集合的基本运算ppt

合集下载

集合的基本运算(课件

集合的基本运算(课件

集合的元素
01
02
03
确定性
集合中的元素是确定的, 不存在模糊不清的情况。
互异性
集合中的元素是互不相同 的,即集合中没有重复的 元素。
无序性
集合中的元素没有顺序, 即集合中元素的排列顺序 不影响集合本身。
空集
定义
不含任何元素的集合称为空集。常用 希腊字母∅表示空集。
性质
空集是任何集合的子集,即对于任意集 合A,都有{}⊆A。
补集
补集是指属于全集但不属于某个特定 集合的元素组成的集合。
补集运算不满足交换律和结合律,即 AB≠BA,且(AB)C≠A (BC)。
补集运算可以用符号“”表示,例如 :AB 表示集合A和集合B的补集。
03 集合运算的性质
交换律
定义
对于任意两个集合A和B,若A∪B=B∪A和A∩B=B∩A,则称交 换律成立。
04 集合运算的应用
在数学中的应用
集合的交、并、差运算
01
这些基本运算在数学中用于描述集合之间的关系,如两个集合
的共有元素、所有元素等。
集合的对称差运算
02
在数学中,对称差运算用于描述两个集合之间的相对差异,即
属于一个集合但不属于另一个集合的元素。
集合的补运算
03
补运算用于描述全集中不属于某个集合的元素组成的集合,即
感谢您的观看
THANKS
分配律
定义
对于任意三个集合A、B和C,若A∪(B∩C)=(A∪B)∩(A∪C)和 A∩(B∪C)=(A∩B)∪(A∩C),则称分配律成立。
举例
设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∪(B∩C)={1,2,3,4}, (A∪B)∩(A∪C)={1,2,3,4},满足分配律。

集合的基本运算课件(共11张PPT)

集合的基本运算课件(共11张PPT)

解析: M={x|-1≤x≤3},M∩N={1,3},有2个.
3:(必修1第一章复习参考题B组练习1) 学校举办运动会时,高一(1)班有28名同学参 加比赛,有15人参加游泳比赛,有8人参加田径比 赛,14人参加球类比赛,同时参加游泳和田径比赛的 有3人,同时参加游泳和球类比赛的有3人,没有人 同时参加三项比赛。问同时参加田径和球类比赛的 有_____人? 解析:设同时参加田径和球 类比赛的有x人,则 9+3+3+(8-3-x)+x+(14-3-x)=28
二:以点集为背景的集合运算:
例1:(必修1习题1.1B组练习2)在平面直角坐标系中,
集合 C ( x, y ) y x表示直线 y
x, 从这个角度看,集合
2 x y 1 D ( x, y ) ,表示什么?集合C , D之间有什么关系? x 4 y 5
(1) A B A, A B B; A A B, B A B
A (CU A) , A (CU A) U
( 2) A B A A B;
A B B A B
(3)德摩根定律: CU ( A B ) (CU A) (CU B ) CU ( A B ) (CU A) (CU B )
【解题回顾】将两集合之间的关系转化为两曲线之 间的位置关系,然后用数形结合的思想求出 的范围 (准确作出集合对应的图形是解答本题的关键).
a
课堂总结:
1、集合的基本运算:
2、集合的运算性质:
3、注重数形结合思想的应用:
(1)韦恩(Venn)图 (2)连续的数集——数轴 (3)点集的运算——曲线位置关系
游泳 田径

高一数学必修一集合的基本运算课件PPT

高一数学必修一集合的基本运算课件PPT
③AB=A A____B
目标升华
回顾本节课你有什么收获? (1)两个定义:并集 A∪B={x|x∈A或x∈B}, 交集 A∩B={x|x∈A且x∈B}. (2)两种方法:数轴和Venn图. (3)几个性质:A∩A=A,A∪A=A,
A∩=,A∪=A; A∩B=B∩A,A∪B=B∪A.
当堂诊学
完成课本的P8-9页例4、5、6、7以及 P11页练习题1、2、3
1.我们之中的每个人都更 偏向于把心思花费在更能 影响自己切身利益的事情
上,你同意这个说法吗?
2.你曾经做过哪些努力,来让自己的教 学活动 显得对 学生有 意义?
3.在下面的教学活动中,你觉得哪种教 学方式 对学生 来说更 有意义
A.在课堂上,让学生在给定的句子里用下划线标记 出其中的名词
B.在课堂上,让学生自由造句,但不许在句子中出现 名词。
怎样的。 G.最后,让学生谈谈这个历史人物在历史上的作为
对我们现在的生活产生了哪些影响。 H.在课堂上,通过扔骰子给学生讲解概率论。
I.在课堂上,让学生利用概率论(和天气有关的)来规 划哪几个月的哪几周适合班级出游
03
现在,请写出四到五条你在当前教学中的实际经验。 写出五条你曾在课堂中使用过的教学方法,并努
图2
并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例2.已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,
添加标题
5.理论上,这个会议的内容对你三十年 之后的 生活也 许会有 帮助。

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

(3)(∁SA)∪(∁SB);
6
解析:
• 【解析】(1)由并集的概念可知A∪B={1,2,3,4,5,6};

(2)借助数轴(如图)


∴M∪N={x|x<-5或x>-3}.
• 【答案】(1){1,2,3,4,5,6} (2)A
7
方法归纳:
• 并集的运算技巧: • (1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的
互异性. • (2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但是要注意含“=”
用实心点表示,不含“=”用空心点表示.
8
探究一 并集的运算
9
解析:
10
探究二 交集的运算
• 【例】(1)已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则A∩B=________.

(2)已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=
________.

11
解析:
• 【解析】(1)A={x|x=1或x=-2},B={x|x=-2或x=3},

∴A∩B={-2}.

(2)结合数轴:


由图可知m=6.
• 【答案】(1){-2} (2)6
是否存在?若存在,求出x;
∴(∁RA)∩B={x|2<x<3或7≤x<10}.
由此可得:(1)(∁SA)∩(∁SB)={x|1<x<2}∪{7}.(2)∁S(A∪B)={x|1<x<2}∪{7};
(3)(∁SA)∪(∁SB)={x|1<x<3}∪{x|5≤x≤7}={x|1<x<3,或5≤x≤7};

《集合的基本运算》课件

《集合的基本运算》课件

分配律
集合的分配律指对于三个集 合A、B、C,(A∪B)∩C = (A∩C)∪(B∩C),(A∩B)∪C = (A∪C)∩(B∪C)。
实例演练
针对不同场景的集合问题进行解答,帮助大家更好地应用集合运算法则。
小结
1 集合的基本运算
包括并集、交集、差集和互补集。
2 集合的运算律
包括交换律、结合律和分配律。
用符号表示为C。
并集
集合的并集是指将两个集合中的所有 元素合并在一起的运算,用符号表示 为∪。
差集
集合的差集是指从一个集合中减去另 一个集合中共有的元素所得到的集合, 用符号表示为\-。
集合的运算律
交换律
集合的交换律指交换并集和 交集的顺序不会集合进 行并集或交集运算时,可以 按照任意顺序进行,结果不 变。
《集合的基本运算》PPT 课件
本节课将介绍集合的基本运算,帮助大家更好地理解集合的概念和运算法则。
什么是集合?
集合的定义
集合是由一组元素组成的整体,元素与集合的关 系由包含和不包含来决定。
元素与集合的关系
元素可以属于一个集合,也可以不属于一个集合。 这种关系通过包含和不包含来描述。
集合的表示形式
3 实例演练回顾
通过实例演练加深对集合的基本运算和运算律的理解。
Q&A
回答听众提出的问题,帮助大家进一步理解集合的基本运算和运算律。
列举法
通过列举集合中的元素来 表示。适用于元素个数较 少的情况。
描述法
通过描述元素的特征或性 质来表示。适用于元素个 数较多的情况。
Venn图
通过画图的方式来表示集 合和元素之间的关系。直 观且易于理解。
集合的基本运算
1

1.3集合的基本运算——补集课件(人教版)

1.3集合的基本运算——补集课件(人教版)
(2)不等式中的等号在补集中能否取到要引起重 视,还要注意补集是全集的子集.
2.已知全集U={x|-5≤x≤3},A={x|-5≤x< -1},B={x|-1≤x≤1},求∁UA,∁UB,(∁UA)∩(∁UB),
(∁UA)∪(∁UB),∁U(A∩B),∁U(A∪B).
解:在数轴上将各集合标出,如图.
典例剖析
题型一 补集的运算 【例1】 已知全集U,集合A={1,3,5,7},∁UA=
{2,4,6},∁UB={1,4,6},求集合B.
解:解法一:A={1,3,5,7},∁UA={2,4,6}, ∴U={1,2,3,4,5,6,7}, 又∁UB={1,4,6},∴B={2,3,5,7} 解法二:借助Venn图,如图所示,
2.怎样理解全集与补集的概念?符号∁UA的含 义是什么?
答:(1)全集只是一个相对的概念,只包含所研 究问题中所涉及的所有元素,补集只相对于相应的
全集而言.
(2)同一个集合在不同的全集中补集不同;不同 的集合在同一个全集中的补集也不同.
(3)符号∁UA包含三层意思: ①A⊆U;②∁UA表示一个集合,且∁UA⊆U; ③∁UA是U中不属于A的所有元素组成的集合.
由图可知B={2,3,5,7}.
点评:根据补集定义,借助Venn图,可直观地 求出补集,此类问题,当集合中元素个数较少时, 可借助Venn图;当集合中元素无限多时,可借助数 轴,利用数轴分析法求解.
1.设全集U=R,集合A={x|x≥-3},B={x|- 3<x≤2}. (1)求∁UA,∁UB;
(2)判断∁UA与∁UB的关系.
解:(1)∵A={x|x≥-3},
∴∁UA=∁RA={x|x<-3}. 又∵B={x|-3<x≤2},

集合的基本运算ppt课件

集合的基本运算ppt课件

A={x|x是揭阳一中高一级参加篮球比赛的同学},
B={x|x是揭阳一中高一级参加跳远比赛的同学},
求A∩B。
参赛共100人
A
B
篮:54人 跳:68人
参加篮
参加跳
A∩B
球比赛
远比赛
篮+跳:_2_2__人
揭阳一中高一级既参加篮球比赛又参加跳远比赛的同学
阅读与思考:集合中元素的个数
把含有有限个元素的集合A叫做有限集; 用card来表示有限集合A中的元素个数.
加法运算
“相加”
问题导入
类比实数的加法运算,你能否尝试定义集合间 “相加”运算?
观察下列各个集合,你能说出集合C与集合A,B之间的关系吗?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数};
(3)A={1,2,3},B={2,3,5,9},C={1,2,3,5,9}
作业: (1)整理本节课的题型; (2)课本P12的练习1~4题; (3)课本P14的习题1.3的1、2、3、5题.
的补集❷,记作∁UA 符号语言 ∁UA=_{_x_|x_∈__U_,__且_x_∉_A_}_____
图形语言
运算性质
A∪(∁UA)=__U__,A∩(∁UA)=___∅_,∁U(∁UA)=____,A ∁UU=∅,∁U∅=U
题型 1 补集的运算
例1 (1)若全集U={x∈R|-2≤x≤2},则集合A={x∈R|-2≤x≤0}的
如:A={1,2,3,5},则card(A)=4.
一般地,对于任意两个集合A、B,有: card(A∪B)=card(A)+ card(B)-card(A∩B).

高一数学人教A版必修第一册1.3集合的基本运算课件

高一数学人教A版必修第一册1.3集合的基本运算课件
1.3 集合的基本运算
问题1 如何研究两个集合间的基本关系?
实数

<
=
类比

集合

=
问题2 实数可以进行加减乘除等运算,那么集合是否有类似
的运算呢?
学校食堂1号的菜品集合记为A={清炒白菜,炒豆芽,家常豆腐,
油闷大虾,炸鸡腿,红烧鸡块},2号的菜品集合记为B={清炒白
菜,苦瓜炒蛋,红烧茄子,土豆牛腩,玉米排骨,辣子鸡丁}。
已知全集为R,集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是
.
答案 {a|a≥2}
解析 ∵B={x|1<x<2},
∴∁RB={x|x≤1,或x≥2}.
又A={x|x<a},且A∪(∁RB)=R,利用如图所示的数轴可得a≥2.
能力提升
已知集合A={x|0≤x≤2},B={x|a≤x≤a+3}.
解:A∪B={3,4,5,6,7,8}
A
4
5
3
6
8
7
B
!!!在求并集时,两个集合中相同的元素只列举一次!!!
2. 设 集 合 = x − < ≤ , = x 1 < x ≤ 3 , 求 ∪
.解

-1
0
1
2
3 x
PART 2 交集
1. 定义:由所有属于集合A且属于集合B的元素组成的
且A∪B={x|x<1},如图2所示,
图2
∴数轴上点x=a在点x=-1和点x=1之间,不包含点x=-1,但包含点x=1.
∴{a|-1<a≤1}.
例3 集合的交集、并集性质的应用

1.3 集合的基本运算(第一课时) 课件(共15张PPT)

1.3 集合的基本运算(第一课时)  课件(共15张PPT)

课堂小结
并集的概念: 一般地,由所有属于集合A或属于集合B的元素所组成的 集合,称为集合A与B的并集.记作:A∪B(读作:“A并B”)即: A∪B ={x|x∈A,或x∈ B}.
并集的性质:(1)A∪A=A; (2)A∪ =A; (3)若A⊆(A∪B),B⊆(A∪B); (4)若A⊆B,则A∪B=B,反之也成立
交集的概念:一般地,由所有属于集合A且属于集合B的元素组成的集合, 称为集合A与B的交集.记作:A∩B(读作:“A交B”) 即: A∩B ={ x | x ∈ A ,且 x ∈ B}.
交集的性质:(1)A∩A=A; (2)A∩ = ; (3)(A∩B)⊆B,(A∩B)⊆A; (4)若A⊆B,则A∩B=A,反之也成立.
解:A∩B就是立德中学高一年级中那些既参加百米赛跑又参加跳高 比赛的同学组成的集合.所以,
A∩B={x|x是立德中学高一年级既参加百米赛跑又参加跳高比赛的 同学}.
例题精讲
【例4】设平面内直线l1上的点的集合为L1, 直示线l1,l2上l2的点位的置集关合系为.L2,试用集合的运算表
解:(1)直线l1与直线l2相交于一点P可表示为:L1∩L2={P};
上述两个问题中,集合A、B和C之间都具有这样一种关系:集合C是 由所有属于A或属于集合B的元素组成的.
并集
一般地,由所有属于集合A或属于集合B的元素所
组成的集合,称为集合A与B的并集。
记作:A∪B(读作:“A并B”)
即:
A∪B ={ x | x ∈ A ,或 x ∈ B}
这说明:两个集合求并集,结果还是一个集合,是由集合A与B 的所有 元素组成的集合(由集合的互异性,重复元素只看成一个元素,不能重复写出).
思考
下列关系式成立吗? (1)A∪A=A;(2)A∪ =A

1.3 集合的基本运算(第二课时)课件(共13张PPT)

1.3 集合的基本运算(第二课时)课件(共13张PPT)

B) ;(CU A)
(CU B) CU ( A
B) .
课后练习
1.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁UB)=______. 2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁UB)=( )
A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}
3.设全集U=R, A={x∈R|a≤x≤2},B={x∈R|2x+1≤x+3,且3x≥2}. (1)若B⊆A,求实数a的取值范围; (2)若a=1,求A∪B,(∁UA)∩B.
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第二课时)
知识回顾
并集的概念: 一般地,由所有属于集合A或属于集合B的 元素所组成的集合,称为集合A与B的并集.记作:A∪B (读作:“A并B”)即: A∪B ={x|x∈A,或x∈ B}.
并集的性质:(1)A∪A=A; (2)A∪ =A;
(3)若A⊆(A∪B),B⊆(A∪B);(4)若A⊆B,则A∪B=B, 反之也成立.
{x∈Q|(x-2)(x²-3)=0}={2},在实数范围内有三个解∶2, 3, 3 , 即{x∈R|(x-2)(x²-3)=0}={2, 3, 3 }.
补集
全集的定义:
一般地,如果一个集合包含有所研究问题中涉及的所有元素,
那么就称这个集合为全集(universe set),通常记作U.
补集的定义: 对于一个集合A,由全集U中不属于集合A的所有元素组成的集合
交集的概念:一般地,由所有属于集合A且属于集合B的元 素组成的集合,称为集合A与B的交集.记作:A∩B(读作: “A交B”) 即: A∩B ={ x | x ∈ A ,且 x ∈ B}.

集合的基本运算课件(PPT_19页)

集合的基本运算课件(PPT_19页)

例4 设A={4,5,6,8}, B={3,5,7,8},求 A∪B.
解: A∪B={4,5,6,8} ∪ {3,5,7,8}
={3,4,5,6,7,8}
例5 设集合A={x|-1<x<2},集合 B={x|1<x<3} 求A∪B.
解: A∪B={x|-1<x<2} ∪ {x|1<x<3}
={x|-1<x<3}
解得a 3且A B {8,4,4,7,9}
本课小结
1.交集与并集的概念 2.全集与补集的概念 3.交集与并集的性质
1.1.3 集合的基本运算
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6} (2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
x
1.并集
一般地,由所有属于集合A或属于集合B的元素所 组成的集合,称为集合A与B的并集,记作A∪B,(读作 “A并B”).即 A∪B={x|x∈A,或x∈B}
例9 ቤተ መጻሕፍቲ ባይዱ全集U={x|x是三角形},A={x|x是锐 角三角形},B={x|x是钝角三角形} 求A∩B,CU(A∪B).
解 : 根据三角形的分类可知 A B , CU A B {x | x直角三角形}. A B {x | x是锐角三角形或钝角三 角形},
5.反馈演练
1.已知A {x | x px 2 0}, B {x | x qx r 0}
2 2
且A B {2,1,5}, A B {2}, 求p, q, r的值.
(解得 : p 1, q 3, r 10)

《集合的基本运算》新教材PPT完美课件

《集合的基本运算》新教材PPT完美课件

归纳小结
问题9 本节课你有哪些收获?可以从以下两个方面思考:
(1)两个集合间的基本运算有哪些? 略 (2)求解集合运算问题,你获得了哪些经验? ①集合中的元素若是离散的,一般采用什么方法;集合中的元素若是 连续的实数,则用什么方法,此时要注意端点的情况. ②已知集合的运算结果求参数,要注意检验参数的值是否满足题意, 或者是否满足集合中元素的互异性.
目标检测
1 设全集U={1,2,3,4,5,6},A={1,2,3,4},则CUA等于 ( B) A.{1,2,5,6} B.{5,6} C.{2} D.{1,2,3,4}
2 如图所示,阴影部分表示的集合是__{_7_,__9_}__,
全集是__U_=__{_1_,__2_,__3_,__4_,__5_,__6_,__7_,__8_,__9_,__1_0_}_____. 或写成 {n∈N|1≤n≤10}
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
作业布置
作业:教科书习题1.3的第4,5,6题.
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
新知探究
例2 设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+ m=0},若(CUA)∩B=∅,则m=__________.
问题8 本题中两个集合可否化简?集合B化简之后有几种 情况?待求解的问题是否可以化简?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4. A { x | 1 x 2}, B { x | 1 x 3}, 求A∪B
-1
0
123来自xA B { x | 1 x 3} A B {x |1 x 2}
5. A { x | 2 x 4} , B { x | 3 x 7 8 2 x },求 A∪ B
定义:由所有属于集合A或属于集合B的元素组 成的集合,称为集合A与B的并集,记作 A B ,读 作”A并B”
A B { x | x A, 或 x B}
A
B
A
B
A
B
A B
求A∪B , A∩B 1.设A={ 3, 5, 6, 8 }, B={ 4, 5, 7, 8 }
A B {3,4,5,6,7,8} A B {5,8}
2.设 A { x | x 2 4 x 5 0} , B { x | x 2 1}
A {5, 1} B {1, 1}
A B {1,1,5}
A B {1}
3.已知A={ x| x是等腰三角形}, B={ x|x是直角三角 形} A∪B={ x| x是等腰三角形或直角三角形} A∩B={ x| x是等腰直角三角形} next
ðU B {2,4,5,6}
6
ðU A {1,3,6,7}
A 2 4 5
A (ðU B) {2,4,5} (痧 U A) (
U
B) {6}
已知集合A={x|3≤x<7},B={x|2<x<10},求
0 1 2 3 4 5 6 7 8 9 10 x
ðR A {x | x 3或x 7} ðR B {x | x 2或x 10} (ðR A) B {x | 2 x 3或7 x 10} A (ðR B) {x | x 2或3 x 7或x 10}
B A
B
A B A
B
A
结论: A B A B A
B
A
练习
练习: A {1,2,3,4,5,6,7,8} 设A={ x|x是小于9的正整数}, B={ 1, 2, 3 }, C={ 3, 4, 5, 6 },求A∩B, A∪C, A∩(B∪C), A∪(B∩C)
A B {1,2,3} B A C {1,2,3,4,5,6,7,8} A B C {1,2,3,4,5,6} A ( B C ) {1,2,3,4,5,6} B C {3} A ( B C ) {1,2,3,4,5,6,7,8} A
1.1.3 集合的基本运算
思考: (1) A={ 1, 3, 5 }, B={ 2, 4, 6 }, C={1, 2, 3, 4, 5, 6}
(2) A={ x| x是有理数 } B={ x| x是无理数}
C={ x| x是实数 } 问: 每组的A, B, C之间是什么关系? C是由所有属于A或属于B的元素组成的
0 1 2 3 4 x
B {x | x 3}
next
A B { x | x 2}
A B {x | 3 x 4}
back
结论:
A A A
A A
A B A B B
B A
思考: (1) A={ 2, 4, 6, 8, 10 }, B={ 3, 5, 8, 12 } C={ 8 } (2) A={ x|x是美中2006年9月在校的女生},
B={x|x是美中2006年9月在校的高一学生} C={ x|x是美中2006年9月在校的高一女生} 问:在每组集合中,A,B,C之间有什么关系?
C中的元素既是A中的元素,也是B中的元素
定义:由属于A且属于B的所有元素组成 的集合,就称为A与B的交集,记作A∩B,读 作”A交B”
A B {x | x A且x B}
对任意的两个有限集合A和B,有 card ( A B) card ( A) card ( B) card ( A B)
B
A B
A
学校先举办了一次田径运动会,某班有8名同学 参赛,又举办了一次球类运动会,这个班有12名 同学参赛,两次运动会都参赛的有3人,两次运 动会中,这个班共有多少名同学参赛?
定义:如果一个集合含有我们所研究问题中涉 及的所有元素,那么就称这个集合为全集,通常 记为U.对于一个集合A,由全集U中不属于A的 所有元素组成的集合称为集合A相对于全集U 的补集,简称为A的补集,记为ðU A
ðU A {x | x U 且x A}
U
ðU A
A
已知全集U={1, 2, 3, 4, 5, 6, 7 }, A={ 2, 4, 5 }, B={ 1, 3, 7 },求 A (痧 U B),( U A) (?U B) U B 1 3 7
相关文档
最新文档