巨磁电阻效应及其应用 数据处理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GMR传感器的制备成本和检测成本低,对样本的需求量很小。由GMR传感器组成的阵列,还可以结合现有的IC工艺,提高整体设备的集成度,进行多目标的检测。同时,对比传统的荧光检测法,磁性标记没有很强的环境噪声,标记本身不会逐渐消退,也不需要昂贵的光学扫描设备以及专业的操作人员。
测量原理:GMR阵列传感器生物检测的基本模式用GMR阵列传感器进行生物检测,是以磁性颗粒为标记物,采用直接标记法或两步标记法,在施加一定方向的外加磁场的情况下,用磁敏传感器对磁性标记产生的寄生磁场进行检测,从而实现对生物目标定性定量分析。
磁感应强度B
磁阻电流 I(mA)
磁阻R(Ω)
100
30.15928947
1.985
2015.11335
90
27.14336053
1.982
2018.163471
80
24.12743158
1.979
2021.22284
70
21.11150263
1.962
2038.735984
60
18.09557368
90
27.14336053
1.981
2019.182231
100
30.15928947
1.983
2017.145739
作图如下:
误差分析:
(1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内,反应在图像上就是最高处的输出都在y轴上,实际上应当是分别分布在y轴左右两侧的;
1.935
2067.183463
50
15.07964474
1.902
2103.049422
40
12.06371579
1.868
2141.327623
30
9.047786842
1.833
2182.214948
20
6.031857895
1.798
2224.694105
10
3.015928947
1.767
2263.723826
0
0
1.739
2300.172513
-10
-3.015928947
1.751
2284.408909
-20
-6.031857895
1.78
2247.191011
-30
-9.047786842
1.813
2206.287921
-40
-12.06371579
1.848
2164.502165
-90
-27.14336053
0.262
80
24.12743158
0.258
-80
-24.12743158
0.256
70
21.11150263
0.242
-70
-21.11150263
0.240
60
18.09557368
0.216
-60
-18.09557368
0.214
50
15.07964474
0.184
-50
-15.07964474
2
2123.142251
-60
-18.09557368
1.918
2085.505735
-70
-21.11150263
1.95
2051.282051
-80
-24.12743158
1.97
2030.456853
-90
-27.14336053
1.981
2019.182231
-100
(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;
(3)使用Excel表格处理数据的过程中可能会有精度损失;
4.
低磁偏置25mV
励磁电流I(mA)
输出电压U(mV)
励磁电流I(mA)
输出电压U(mV)
300
24.9
-300
21
200
24.3
(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;
(3)使用Excel表格处理数据的过程中可能会有精度损失;
2.
根据实验数据由公式B = μ0nI算得的磁感应强度,由R=U/I算得的电阻
如下表所示:(磁阻两端电压U=4V)
励磁电流I1(mA)
磁感应强度/G
开关动作
励磁电流/mA
磁感应强度/G

13.3
4.0111855

16.1
4.855645605

-18.1
-5.458831395

-16.3
-4.915964184
作图如下:
误差分析:
(1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内;
(2)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内;
(3)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;
(4)使用Excel表格处理数据的过程中可能会有精度损失;
(5)测量适当磁偏置时,减小励磁电流时的初始电流300mA对应的输出电压偏离直线较多,可能由于操作原因,比如偏置磁铁的不稳定或触碰等。
5.GMR
起始角度/度
68
71
74
77
80
83
86
89
92
转动角度/度
0
3
6
9
12
15
18
21
24
输出电压/mV
0
30.9
55.9
42.2
-12.3
-50.8
-49.5
-25.4
-1
起始角度/度
92
95
98
101
104
107
110
113
116
转动角度/度
24
27
30
33
36
39
42
45
48
输出电压/mV
0.0389
-10
-3.015928947
0.0387
0
0
0.0088
0
0
0.0085
-10
-3.015928947
0.0273
10
3.015928947
0.0291
-20
-6.031857895
0.0591
20
6.031857895
0.061
-30
-9.047786842
0.0951
30
9.047786842
(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;
(3)使用Excel表格处理数据的过程中可能会有精度损失;
3. GMR
实验数据及由公式B = μ0nI算得的磁感应强度如下表所示:
高电平:1V,低电平:-1V
减小磁场
增大磁场
开关动作
励磁电流/mA
3
4
5
6wk.baidu.com
7
读出电平(V)
1.951
1.951
0.004
1.951
0.004
0.004
1.951
1.951
误差分析:
(1)设置的二进制数据写入时,磁卡区域可能未严格对齐;
GMR传感器在有关领域的应用实例:
基于GMR传感器阵列的生物检测:
GMR传感器比电子传感器更灵敏、可重复性强,具有更宽的工作温度、工作电压和抗机械冲击、震动的优异性能,而且GMR传感器的工作点也不会随时间推移而发生偏移。
-30.15928947
1.981
2019.182231
励磁电流 I1(mA)
磁感应强度 B
磁阻电流 I(mA)
磁阻R(Ω)
-100
-30.15928947
1.981
2019.182231
-90
-27.14336053
1.98
2020.20202
-80
-24.12743158
1.972
2028.397566
-200
21.7
100
23.6
-100
22.3
0
23
0
22.9
-100
22.4
100
23.6
-200
21.7
200
24.3
-300
21
300
24.9
适当磁偏置150mV
励磁电流I(mA)
输出电压U(mV)
励磁电流I(mA)
输出电压U(mV)
300
149.6
-300
144.5
200
149
-200
145.4
0.233
-80
-24.12743158
0.252
80
24.12743158
0.251
-90
-27.14336053
0.260
90
27.14336053
0.260
-100
-30.15928947
0.263
100
30.15928947
0.252
以B为横坐标,输出电压U为纵坐标,作图得:
误差分析:
(1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内,反应在图像上就是最低处的输出都在y轴上,实际上应当是分别分布在y轴左右两侧的;
-1
27
52.9
33.9
-11.1
-47.3
-48.7
-27.3
-5.9
作图如下
误差分析:
(1)转动齿轮时,由于每次转动的幅度很小,由于操作原因会有转动的角度误差存在;
(2)转动齿轮后读数时,会有因读数造成的角度误差存在;
6.
实验数据如下表所示:
十进制数
211
二进制数
1
1
0
1
0
0
1
1
磁卡区域号
0
1
2

1.GMR
实验数据及由公式B = μ0nI算得的磁感应强度如下表所示:(n=24000匝/m)
励磁电流I1(mA)
磁感应强度B
输出电压U(V)
励磁电流I1(mA)
磁感应强度B
输出电压U(V)
100
30.15928947
0.265
-100
-30.15928947
0.263
90
27.14336053
0.264
0.0966
-40
-12.06371579
0.1322
40
12.06371579
0.1331
-50
-15.07964474
0.1688
50
15.07964474
0.1691
-60
-18.09557368
0.203
60
18.09557368
0.204
-70
-21.11150263
0.233
70
21.11150263
-50
-15.07964474
0.182
40
12.06371579
0.1489
-40
-12.06371579
0.1469
30
9.047786842
0.1118
-30
-9.047786842
0.1105
20
6.031857895
0.0741
-20
-6.031857895
0.0738
10
3.015928947
-70
-21.11150263
1.958
2042.900919
-60
-18.09557368
1.93
2072.53886
-50
-15.07964474
1.901
2104.155708
-40
-12.06371579
1.863
2147.074611
-30
-9.047786842
1.832
2183.406114
1.821
2196.595277
40
12.06371579
1.855
2156.334232
50
15.07964474
1.89
2116.402116
60
18.09557368
1.924
2079.002079
70
21.11150263
1.955
2046.035806
80
24.12743158
1.971
2029.426687
100
148.1
-100
146.3
0
147.3
0
147.2
-100
146.3
100
148.2
-200
145.4
200
149.2
-300
144.5
300
150.1
作图如下
误差分析:
(1)操作中,设置低磁偏置和适当磁偏置时,由于输出电压对偏置磁铁的位置变动很灵敏,故初始磁偏置时的输出电压距离要求会有误差;
测量方法:以DNA检测为例,第一步将已知序列的DNA探针链结合在包埋了自旋阀传感器的芯片表面,加入用生物素标记的DNA目标链溶液,进行充分杂交;第二步,加入被抗生物素包裹的磁性颗粒,形成生物素一抗生物素共价键,从而选择性地捕获磁性标记。
标记反应完成后,用外加梯度磁场将未参与标记的多余磁性颗粒分离,再施加激励磁场将磁标记(磁性颗粒)磁化,磁化的磁标记产生的寄生磁场引起传感器阻值的变化,从而导致反映生物反应的信号输出。
-20
-6.031857895
1.798
2224.694105
-10
-3.015928947
1.768
2262.443439
0
0
1.739
2300.172513
10
3.015928947
1.759
2274.019329
20
6.031857895
1.788
2237.136465
30
9.047786842
相关文档
最新文档