()aq a ar r r a r a ππ--=++? 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使⽤的是半径为a r 的球体原⼦模型,其球体内均匀分布有总电荷量为Ze -的电⼦云,在球⼼有⼀正电荷Ze (Z 是原⼦序数,e 是质⼦电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π??=-D e ,试证明之。

解位于球⼼的正电荷Ze 球体内产⽣的电通量密度为 124rZer π=D e 原⼦内电⼦云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电⼦云在原⼦内产⽣的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D e e题3.1 图题3. 3图()a故原⼦内总的电通量密度为 122314ra Ze r r r π??=+=-D D D e 3.3 电荷均匀分布于两圆柱⾯间的区域中,体密度为30C m ρ, 两圆柱⾯半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所⽰。

求空间各部分的电场。

解由于两圆柱⾯间的电荷不是轴对称分布,不能直接⽤⾼斯定律求解。

但可把半径为a 的⼩圆柱⾯内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,⽽在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所⽰。

《电磁场与电磁波》(陈抗生)习题解答选

《电磁场与电磁波》(陈抗生)习题解答选

《电磁场与电磁波》(陈抗生)习题解答第一章 引言——波与矢量分析1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --⨯+⨯==ππ解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x --⨯π+⨯π==++=∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度m /V 10E E 3y -==。

s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 266=⨯π⨯π=ω=⨯π===π⨯π=πω=--1.2写出下列时谐变量的复数表示(如果可能的话))6sin()3sin()()6(cos 1)()5()2120cos(6)()4(cos 2sin 3)()3(sin 8)()2()4cos(6)()1(πωπωωππωωωπω++=-=-=-=-=+=t t t U t t D t t C t t t A tt I t t V(1)解:4/)z (v π=ϕj 23234sin j 64cos6e6V 4j+=π+π==π∴ (2)解:)2tcos(8)t (I π-ω-= 2)z (v π-=ϕ j8e 8I j 2=-=π-∴(3)解:)t cos 132t sin 133(13)t (A ω-ω= j32e13A 2)z ()2t cos(13)t (A 133cos )2(j v --==π-θ=ϕ∴π-θ+ω==θπ-θ则则令 (4)解:)2t 120cos(6)t (C π-π=j 6e6C 2j -==∴π(5)(6)两个分量频率不同,不可用复数表示1.3由以下复数写出相应的时谐变量])8.0exp(4)2exp(3)3()8.0exp(4)2(1)1(j j C j C jC +==+=π(1)解:t sin t cos j t sin j t cos )t sin j t )(cos j 1(e )j 1(t j ω-ω+ω+ω=ω+ω+=+ω t sin t cos )Ce (RE )t (C t j ω-ω==∴ω(2)解:)8.0t cos(4)e e 4(RE )Ce (RE )t (C t j 8.0j t j +ω===ωω(3)解:)8.0t (j )2t (j tj 8.0j j tj e 4e3e)e4e3(Ce 2+ωπ+ωωω+=+=π得:)t cos(3)8.0t cos(4)8.0t cos(4)2t cos(3)Ce (RE )t (C t j ω-+ω=+ω+π+ω==ω1.4]Re[,)21(,)21(000000**⨯⋅⨯⋅++--=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:1B A B A B A B A z z y y x x -=++=⋅0000000000z y x z y x 000z y x 6)B A (RE j)j 21(1j 21j 1z y x B A j 21B A z )j 21(x B z )j 1(y )j 31(x )4j 4(B B B A A A z y x B A--=⨯----+=⨯--=⋅---=--+--++-==⨯****得到:则:1.5计算下列标量场的梯度xyzu xy y x u xz yz xy u z y x u z y x u =++=++=-+==)5(2)4()3(2)2()1(22222222(1)解:u u grad ∇=)(22022022022202220222222z z y x y yz x x z xy z z z y x y y z y x x x z y x++=∂∂+∂∂+∂∂=(2)解:u u grad ∇=)(000224z z y y x x -+=(3) 解:u u grad ∇=)(000)()()(z x y y z x x z y+++++=(4)解:u u grad ∇=)(00)22()22(y x y x y x+++=(5)解:u u grad ∇=)(000z xy y xz x yz ++=1.6)处的法线方向,,在点(求曲面21122y x z+=解:梯度的方向就是电位变化最陡的方向令z y x T-+=22则代入锝:将点)2,1,1(22000z y y x x T-+=∇法线方向与00022z y x-+同向1.7求下列矢量场的散度,旋度200022000002020265)4()()()3()()()()2()1(z x y yz x A y y x x y x A z y x y z x x z y A z z y y x x A ++=+++=+++++=++=(1)解:zA y A x A A A div zy x ∂∂+∂∂+∂∂=⋅∇=)(z y x 222++=0)(222000=∂∂∂∂∂∂=⨯∇=z y x z y x z y x A A curl(2)解:div(A)=0curl(A)=0(3)解:div(A)=1+2y022000)12(0)(z x y x yx z y x z y x A A curl -=++∂∂∂∂∂∂=⨯∇= (4)解:div(A)=6z002002665)(y x x y x yzz y x z y x A A curl --=∂∂∂∂∂∂=⨯∇= 1.11⎰===+⋅=Sh z z r y x S S d A x x A 组成的闭合曲面是由其中,求若矢量场,0,,2220解:由散度定理可得:hr dV dVx x h z r y x V dV A dS A VV s V20222)]([),()(π==⋅∇===+⋅∇=⋅⎰⎰⎰⎰围成的体积为1.12)()()(,,000000B A A B B A z B y B x B B z A y A x A A z y x z y x⨯∇⋅-⨯∇⋅=⨯⋅∇++=++=试证明:假定证明:)(B A ⨯⋅∇zB A B A y B A B A xB A B A B A B A z B A B A y B A B A x B B B A A A z y x x y y x z x x z y z z y x y y x z x x z y z z y zy x z yx ∂-∂+∂-∂+∂-∂=-+-+-⋅∇=⋅∇=)()()()]()()([00000)()()()()()()()(B A A B y B x B A x B z B A z B y B A yA x AB x A z A B z A y A B zB A B A A B A B yB A B A A B A B xB A B A A B A B x y z z x y yz x x y z z x y yz x xy y x y x x y zx y z x z z x y z z y z y y z⨯∇-⨯∇=∂∂-∂∂-∂∂-∂∂-∂∂-∂∂-∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=∂∂-∂+∂-∂+∂∂-∂+∂-∂+∂∂-∂+∂-∂=1.13AA A A A A⨯∇Φ+⨯Φ∇=Φ⨯∇⋅∇Φ+Φ∇⋅=Φ⋅∇)()2()()1(证明:(1)证明:证毕右边左边右边左边=∴∂Φ∂+∂Φ∂+∂Φ∂=∂Φ∂+∂Φ+∂Φ∂+∂Φ+∂Φ∂+∂Φ=∂∂+∂∂+∂∂Φ+∂Φ∂+∂Φ∂+∂Φ∂⋅++=∂Φ∂+∂Φ∂+∂Φ∂=Φ+Φ+Φ⋅∇=z A y A x A z A A y A A x A A zA y A x A z z y y x x z A y A x A zA y A x A z A y A x A z y x z z y y x x z y x z y x zy x z y x )()()()(000000000(2)证明:证毕左边右边左边=∂∂Φ∂∂Φ∂∂Φ+∂Φ∂∂Φ∂∂Φ∂=⨯∇Φ+⨯Φ∇=ΦΦΦ∂∂∂∂∂∂=Φ⨯∇=zyx z y x zy xA A A z y x z y x A A A z y x z y x A A A A A z y x z y x A 000000000)(1.14 证明:)()2(0)()1(=Φ∇⨯∇=⨯∇⋅∇A(1)证明:证毕)]()()([)(222222000000=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂⋅∇=∂∂∂∂∂∂⋅∇=⨯∇⋅∇y z A z x A y x A y z A z x A y x A yA x A z x A z A y z A y A x A A A z y x z y x A x y z x y z xy z x y z zy x(2)证明:证毕0)()(000000=∂Φ∂∂Φ∂∂Φ∂∂∂∂∂∂∂=∂Φ∂+∂Φ∂+∂Φ∂⨯∇=Φ∇⨯∇zy x z y x z y x z zy y x x第二章 传输线基本理论与圆图2.1710'0.042/'510/'510/'30.5/R m L H m G S mC pF mk Z Ω-==⨯=⨯=市话用的平行双导线,测得其分布电路参数为:求传播常数与特征阻抗。

电磁场与电磁波答案解析

电磁场与电磁波答案解析

第7章 导行电磁波1、 求内外导体直径分别为0.25cm 和 0.75cm 空气同轴线的特性阻抗; 在此同轴线内外导体之间填充聚四氟乙烯( 2.1r ε=),求其特性阻抗与300MHz 时的波长。

解:空气同轴线的特性阻抗00.7560ln60ln =65.9170.25b Z a ==Ω 聚四氟乙烯同轴线:00.75=41.404ln345.487 0.25b Z a ===Ω80.69v m f λ==== 2、在设计均匀传输线时,用聚乙烯(εr =2.25)作电介质,忽略损耗⑴ 对于300Ω的双线传输线,若导线的半径为0.6mm ,线间距应选取为多少? ⑵ 对于75Ω的同轴线,若内导体的半径为0.6mm ,外导体的内半径应选取为多少? 解:⑴ 双线传输线,令d 为导线半径,D 为线间距,则0110 ln , ln1 300 ln3.75, 25.5D L C D d dDZ dDD mm dμπεππ=====∴== ⑵ 同轴线,令a 为内导体半径,b 为外导体内半径,则0112 ln , 2lnb L C b a aμπεπ==01 ln 752 ln1.875, 3.91bZ abb mm aπ===∴==3、设无耗线的特性阻抗为100Ω, 负载阻抗为5050j -Ω, 试求:终端反射系数L Γ驻波比VSWR 及距负载0.15λ处的输入阻抗in Z 。

解:005050100112505010035L L L Z Z j j j Z Z j j ---++Γ===-=-+-+-1 2.6181L L S +Γ===-Γ()()000250501000.15100210050500.15L in L j j tan Z jZ tan d Z d Z Z jZ tan d j j tan πλβλπβλλ⎛⎫-+⨯ ⎪+⎝⎭==⨯+⎛⎫+-⨯ ⎪⎝⎭43.55 +34.16j =4、一特性阻抗为50Ω、长2m 的无耗线工作于频率200MHz ,终端阻抗为4030j +Ω,求其输入阻抗in Z 。

《电磁场与电磁波》课后习题解答(全)

《电磁场与电磁波》课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c += 即只要满足3b+8c=1就可以使向量和向量垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=- 可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221a b +=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3) )()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r 的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a )所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223yz A x yze xy e =+ 而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y xe x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

电磁场与电磁波课后习题答案全-杨儒贵

电磁场与电磁波课后习题答案全-杨儒贵

第一章矢量分析第一章 题 解1-1已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。

试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。

解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zy z y xz y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zy zyxz y xC C C A A A e e e e e e e e e C A x x x x x45212321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。

1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅c o s B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即 βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。

电磁场与电磁波第二章课后答案解析

电磁场与电磁波第二章课后答案解析

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式: 0ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=;⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式: ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷位于q 1及q 2的连线上时,系统处于平衡状态,试求的大小及位置。

电磁场与电磁波课后思考题答案

电磁场与电磁波课后思考题答案

电磁场与波课后思考题2-1 电场强度的定义是什么?如何用电场线描述电场强度的大小及方向?电场对某点单位正电荷的作用力称为该点的电场强度,以E 表示。

用曲线上各点的切线方向表示该点的电场强度方向,这种曲线称为电场线。

电场线的疏密程度可以显示电场强度的大小。

2-2给出电位与电场强度的关系式,说明电位的物理意义。

静电场中某点的电位,其物理意义是单位正电荷在电场力的作用下,自该点沿任一条路径移至无限远处过程中电场力作的功。

2-3什么是等位面?电位相等的曲面称为等位面。

2-5给出电流和电流密度的定义。

电流是电荷的有规则运动形成的。

单位时间内穿过某一截面的电荷量称为电流。

分为传导电流和运流电流两种。

传导电流是导体中的自由电子(或空穴)或者是电解液中的离子运动形成的电流。

运流电流是电子、离子或其它带电粒子在真空或气体中运动形成的电流。

电流密度:是一个矢量,以J 表示。

电流密度的方向为正电荷的运动方向,其大小为单位时间内垂直穿过单位面积的电荷量。

2-10运动电荷,电流元以及小电流环在恒定磁场中受到的影响有何不同?运动电荷受到的磁场力始终与电荷的运动方向垂直,磁场力只能改变其运动方向,磁场与运动电荷之间没有能量交换。

当电流元的电流方向与磁感应强度B 平行时,受力为零;当电流元的方向与B 垂直时,受力最大,电流元在磁场中的受力方向始终垂直于电流的流动方向。

当电流环的磁矩方向与磁感应强度B 的方向平行时,受到的力矩为零;当两者垂直时,受到的力矩最大2-11什么是安培环路定理?试述磁通连续性原理。

为真空磁导率,70 10π4-⨯=μ (H/m),I 为闭合曲线包围的电流。

安培环路定理表明:真空中恒定磁场的磁通密度沿任意闭合曲面的环量等于曲线包围的电流与真空磁导率的乘积。

真空中恒定磁场通过任意闭合面的磁通为0。

磁场线是处处闭合的,没有起点与终点,这种特性称为磁通连续性原理。

2-12什么是感应电动势和感应磁通? 感应电场强度沿线圈回路的闭合线积分等于线圈中的感应电动势,即 穿过闭合线圈中的磁通发生变化时,线圈中产生的感应电动势e 为ϕ-∇=E S J Id d ⋅=tqI d d =Bv q ⨯=F Bl I F⨯=d ISB B Il IlBl Fl T ====2)(B S I T ⨯=S I =m BT ⨯=m Il B l⎰=⋅ 0 d μ ⎰=⋅SS B 0d t l E ld d d Φ-=⋅⎰t e d d Φ-=线圈中感应电流产生的感应磁通方向总是阻碍原有刺磁通的变化,所以感应磁通又称反磁通。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 Verify the Pythagorean theorem. In other words, show that 222A B A B +=+ if and only if A is perpendicular toB .2.8 Show that ()()()()()()A B C D A CB D A D BC ⨯⋅⨯=⋅⋅-⋅⋅2.17 Express that position vector ˆˆˆr xxyy zz =++ in the spherical coordinate system. 2.20 ˆˆˆ125S rθπϕ=++ and ˆˆ20.5T r πθ=+ are two vectors at point ()2,,2ππ and ()5,2,2ππ, respectively. Determine (a) S T +,(b) S T ⋅,(c) S T ⨯, (d) the unit vector perpendicular to S T ⨯ and (e) the angle between S andT2.40 Show that (a)sin cos x φφρρφ∂∂∂=-∂∂∂, and (b)cos sin y φφρρφ∂∂∂=+∂∂∂ in the cylindrical coordinate system. 2.41 Show that 22222221x y ρρρρρφ⎡⎤⎛⎫∂∂∂∂∂+=+⎢⎥ ⎪∂∂∂∂∂⎝⎭⎣⎦in the cylindrical coordinate system. 2.42 If the electric field intensity in space is given as 00ˆˆcos sin E E rE θθθ=-, find E ∇⋅ and E ∇⨯. 2.44 Given 322ˆˆˆF x xx yy x zz =++, verify the divergence theorem when the region is bounded by a cylinder 2216x y += and the planes at 0z =and 2z =.2.37 Using the rectangular coordinate system, verify that (a) ()0A ∇⋅∇⨯=and (b) ()0f ∇⨯∇=2.38 In electromagnetic fields, we will define the electric field intensity E as a negative gradient of a scalar function ϕ; i.e.E ϕ=-∇. We will also define the volume charge distribution as 0v E ρε=∇⋅, where 0ε is the permittivity of free space. Determine E and v ρif (a)()0ln V a ϕφρ= in cylindrical coordinates, where 0V and a are constants, (b)0cos V r ϕθ=in spherical coordinates, and 0sin V r ϕθ=in spherical coordinates.2.48 Verify Stokes ’ theorem over a hemispherical surface at 2r =and 02θπ≤≤for a function ˆ100cos F rθ=. 能够给出最后计算结果的,以后都要给出最后计算结果而不是表达式)3.6 An electron is circling around nucleus of a hydrogen atom at a radius of 0.05nm. Determine the angular velocity and the time period of the electron.3.8 The surface charge density on a quarter-disc in the first quadrant is 2cos K C m φ. If the radius of the disc is a, find the E field at a point at ()0,0,P h .3.13 Two straight uniformly charged lines are extending along the z axis from z =-∞to z =+∞. One line carries a charge distribution of 1C m μand is situated at 3y m =-, and the other line is at 3y m =and has a charge distribution of 1C m μ-. Determine the E field at appoint on the x axis at 4x m =.3.14 Three infinite electric sheets carrying uniform charge densities of 2,-3 and 0.52C m μare each separated by a 1-mm air gap, as shown in figure. Find the electric field intensity everywhere in space.3.15 An arc radius 0.2m lies in the 0z =plane and extends from 02φπ≤≤. It has a charge distribution of 600sin 2nC m φ. Determine the E field at (a) a point ()0,0,1P , and (b) the origin.3.16 A finite line extends from 10z m =-to 10z m =and carries a charge distribution of 100znC m . Determine the E field at a point 2 meters away from the line in the 0z =plane.3.25 A spherical volume of radius b supports a charge distribution of 2k r everywhere except at 0r =. Determine the electric flux density in the region (a)r b <, and (b)r b > 5.5 Find the magnetic flux density at point P in Figure 5.5.Figure 5.53.41 A long coaxial cable consists of an inner conductor of radius a and an outer conductor of inner radius b and outer radius c . The inner conductor carries a uniform surface charge distribution ρs . Find the E field at any point in space when (a) the outer conductor is not grounded, and (b) the outer conductor is grounded. (考考大家对静电平衡的感觉)3.42 A uniform charge density ρs exists on the surface on f an infinitely long metal cylinder of radius a . It is surrounded by a concentric dielectric of inner radius a and out radius b . Compute (a) D , E , and P at all points in space, (b) the bound charge densities, and (c) the energy density in the system. (c 部分暂缓)3.43 Find an expression for E ∇⋅in a charge-free but nonhomogeneous medium.3.44 The permittivity of a dielectric medium is given as nz εα=where αand n are constants. If the electric field intensity in the medium has on a z component, show that E nE z ∇⋅=-, where E is the magnitude of the electric field intensity. 3.45 A metal sphere of radius b has uniform surface charge distribution. The permittivity of the surrounding region varies as ()01a r εε=+. Find (a) D, E, and P everywhere in space, (b) the bound charge densities, and (c) the energy density, and (d) show that the potential in the dielectric region is ()0ln 14Q V a r aπε=+, where Q is the total charge on the sphere. (c,d 部分暂缓)5.32 A coaxial cable consists of a long cylindrical conductor of radius a surrounded by a cylindrical shell of inner a radius b and outer radius c . The inner conductor and the outer shell each carry equal and opposite currents I uniformly distribution through the conductors. Obtain expressions for the magnetic field intensity in each of the regions (a)a ρ≤, (b) a b ρ≤≤, (c)b c ρ≤≤, and (d)c ρ≥5.34 A current I flows in a thin wire bent into a circle of radius b. The axis of the circular loop coincides with the z axis. ComputeH dl ⋅⎰along the z axis form z =-∞to z =∞. What do you conclude from your answer?5.35 The magnetic flux density in a region1,0z >, is ˆˆˆ1.50.80.6B x y zmT =++. If 0z =marks the boundary betweenregions 1 and 2, determine the magnetic flux density in region 2. Consider region1 as free space; regions 2 has a relative permeability of 100.5.36 A current sheet of ˆ12ykA m separates two regions at 0z =. Region 2,0z >, has a magnetic field intensity of ˆˆˆ405012xy z kA m ++and a relative permeability of 200. If region 1,0z <, has a permeability of 1000, determine themagnetic field intensity in this region.5.37 Refer to Problem 5.35. Compute the magnetization vector in each region. What the bound volume and surface current densities in each region.由于题目都是类似的,故没有写题目,仅仅画图! 3.58 Capacitance?Depth=10cm3.59 Capacitance?Area=10cm*10cm0.5mm 0.5mm3.60 Capacitance?(a=1cm, b=1.5cm)1r ε=3.61 Capacitance? (红色为极板)x(xoy 方向俯视图,z 方向高度为h=10cm )3.62 Capacitance?(球形)半径a=10cm b=20cm c=30cm7.13 Three coils with 100, 150, and 200 turns are tightly and closely wound on a common magnetic circuit of 40cm2 in cross section and 80cm in length. Determine (a) the self-inductance of each coil, (b) the mutual inductance between any twocoils. Assume the relative permeability of the magnetic material as 500.3.63 A large spherical cloud of radius b has a uniform volume charge distribution of ρv . Calculate and sketch the potential distribution and the electric field intensity at any point in space using Poisson’s and Laplace ’s equations.3.66 Determine the potential distribution in a coaxial cable when the inner conductor of radius 10cm is at a potential of 100v and the outer conductor radius 20cm is grounded. The space between the conductors is filled with two concentric dielectrics. The dielectric constant is 3 for the inner dielectric and 9 for the outer dielectric. The dielectric interface is at a radius of 15cm. Determine (a) the potential distribution, (b) the D and E field in each region, (c) the surface charge density on the inner conductor, and (d) the capacitance of the 100-meter-long cable.3.67 Calculate the capacitance of two spherical shells of radii a and b using Laplace ’s equation. The inner shell is at a potential of V0, and the outer shell is grounded. What is the surface charge density on the inner shell? Obtain the expression for the capacitance of the system.3.71 Two infinite grounded metal plates parallel to the z axis are at 00,60φ=. A charge of 500nC is placed at ()05,30,10m. Calculate the potential function and the electric field intensity at ()07,30,10m. Assume that the medium between the plates is free space.7.1 Two conducting bars are sliding over two stationary conductors, as show in figure. What is the induced current in the closed loop thus formed when its resistance is 12Ω?7.29 If the electric field intensity in a source-free, dielectric medium is given as()()0ˆsin sin E E x t x t yVm αωαω=-++⎡⎤⎣⎦, Determine the magnetic field intensity using Maxwell ’s equation from Faraday’s law. What is the displacement currentdensity in the medium? (此题ε和μ应该算已知)7.30 If the magnetic field intensity in a source-free, dielectric medium is given as()()0ˆcos cos H H x t x t zA m αωαω=-++⎡⎤⎣⎦, Determine the electric field intensity using Maxwell ’s equation from Ampere ’s law. What is the displacement currentdensity in the medium?7.31 Determine the condition that must be satisfied for the existence of the electric field intensity as given in Problem 7.29. 7.32 Can the magnetic field intensity as given in Problem 7.30 exist? If yes, what must be the condition? If no, explain why the fields cannot exist.7.33 If ()0ˆcos E E t z xVm ωβ=-in a dielectric medium, show that the electric energy density is equal to the magnetic energy density. Also compute (a) the Poynting vector, (b) the average power density, and (c) the time-average values of theenergy densities. (b 和c 的差别一个是数值上的平均值,一个是对时间的平均值)7.34 Compute the tine-average electric and magnetic energy densities for the fields given in Problem 7.29. 7.35 Compute the tine-average electric and magnetic energy densities for the fields given in Problem 7.307.49 For electromagnetic fields to exist in a linear, homogeneous, isotropic, source-free conductive region, show that the E field must satisfy the following equation:()220E j E ωμεωμσ∇+-=.7.50 For electromagnetic fields to exist in a linear, homogeneous, isotropic, source-free conductive region, show that the H field must satisfy the following equation:()220H j H ωμεωμσ∇+-=7.51 In a dielectric medium (04εε=and 0μμ=) the E and H fields are given as follows:1000cos 3z E t x V m πω⎛⎫=-⎪⎝⎭ and 1000cos 3y H t x A m πωη⎛⎫=--⎪⎝⎭Using phasor analysis, determine (a)ωand η, (b)the direction of power flow, and (c) the average power crossing the surface area bounded by the corners of triangle at (2,0,0)m, (2,4,0)m, and (2,4,2)m. (7.34和7.35算思考题)8.4 Show that the electric field intensity as given by (8ˆ100sin 10E t zVm =+is a valid solution of the wave equation in a dielectric medium. Also determine (a) the electric constant of the medium assuming that 1r μ=, (b) thevelocity of propagation, (c) the magnetic field intensity, (d) the intrinsic impedance, (e) the wavelength, and (f) the average power density.8.6 The electric field intensity of a uniform plane wave in free space is given by ()9ˆ120cos 210E t y zVm πβ=⨯-. Determine (a) the phase constant, (b) the magnetic field intensity, (c) the wavelength, (d) the average power density in the medium, (e) the average energy density in the electric field, and (f) the average energy density in the magnetic field. 8.10 A uniform plane wave at a frequency of 100MHz propagates in the z direction in a conducting medium characterized by 1r μ= 2.25r ε=and 9.375mS m σ=. Determine γ,α,β,δ,p v and tan δ(不会把前面的δ取正切吧,否则晕倒). If the maximum value of the electric field intensity in the y direction is 125V m and occurs at z=0 and t=0, write expressions for the E and H field. Obtain a general expression for the power density in the medium. What is the total current density in the medium?8.11 A glass material is coated with silver (76.110S m σ-=⨯) to make it a good conductor at 2.4GHz. What is the surface resistance of the coating?8.14 An antenna just beneath the surface of a most soil (16r ε=,1r μ=5mS m σ=) is transmitting a signal at 60MHz. Assuming that signal propagates as a uniform plane wave, a receiver buried in the soil receives the signal with a strength of 1/10 of its original value. Compute the distance of the receiver. 8.15Theelectricfield intensityof a wave in a region is givenby ()()0ˆˆ3cos454sin 45E t x yt x zV m ωβωβ=--+-+; determine the polarization of the wave.8.16 Find the polarization of a wave if the electric field intensity is given by ()()0.01120ˆˆ2525j y E j xz e V m +=-+. 8.22 An electromagnetic wave propagates in a dielectric medium with 02.25εε=along the x direction. It strikes another dielectric medium with 09εε=at x=0. If the incoming wave is polarized in the z direction, has a maximum value of250mV/m at the interface, and has an angular frequency of 300Mrad/s, determine (a) the reflection coefficient, (b) the transmission coefficient, and (c) the power densities of the incident, reflected, and transmitted waves.8.21 If we define the standing wave ratio (SWR) as the ratio of the maximum to the minimum values of the total E field in medium 1, show that ())maxmin 11SWR E E ρρ==+- where ρis the magnitude of the reflection coefficient.----------------------------------------------------------------------------------------------------------------------8.17 A uniform plane wave is propagating in a good conductor. If the magnetic field intensity is given by ()158ˆ0.1cos 21015zH et z xA m π-=⨯-, determine the conductivity and the corresponding component of the E field. Calculate the average power loss in a block of unit area and δthickness.8.22 Find the polarization of the following waves: (a) 300300ˆˆ100100j x j x E e y e zV m --=+ (b) 41004100ˆˆ169j j zj j z E ee xe e yV m ππ----=- (c) ()()ˆˆ3cos 0.54sin 0.5E t y xt y zV m =--- 8.31 A uniform plane wave is traveling from one dielectric medium into another dielectric medium. The dielectric constant of one medium is 1.25. If the permeability of each medium is the same as that of free space, and the reflection coefficient is 0.25, determine the dielectric constant of the other medium.8.33 A uniform plane wave propagating in free space strikes the plane surface of a dielectric ( 2.25r ε=,1r μ=) at an angle θwith respect to the normal. If the interface is at z=0, and the electric field intensity of the incident waveis ()6ˆ50cos 3100.7660.643t z y xVm ⨯-+, determine θ, the phase velocity, and the group velocity. Write expressions for the incident, reflected, and transmitted waves. Compute the power density in each region.今天才注意到,这本书中作业题分为两个部分,一个是exercises ,一个是problems ,这次两个部分都出了一点,感觉exercises 比较简单,而problems 比较难(以往出的题目都是这一部分的),快考试了,你们愿意出那一部分的题目。

相关文档
最新文档