高中数学双曲线知识点总结

合集下载

高二双曲线知识点大全

高二双曲线知识点大全

高二双曲线知识点大全一、双曲线的定义和基本性质双曲线是一种平面曲线,它与一个对称轴相交于两个单独的点,被称为焦点。

双曲线的定义可表示为:离两个焦点的距离之差等于给定常数的点的轨迹。

1. 双曲线的方程双曲线的标准方程为:(x²/a²) - (y²/b²) = 1,其中a表示实轴半轴的长度,b表示虚轴半轴的长度。

2. 双曲线的焦点和准线双曲线的焦点是曲线上离两个焦点距离之差恒定的点,而准线是曲线上离两个焦点距离之和恒定的直线。

3. 双曲线的对称性双曲线关于x轴和y轴对称,中心对称于原点。

二、双曲线的图像特征1. 双曲线的离心率双曲线的离心率(e)定义为:e = c/a,其中c表示焦点到原点的距离,a表示实轴半轴的长度。

离心率决定了双曲线的形状。

2. 双曲线的渐近线双曲线具有两条渐近线,即离两个焦点越远的点趋近于渐近线。

渐近线的方程为: y = ±(b/a)x。

其中b表示虚轴半轴的长度。

3. 双曲线的顶点和直径双曲线没有顶点,但有两条对称的虚轴。

通常,我们会称双曲线中心处的点为顶点。

直径是由两个对称的点与中心点所确定的线段。

三、双曲线的基本图像和方程变换1. 双曲线的基本图像(插入关于双曲线的示意图,可手绘或导入图片)2. 改变双曲线的形状和位置双曲线的形状和位置可以通过改变方程中的常数来实现。

例如,改变a和b的值可以调整双曲线的大小和比例,而改变c的值可以使双曲线在平面上移动。

3. 双曲线的旋转双曲线可以通过旋转来改变其方向。

通过适当调整方程中的x和y的系数,可以使双曲线绕着原点旋转一定角度。

四、双曲线的相关公式与应用1. 双曲线的离心率与焦距的关系根据焦距f和离心率e之间的关系可得:e² = 1 + (f/a)²。

2. 双曲线的弦长公式双曲线上两焦点之间的弦长可以通过以下公式计算:2a(e² - 1)。

3. 双曲线的面积计算双曲线的面积可以通过积分计算得出,公式为:S = ∫(y√(1 + (dy/dx)²))dx。

双曲线知识点归纳总结

双曲线知识点归纳总结

双曲线知识点归纳总结双曲线是高中数学中的一个重要概念,属于二次曲线的一种。

其特点是曲线两支无限延伸且不相交,且中心对称。

双曲线有很多重要的性质和应用,在此对双曲线的知识点进行归纳总结。

1. 双曲线的方程形式双曲线的标准方程由两部分构成,具体形式为:(x-h)^2/a^2 - (y-k)^2/b^2 = 1 或者 (y-k)^2/b^2 - (x-h)^2/a^2 = 1其中(h, k)为中心点坐标,a和b为两支曲线的半轴长度。

2. 双曲线的焦点和直径双曲线上的点到两个焦点的距离之差的绝对值恒为常数,记作2c。

而双曲线的直径是指通过中心点且垂直于双曲线的线段,其长度为2a。

3. 双曲线的渐近线双曲线有两条渐近线,分别与两支曲线无限接近而永不相交。

渐近线的方程为:y = k1(x-h) + k2 或者 y = k1(x-h) - k2其中k1为双曲线的纵轴斜率,k2为两支曲线与渐近线的交点与中心距离之差。

4. 双曲线的对称轴双曲线的对称轴是通过两支曲线的对称轴的中点且垂直于对称轴的一条直线。

对称轴的方程为:x = h5. 双曲线的准线和离心率离心率是双曲线的一个重要性质,定义为焦点到中心点的距离与准线的长度之比,记作e。

准线是通过中心点且与两支曲线相切的一条直线。

准线的方程为:y = k 或者 y = -k其中k为焦点到中心点的距离。

6. 双曲线的图象特点双曲线的图象是两个关于中心点对称的分支,并且曲线无限延伸。

双曲线的左右两支是无边界的,而上下两支则被渐近线所截断。

双曲线在原点处有一个拐点,两支曲线在拐点处相切。

7. 双曲线的变形双曲线可以通过坐标变换进行平移、伸缩和旋转等变形。

平移是通过改变中心点的坐标实现的,伸缩是通过改变半轴长度实现的,旋转是通过改变坐标轴的方向实现的。

8. 双曲线的应用双曲线在科学和工程领域有着广泛的应用。

例如在物理学中,双曲线可以用于描述光的折射和反射现象;在工程领域,双曲线可以用于设计梁和拱桥等结构。

高中双曲线知识点总结

高中双曲线知识点总结

高中双曲线知识点总结引言在高中数学中,双曲线是一个非常重要的概念。

它作为解析几何的一个分支,在许多问题中都有着广泛的应用。

本文将总结高中双曲线的基本概念、性质以及相关的解题方法,帮助读者更加深入地理解和掌握这一知识点。

一、双曲线的定义双曲线是一种平面上的曲线,其定义可以通过以下方法得到:1.定义一条直线(称为准线)和一个点(称为焦点);2.焦点至准线距离与焦点至双曲线上任意点距离之差的绝对值等于一个常数。

二、双曲线的方程在解析几何中,双曲线通常用点到焦点和焦准距离的关系方程表示。

根据焦准距离的不同符号,双曲线可分为以下两种情况:1.椭圆型双曲线:焦准距离之差的绝对值为正数。

其方程通常为:x^2/ a^2 - y^2 / b^2 = 1,其中a和b为正实数。

2.双曲线型双曲线:焦准距离之差的绝对值为负数。

其方程通常为:x^2 / a^2 - y^2 / b^2 = -1,其中a和b为正实数。

三、双曲线的基本性质双曲线具有以下几个基本性质:1.焦距公式:对于椭圆型双曲线,焦距c满足c²=a²+b²。

对于双曲线型双曲线,焦距c满足c²=a²+b²。

2.离心率:对于椭圆型双曲线,离心率ε满足ε=c/a。

对于双曲线型双曲线,离心率ε满足ε=c/a。

3.对称轴:对于椭圆型双曲线,对称轴是与准线垂直且通过双曲线的中心。

对于双曲线型双曲线,对称轴是与准线垂直且通过双曲线的中心。

4.渐近线:对于椭圆型双曲线,有两条渐近线,其方程分别为y=±b/a* x。

对于双曲线型双曲线,有两条渐近线,其方程分别为y=±b/a * x。

5.顶点:对于椭圆型双曲线,顶点为与对称轴的交点。

对于双曲线型双曲线,顶点为与对称轴的交点。

四、双曲线的画法与性质绘制双曲线的一种常见方法是使用焦点和准线进行绘制。

根据准线的不同位置可以得到不同形状的双曲线,如下所示:1.当准线与焦点重合时,得到的是一条垂直于x轴的对称双曲线。

双曲线的知识点归纳总结高中

双曲线的知识点归纳总结高中

双曲线的知识点归纳总结高中双曲线是一种重要的数学函数,广泛应用于物理、工程、经济等领域。

本文将对双曲线的基本定义、性质、图像以及常用的求解方法进行归纳总结,以帮助高中学生更好地理解和应用双曲函数。

一、基本定义双曲线是指形如y=a cosh(x/b)或y=a sinh(x/b)的函数,其中a、b均为实数,并且b≠0。

其中cosh(x)和sinh(x)分别称为双曲余弦函数和双曲正弦函数,是指数函数的一种。

二、性质1. 双曲余弦函数cosh(x)为偶函数,满足cosh(x)=cosh(-x)。

2. 双曲正弦函数sinh(x)为奇函数,满足sinh(x)=-sinh(-x)。

3. 双曲余弦函数与双曲正弦函数的图像分别为关于x轴对称和关于原点对称的开口向上的曲线。

4. 双曲余弦函数的导数为双曲正弦函数,即cosh'(x)=sinh(x),而双曲正弦函数的导数为双曲余弦函数,即sinh'(x)=cosh(x)。

三、图像1. y=cosh(x)的图像是一条开口向上的曲线,它在x=0处取最小值1,随着x的增大而不断逼近直线y=1,即y=cosh(0)=1。

2. y=sinh(x)的图像是一条对称的曲线,它在x=0处取最小值0,随着x的增大而不断逼近直线y=x。

四、常用求解方法1. 双曲正弦函数和双曲余弦函数的加减法公式:cosh(x+y)=cosh(x)cosh(y)+sinh(x)sinh(y)sinh(x+y)=sinh(x)cosh(y)+cosh(x)sinh(y)cosh(x-y)=cosh(x)cosh(y)-sinh(x)sinh(y)sinh(x-y)=sinh(x)cosh(y)-cosh(x)sinh(y)2. 双曲函数的导数和积分公式:(cosh(x))'=sinh(x)(sinh(x))'=cosh(x)∫cosh(x)dx=sinh(x)+C∫sinh(x)dx=cosh(x)+C综上所述,双曲线是一种重要的数学函数,在高中数学学习中有广泛的应用。

高中数学经典双曲线知识点

高中数学经典双曲线知识点

双曲线:了解双曲线的定义、几何图形和标准方程;了解双曲线的简单几何性质。

重点:双曲线的定义、几何图形和标准方程,以及简单的几何性质. 难点:双曲线的标准方程,双曲线的渐进线.知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。

知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意: 1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。

(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。

因此双曲线上点的横坐标满足x≤-a 或x≥a。

高中数学双曲线知识点

高中数学双曲线知识点

高中数学双曲线知识点双曲线知识点概述1. 双曲线的定义双曲线是二次曲线的一种,它的标准方程为 \(\frac{x^2}{a^2} -\frac{y^2}{b^2} = 1\)(其中a和b为实数,a > 0, b > 0)。

在直角坐标系中,双曲线是所有满足上述方程的点的集合。

双曲线有两个分支,分别位于两个不同的象限。

2. 双曲线的性质- 对称性:双曲线关于x轴和y轴对称。

- 焦点:双曲线有两个焦点,位于x轴上,其坐标为\((\pm c, 0)\),其中c是双曲线的焦距,满足\(c^2 = a^2 + b^2\)。

- 准线:每个双曲线的分支都有自己的准线,方程为 \(x = \pm\frac{a^2}{c}\)。

- 渐近线:双曲线有两条渐近线,其方程为 \(y = \pm\frac{b}{a}x\)。

3. 双曲线的方程- 标准方程:\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)。

- 顶点:双曲线的顶点位于 \((\pm a, 0)\)。

- 焦点距离:双曲线的焦点距离为2c,其中c满足 \(c^2 = a^2 +b^2\)。

- 准线距离:点\(m\)到双曲线准线的距离为 \(\frac{|mc -a^2|}{\sqrt{m^2 + 1}}\)。

4. 双曲线的应用双曲线在许多领域都有应用,例如在天文学中描述行星轨道,在工程学中用于设计某些类型的天线和声纳系统,以及在物理学中描述某些场的分布。

5. 双曲线的图形绘制绘制双曲线时,通常需要确定其顶点、焦点、准线和渐近线的位置。

首先在坐标轴上标出顶点和焦点的位置,然后画出渐近线和准线,最后通过顶点和焦点的连线绘制出双曲线的两个分支。

6. 双曲线的变换双曲线可以通过平移和旋转进行几何变换。

平移可以通过改变方程中的常数项来实现,而旋转则需要通过更复杂的变换矩阵来完成。

7. 双曲线的方程推导双曲线的方程可以通过从圆锥曲线的一般方程 \(Ax^2 + Bxy + Cy^2+ Dx + Ey + F = 0\) 出发,通过特定的代换和简化得到。

高三双曲线的知识点

高三双曲线的知识点

高三双曲线的知识点双曲线是高中数学中的重要知识点之一,它在几何、代数等方面都有广泛的应用。

本文将详细介绍高三双曲线的基本定义、性质、方程以及常见的应用。

一、基本定义双曲线是平面上几何曲线的一种,由离心距与准线的差的绝对值等于常数的点的轨迹所组成。

双曲线可以分为两支,分别称为左支曲线和右支曲线。

二、性质1. 双曲线的离心率双曲线的离心率是指离心距与准线的差的绝对值的比值。

双曲线的离心率大于1,且离心率越大,曲线越扁。

2. 焦点和准线双曲线的两个焦点分别位于曲线的左右两端,而准线是通过离心距的中点且与曲线平行的一条直线。

3. 长轴和短轴双曲线的长轴是通过两个焦点的直线段,短轴是通过离心距的中点的直线段。

三、方程双曲线的标准方程有两种形式,分别为横轴双曲线和纵轴双曲线。

1. 横轴双曲线的方程以焦点为原点,准线为x轴,长轴与x轴平行的双曲线方程为:x^2/a^2 - y^2/b^2 = 1。

2. 纵轴双曲线的方程以焦点为原点,准线为y轴,长轴与y轴平行的双曲线方程为:y^2/a^2 - x^2/b^2 = 1。

四、应用1. 物理应用双曲线在物理学中有许多应用,比如光学中的折射和反射问题,以及力学中的悬链线等。

2. 经济学应用在经济学中,利润曲线常常呈现双曲线形状,双曲线还可以用来表示供需曲线、收入分配曲线等。

3. 电子学应用在电子学中,双曲线常常用来描述和分析交流电路的性质和行为。

总结:高三双曲线的知识点包括基本定义、性质、方程及应用。

了解双曲线的特点与性质,可以帮助我们在几何与代数问题中灵活运用,并且在实际应用中有重要的价值。

通过深入学习双曲线的知识,我们可以更好地理解和应用数学,为将来的学习与工作打下坚实的基础。

高中数学双曲线知识点总结

高中数学双曲线知识点总结

高中数学双曲线知识点总结一、双曲线的定义双曲线是由平面上距离不变的所有点的轨迹组成的曲线。

具体地说,双曲线是平面上的一条曲线,其上的每一点到两个给定的不同点F1和F2的距离之差是一个常数。

在平面直角坐标系中,双曲线的定义可以表示为:一个点到两个不同点F1和F2的距离之差是一个常数e,即PF1-PF2=e。

二、双曲线的性质1. 双曲线包括两条分支,它们分别靠近两个焦点。

对于双曲线的每个分支来说,离焦点越远,离另一个分支越近。

2. 双曲线的两个焦点之间的距离称为焦距,是双曲线的重要参量,通常用2c表示。

3. 双曲线的渐近线是双曲线的一条特殊的直线,与双曲线有两个不同的交点。

双曲线的两条分支在渐近线上无限趋近。

4. 双曲线具有对称性,关于两个坐标轴都具有对称性,即当双曲线与一个坐标轴相交时,在另一个坐标轴上也有交点。

5. 双曲线有一个中心,它是两个焦点的中点,也是双曲线的对称中心。

6. 双曲线的方程通常可以表示为x^2/a^2-y^2/b^2=1或者y^2/b^2-x^2/a^2=1,其中a 和b分别是椭圆的轴长。

三、双曲线的方程在平面直角坐标系中,双曲线的一般方程可以表示为:1. 若横轴为实轴,纵轴为虚轴,则双曲线的方程为x^2/a^2-y^2/b^2=1;2. 若横轴为虚轴,纵轴为实轴,则双曲线的方程为y^2/b^2-x^2/a^2=1。

在双曲线的方程中,a和b分别代表横轴和纵轴方向的轴长,e为离心率。

四、双曲线的图像1. 当a>b时,双曲线的中心在x轴上,两分支朝向y轴;2. 当a<b时,双曲线的中心在y轴上,两分支朝向x轴。

双曲线的图像可以通过手工绘图或者计算机绘图软件来绘制,使学生更好地理解双曲线的性质和特点。

双曲线的图像在实际生活中也有许多应用,比如在光学中的抛物面镜和双曲面镜、在通信中的双曲线天线和成像原理等。

五、双曲线的相关定理和定律1. 双曲线的面积定理:双曲线的面积等于焦距的一半与两个辅助椭圆的面积之和。

高中双曲线知识点

高中双曲线知识点

高中双曲线知识点在高中数学中,双曲线是一个重要的曲线类型,理解和掌握双曲线的相关知识对于解决数学问题和应对考试都具有重要意义。

接下来,咱们就来详细聊聊高中双曲线的那些事儿。

一、双曲线的定义平面内到两个定点 F₁、F₂的距离之差的绝对值等于常数 2a(2a <|F₁F₂|)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距,记为 2c。

需要注意的是,当 2a =|F₁F₂|时,轨迹是以 F₁、F₂为端点的两条射线;当 2a >|F₁F₂|时,轨迹不存在。

二、双曲线的标准方程1、焦点在 x 轴上的双曲线标准方程为:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2= a^2 + b^2\),焦点坐标为\((\pm c, 0)\)。

2、焦点在 y 轴上的双曲线标准方程为:\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2= a^2 + b^2\),焦点坐标为\((0, \pm c)\)。

这里的 a 表示双曲线的实半轴长,b 表示双曲线的虚半轴长,c 表示半焦距。

三、双曲线的几何性质1、范围对于焦点在 x 轴上的双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),x 的取值范围是\(x \leq a\)或\(x \geq a\);y 的取值范围是 R。

对于焦点在 y 轴上的双曲线\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\),y 的取值范围是\(y \leq a\)或\(y \geq a\);x 的取值范围是 R。

2、对称性双曲线关于 x 轴、y 轴和原点都对称。

3、顶点焦点在 x 轴上的双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\)的顶点坐标为\((\pm a, 0)\);焦点在 y 轴上的双曲线\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\)的顶点坐标为\((0, \pm a)\)。

高三数学双曲线知识点总结归纳

高三数学双曲线知识点总结归纳

高三数学双曲线知识点总结归纳双曲线是高中数学中重要的一章,它不仅在数学理论体系中具有重要作用,还在实际生活中有广泛的应用。

下面是对高三数学双曲线知识点的总结与归纳。

一、双曲线的定义和基本形态双曲线是平面上各点到两个定点的距离之差等于常数的轨迹。

双曲线由两个分离的支线组成,其基本形态可以分为两种类型:横轴双曲线和纵轴双曲线。

横轴双曲线的中心在横轴上,纵轴双曲线的中心在纵轴上。

二、双曲线的方程1. 横轴双曲线的方程(1)标准方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(2)近似方程:$y=\pm \frac{b}{a} \sqrt{x^2-a^2}$2. 纵轴双曲线的方程(1)标准方程:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(2)近似方程:$x=\pm \frac{a}{b} \sqrt{y^2-a^2}$三、双曲线的性质1. 焦点和准线:横轴双曲线有两个焦点和两条准线,纵轴双曲线也有两个焦点和两条准线。

2. 对称性:双曲线关于横轴、纵轴和原点对称。

3. 渐近线:横轴双曲线有两条渐近线,纵轴双曲线也有两条渐近线。

4. 离心率:双曲线的离心率定义为焦距与准线之间的比值,离心率大于1。

5. 直径:双曲线的直径是通过焦点的直线段,并且双曲线上的每一点都在某条直径上。

四、双曲线的图像与应用1. 横轴双曲线的图像横轴双曲线的图像呈现出两个分离的支线,它在物理学、电子学和光学中有广泛的应用,例如抛物面反射器、双折式天线等。

2. 纵轴双曲线的图像纵轴双曲线的图像同样由两个分离的支线构成,它在物理学、力学、天文学等领域有广泛的应用,例如行星运动的轨道、卫星发射轨道等。

五、双曲线的解析几何应用1. 双曲线的切线双曲线的切线过双曲线上的一点$P(x_0, y_0)$,切线方程为$\frac{xx_0}{a^2}-\frac{yy_0}{b^2}=1$。

2. 双曲线的渐近线横轴双曲线的渐近线方程为$y=\pm \frac{b}{a} x$,纵轴双曲线的渐近线方程为$x=\pm \frac{a}{b} y$。

双曲线高考知识点

双曲线高考知识点

双曲线高考知识点双曲线是高中数学中的一个重要内容,涉及到曲线的方程、性质以及应用等方面。

下面,我们将详细介绍双曲线的相关知识点。

一、双曲线的定义与基本性质双曲线是一种独特的曲线,它和椭圆、抛物线以及直线构成了二次曲线的四个基本类型。

双曲线的方程可以表示为x^2/a^2 - y^2/b^2 = 1或者x^2/a^2 - y^2/b^2 = -1(以中心为原点的情况)。

1. 双曲线的焦点与准线双曲线与焦点和准线密切相关。

焦点是双曲线上的一点,可以用来确定双曲线的形状和位置。

准线是双曲线的一条渐近线,具有特殊的性质。

双曲线两个焦点之间的距离为2c,准线与中心的距离为ae。

2. 双曲线的对称性双曲线具有与坐标轴相关的对称性。

双曲线关于x轴和y轴分别对称,也关于原点对称。

二、双曲线的图像与分类通过选择不同的参数,双曲线可以呈现出不同的形状。

根据双曲线的方程,我们可以将其分为以下几种类型:1. 水平方向的双曲线当双曲线的方程为x^2/a^2 - y^2/b^2 = 1时,a^2 > b^2,双曲线的长轴与x轴平行。

2. 垂直方向的双曲线当双曲线的方程为x^2/a^2 - y^2/b^2 = -1时,a^2 < b^2,双曲线的长轴与y轴平行。

三、双曲线的应用双曲线广泛应用于数学和物理学等领域,特别是在电磁学和光学中有重要的应用。

1. 超越双曲函数双曲函数是双曲线的重要应用之一。

它包括双曲正弦函数sinh(x)、双曲余弦函数cosh(x)以及双曲正切函数tanh(x)等。

这些函数在数学和物理中都有着广泛的应用。

2. 焦点和准线的应用双曲线的焦点和准线在物理光学中有着重要的应用。

例如,双曲线反射镜就是基于双曲线的焦点和准线性质来设计的,可以用来改变光线的方向和聚焦光线。

四、双曲线的解析几何在解析几何中,双曲线与直线、圆等几何图形之间存在着密切的关系,可以通过解析几何的方法来研究双曲线的性质。

1. 双曲线的判别式确定一个二次曲线是否是双曲线可以使用双曲线的判别式D=b^2-a^2,其中a和b分别是双曲线的参数。

高中双曲线知识点归纳

高中双曲线知识点归纳

高中双曲线知识点归纳
双曲线是高中数学中的一个重要概念,以下是一些关于双曲线的知识点归纳:
1. 双曲线的定义:平面内,到两个定点的距离之差的绝对值为
常数 2a(小于这两个定点间的距离) 的点的轨迹称为双曲线。

2. 双曲线的焦点、焦距:双曲线的焦点是双曲线上任意一点到
两个定点的距离之差为 2a 的点,焦距是双曲线上任意一点到焦点的距离为 2c 的点,其中 c 为双曲线的离心率。

3. 双曲线的准线:双曲线的准线是过焦点且平行于一条支线的
直线。

4. 双曲线的离心率:双曲线的离心率 e=c/a,其中 a 为双曲线的左焦点到右焦点的距离,b 为双曲线的右焦点到左焦点的距离。

5. 双曲线的参数方程:双曲线的参数方程通常采用 x=acosθ
+bsinθ的形式,其中 a、b 为双曲线的离心率和半焦距,θ为参数。

6. 双曲线的性质:双曲线的切线平行于 x 轴,两条切线之间的距离等于双曲线的离心率;双曲线的渐近线是 x 轴和 y 轴,渐近线
是双曲线在不同区间内的对称性;双曲线在 y 轴下方交 x 轴于两点,在 y 轴上方交 x 轴于两点。

7. 双曲线的坐标轴截距:双曲线在 x 轴和 y 轴上的截距分别
为 b 和 a,即双曲线在 x 轴和 y 轴上的截距分别为负半轴和正半轴。

8. 双曲线的对称性:双曲线在不同区间内具有不同的对称性,
包括轴对称性、中心对称性、交点对称性等。

这些知识点是高中数学中双曲线内容的重点和难点,需要考生熟练掌握。

高三数学知识点双曲线椭圆

高三数学知识点双曲线椭圆

高三数学知识点双曲线椭圆高三数学知识点:双曲线和椭圆双曲线和椭圆是高中数学中重要的曲线类别,它们在数学和实际应用中具有广泛的应用。

本文将详细介绍双曲线和椭圆的定义、性质、方程及其应用。

一、双曲线1. 定义及性质双曲线是由平面上满足一定条件的点构成的曲线。

它的定义是:平面内到两个给定点的距离之差的绝对值等于常数的点的轨迹。

两个给定点叫做焦点,常数叫做离心率。

双曲线的形状与焦点和离心率有关。

2. 方程双曲线的标准方程有两种形式:独立变量在分子和分母上的方程和独立变量在一项上的方程。

常见的双曲线方程有:横轴双曲线方程、纵轴双曲线方程、一般方程等。

3. 性质和参数双曲线具有许多重要的性质和参数,如焦点、离心率、短轴、长轴、渐进线等,这些性质和参数在解决具体问题和计算曲线方程时非常重要。

4. 应用双曲线在物理学、工程学、天文学等领域中有广泛的应用。

例如,双曲线可以描述天体的轨迹、椭圆轨道上的行星运动等。

二、椭圆1. 定义及性质椭圆是平面上到两个定点的距离之和等于常数的点的轨迹。

两个定点称为焦点,常数称为离心率。

椭圆的形状与焦点和离心率有关。

2. 方程椭圆的标准方程也有两种形式:横轴椭圆方程和纵轴椭圆方程。

椭圆方程可以用于描述椭圆的形状和位置。

3. 性质和参数椭圆也具有一些重要的性质和参数,如焦点、离心率、长轴、短轴、焦距、半焦距等。

这些性质和参数对于解决问题和计算曲线方程非常有帮助。

4. 应用椭圆在物理学、天文学、力学、电磁学等领域中有广泛的应用。

例如,椭圆可以用于描述行星轨道、天体运动、电子轨道等。

三、双曲线与椭圆的区别与联系1. 区别双曲线和椭圆的最大区别在于它们到焦点的距离之和是否等于常数。

双曲线是距离之差的绝对值等于常数,而椭圆是距离之和等于常数。

2. 联系双曲线和椭圆具有一定的联系和相似之处。

它们都是由到焦点的距离之和或之差等于常数的点构成的曲线,因此它们在数学中有类似的性质和参数。

四、总结双曲线和椭圆是高三数学中重要的知识点,它们的定义、性质、方程和应用都需要我们深入理解。

双曲线的基本知识点总结

双曲线的基本知识点总结

双曲线的基本知识点总结双曲线是高中数学中的一种常见曲线,它是解析几何学中的重要内容。

双曲线的研究对于理解曲线的性质和方程的解有着重要意义。

下面,我将从定义、性质、图像和方程等方面对双曲线的基本知识点进行总结。

一、定义:双曲线可以由平面上满足一定条件的点构成,其定义可以有多种形式。

一种常见的定义是:给定一个定点F(称为焦点)和一条直线l(称为准线),满足对于平面上的任意点P,其到焦点的距离减去其到准线的距离的差值始终等于常数e(即PF - PD = e,其中PD是点P到直线l的距离),那么P的轨迹就是双曲线。

二、性质:1. 双曲线具有对称性,关于焦点和准线对称。

2. 双曲线有两支,称为左支和右支,两支之间不存在交点。

3. 双曲线与两条渐近线相切于无穷远处。

4. 双曲线没有中心点,也没有对称轴。

5. 双曲线的曲度半径大于0,二阶导数也大于0。

三、图像:双曲线的图像可以通过绘制焦点和准线来直观地理解。

对于焦点F(x0, y0)和准线y = a,我们可以通过确定其参数a和e来绘制双曲线的图像。

当参数e小于1时,双曲线的形状较为“扁平”,焦点与准线的距离较小;当参数e等于1时,双曲线的形状较为“标准”,焦点与准线的距离相等;当参数e大于1时,双曲线的形状较为“瘦长”,焦点与准线的距离较大。

四、方程:双曲线的方程可以通过焦点、准线和参数e来确定。

根据双曲线的定义可以得到,双曲线的方程为R = √(x^2 + y^2) ±e√(x^2 - y^2)。

其中,正号对应左支,负号对应右支。

当焦点在x轴上时,双曲线的方程为y^2/a^2 - x^2/b^2 = 1;当焦点在y轴上时,双曲线的方程为x^2/a^2 - y^2/b^2 = 1。

其中,a和b分别表示双曲线横轴和纵轴的长度。

综上所述,双曲线作为解析几何学中的重要内容,具有许多基本知识点。

我们可以通过对双曲线的定义、性质、图像和方程的研究,来深入理解双曲线的性质和特点。

高中数学选修2-1-双曲线的方程及其性质

高中数学选修2-1-双曲线的方程及其性质

双曲线的方程及其性质知识集结知识元双曲线的定义知识讲解1.双曲线的定义【定义】双曲线(Hyperbola)是指与平面上到两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹.双曲线是圆锥曲线的一种,即圆锥面与平面的交截线.双曲线在一定的仿射变换下,也可以看成反比例函数.两个定点F1,F2叫做双曲线的焦点(focus),定直线是双曲线的准线,常数e是双曲线的离心率.【标准方程】①(a,b>0),表示焦点在x轴上的双曲线;②(a,b>0),表示焦点在y轴上的双曲线.【性质】这里的性质以(a,b>0)为例讲解:①焦点为(±c,0),其中c2=a2+b2;②准线方程为:x=±;③离心率e=>1;④渐近线:y=±x;⑤焦半径公式:左焦半径:r=|ex+a|,右焦半径:r=|ex﹣a|.【实例解析】例1:双曲线﹣=1的渐近线方程为解:由﹣=0可得y=±2x,即双曲线﹣=1的渐近线方程是y=±2x.故答案为:y=±2x.这个小题主要考察了对渐近线的理解,如果实在记不住,可以把那个等号后面的1看成是0,然后因式分解得到的两个式子就是它的渐近线.例2:已知双曲线的一条渐近线方程是x﹣2y=0,且过点P(4,3),求双曲线的标准方程解:根据题意,双曲线的一条渐近线方程为x﹣2y=0,设双曲线方程为﹣y2=λ(λ≠0),∵双曲线过点P(4,3),∴﹣32=λ,即λ=﹣5.∴所求双曲线方程为﹣y2=﹣5,即:﹣=1.一般来说,这是解答题的第一问,常常是根据一些性质求出函数的表达式来,关键是找到a、b、c三者中的两者,最后还要判断它的焦点在x轴还是y轴,知道这些参数后用待定系数法就可以直接写出函数的表达式了.【考点点评】这里面的两个例题是最基本的,必须要掌握,由于双曲线一般是在倒数第二个解答题出现,难度一般也是相当大的,在这里可以有所取舍,对于基础一般的同学来说,尽量的把这些基础的分拿到才是最重要的,对于还剩下的部分,尽量多写.例题精讲双曲线的定义例1.'已知点A(-,0),B(,0),动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线y=x-2交于D、E两点,求线段DE的中点坐标及其弦长DE.'例2.'若动点P到两个定点F1(-1,0)、F2(1,0)的距离之差的绝对值为定值a(0≤a≤2),试求动点P的轨迹.'例3.'已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2.动圆M与两圆都相切,求动圆圆心M的轨迹方程.'双曲线的标准方程知识讲解1.双曲线的标准方程【知识点的认识】双曲线标准方程的两种形式:(1)(a>0,b>0),焦点在x轴上,焦点坐标为F(±c,0),焦距|F1F2|=2c;(2)(a >0,b >0),焦点在y 轴上,焦点坐标为F (0,±c ),焦距|F 1F 2|=2c .两种形式相同点:形状、大小相同;都有a >0,b >0;c 2=b 2+a 2两种形式不同点:位置不同;焦点坐标不同.标准方程(a >0,b >0)中心在原点,焦点在x 轴上(a >0,b >0)中心在原点,焦点在y 轴上图形顶点(a ,0)和(﹣a ,0)(0,a )和(0,﹣a )对称轴x 轴、y 轴,实轴长2a ,虚轴长2b焦点在实轴上x 轴、y 轴,实轴长2a ,虚轴长2b焦点在实轴上焦点F 1(﹣c ,0),F 2(c ,0)F 1(0,﹣c ),F 2(0,c )焦距|F 1F 2|=2c (c >0)c 2=a 2+b 2|F 1F 2|=2c (c >0)c 2=a 2+b 2离心率e =(e >1)e =(e >1)渐近线即y =±x即y =±x准线x =±y =±例题精讲双曲线的标准方程例1.'求下列双曲线的实轴、虚轴的长,顶点、焦点的坐标和离心率:(1)x 2-8y 2=32;(2)9x 2-y 2=81;(3)x 2-y 2=-4;(4)-=-1.'例2.'已知双曲线=1的离心率e =3,直线y =x +2与双曲线交于A ,B 两点,若OA ⊥OB ,求双曲线的方程.'例3.'双曲线=1(a >0,b >0)过点P (-3,2),过双曲线的右焦点且斜率为的直线与直线x =和x=-(c 2=a 2+b 2)分别相交与点M ,N ,若以|MN |为直径的圆过原点,求此双曲线的方程.'双曲线的性质知识讲解1.双曲线的性质【知识点的知识】双曲线的标准方程及几何性质标准方程(a >0,b >0)(a >0,b >0)图形性焦点F 1(﹣c ,0),F 2(c ,0)F 1(0,﹣c ),F 2(0,c )焦距|F 1F 2|=2c |F 1F 2|=2c 范围|x |≥a ,y ∈R|y |≥a ,x ∈R对称关于x 轴,y 轴和原点对称顶点(﹣a ,0).(a ,0)(0,﹣a )(0,a )轴实轴长2a ,虚轴长2b质离心率e =(e>1)准线x =±y =±渐近线±=0±=例题精讲双曲线的性质例1.下列曲线中实轴长为的是()A .B .C .D .例2.双曲线C 的对称轴与坐标轴重合,两个焦点分别为F 1,F 2,虚轴的一个端点为A ,若△AF 1F 2是顶角为120°的等腰三角形.则双曲线C的离心率为()A .B .C .D .2例3.已知中心在原点,对称轴为坐标轴的双曲线的一条渐近线方程为,则该双曲线的离心率是()A .B .C .或D .或当堂练习单选题练习1.已知F1,F2分别是双曲线C:的左、右焦点,AB是右支上过F2的一条弦,且|AF1|:|AB|=3:4,则C的离心率是()A.B.5C.D.练习2.已知F1为双曲线C:=1(b>a>0)的左焦点,过F1作一条渐近线的垂线,垂足为A,与另一条渐近线交于点B.若AB的中点为M(1,8),则此双曲线C的离心率为()A.B.2C.D.练习3.双曲线C:=1(a>0,b>0)的左右焦点分别为F1,F2,C的右支上一点P满足∠F1PF2=60°,若坐标原点O到直线PF1距离是,则C的离心率为()A.B.C.2D.3练习4.设双曲线的左、右焦点分别为F1,F2,过F2的直线与双曲线的右支交于两点A,B,若|AF1|:|AB|=3:4,|BF2|=3|AF2|,则双曲线C的离心率是()D.5 A.B.C.练习5.已知双曲线的两条渐近线分别为直线l1,l2,经过右焦点F且垂直于l1的直线l分别交l1,l2于A,B两点,且,则该双曲线的离心率为()A.B.C.D.练习6.F1,F2是双曲线-=1(a>0,b>0)的左右焦点,若双曲线上存在点P满足=-a2,则双曲线离心率的取值范围为()A.[,+∞)B.[,+∞)C.(1,]D.(1,]填空题练习1.已知P为双曲线C:-=1(a>0,b>0)右支上的任意一点,经过点P的直线与双曲线C 的两条渐近线分别相交于A,B两点.若点A,B分别位于第一、四象限,O为坐标原点,当=时,△AOB的面积为2b,则双曲线C的实轴长为__。

高中双曲线知识点总结

高中双曲线知识点总结

高中双曲线知识点总结1. 双曲线的定义双曲线是一种二次曲线,由平面上的一点P到两个给定点F1和F2的距离之差等于常数2a确定。

2. 双曲线的标准方程双曲线的标准方程为$$\\frac{x^2}{a^2} - \\frac{y^2}{b^2} = 1$$其中a和b分别代表双曲线的横轴半轴长和纵轴半轴长,双曲线的中心在原点(0,0)处。

3. 双曲线的图像特征•双曲线关于原点对称。

•双曲线有两个分离的不相交的枝。

•双曲线与x轴和y轴相交于四个点,分别为(±a, 0)和(0, ±b)。

4. 双曲线的离心率双曲线的离心率定义为$$e = \\sqrt{1 + \\frac{b^2}{a^2}}$$离心率是用来衡量双曲线形状的参数,e的值大于1,表示双曲线的形状更加扁平。

离心率越大,双曲线的枝越“开”,离心率等于1时,双曲线退化为一条抛物线。

5. 双曲线的焦点和直径双曲线的焦点为F1和F2,焦点到中心的距离为c,满足关系式$$c = \\sqrt{a^2 + b^2}$$双曲线的直径为两个焦点之间的距离,即D=2a6. 双曲线的渐近线双曲线有两条渐近线,分别是直线y = ±(b/a)x,当x趋向于±∞时,双曲线的一支趋向于渐近线。

渐近线与双曲线相切的点称为渐近点。

7. 双曲线的参数方程双曲线的参数方程为$$x = a \\cosh t$$和$$y = b \\sinh t$$其中t为参数,cosh和sinh分别为双曲函数。

8. 双曲线的性质双曲线具有以下性质:•双曲线是无界曲线,极限曲线为渐近线。

•双曲线的切线与直径的夹角为45°。

•双曲线的弧长公式为$$S = a(\\theta - \\sinh\\theta)$$•,其中θ为渐近线和中心到曲线之间的夹角。

9. 双曲线的应用双曲线在数学和物理中有广泛的应用,特别是在椭圆方程、电磁场、光学等领域中。

双曲线的特殊形式也常常出现在数学分析中的级数、积分等中。

高二数学双曲线知识点

高二数学双曲线知识点

高二数学双曲线知识点双曲线是高中数学中重要的曲线类型之一,它具有许多独特的性质和应用。

本文将介绍高二数学中关于双曲线的知识点。

一、定义与基本概念1. 双曲线的定义:双曲线是平面上一个动点与两个给定点(称为焦点)之间的距离差的绝对值等于一个定值(称为离心率)的轨迹。

2. 双曲线的几何特征:双曲线是非闭合曲线,两支曲线相似但不相交。

3. 双曲线的标准方程:一般形式为x²/a² - y²/b² = 1或y²/a² - x²/b²= 1。

4. 双曲线的焦点与离心率关系:离心率e的值决定了焦点与曲线形状的关系,e大于1时,焦点位于x轴;e小于1时,焦点位于y轴。

二、双曲线的性质1. 集中性质:双曲线的焦点位于x轴或y轴上,并且距离原点越远,离心率越大。

2. 对称性质:双曲线关于x轴、y轴和原点分别对称。

3. 渐进线性质:双曲线的渐进线是x轴和y轴,即曲线无限延伸但不与x轴和y轴相交。

4. 双曲线的渐成线性质:双曲线的渐成线是曲线两支的连接线段。

三、曲线的参数方程1. 参数方程的定义:对于双曲线,可以使用参数方程来描述曲线上的点的位置。

常用的参数方程有x = asec⁡t,y = btan⁡t和x = acos⁡t,y = bsin⁡t。

2. 参数方程的图像特征:通过改变参数t的取值范围,可以观察到双曲线在平面上的不同部分以及曲线的形状。

四、双曲线的应用1. 物理中的应用:双曲线常用于描述天体运行轨迹、电磁波等物理现象。

2. 经济学中的应用:双曲线可以用于描述供需曲线、价格水平等经济学概念。

3. 工程中的应用:双曲线可用于工程设计和建模,如道路、桥梁等工程结构的设计。

总结:双曲线是高二数学中重要的曲线类型,它具有许多独特的性质和应用。

了解双曲线的定义、基本概念、性质以及参数方程的描述方法,可以帮助我们更好地理解和应用这一曲线类型。

高中数学双曲线知识点归纳

高中数学双曲线知识点归纳

高中数学双曲线知识点归纳1. 双曲线的定义双曲线是数学中的一种曲线形状,定义为平面上满足一定关系式的点的集合。

双曲线由两个分离的曲线支构成,且每个支都是无限延伸的。

双曲线有许多重要的性质和应用。

2. 双曲线的标准方程双曲线的标准方程可以表示为以下形式:- 横轴双曲线方程:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,其中$a>0$且$b>0$。

- 纵轴双曲线方程:$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$,其中$a>0$且$b>0$。

3. 双曲线的焦点和准线双曲线的焦点和准线是双曲线的重要概念。

- 焦点:对于横轴双曲线,焦点是位于横轴上的两个点;对于纵轴双曲线,焦点是位于纵轴上的两个点。

焦点具有很多重要的性质,如与双曲线的离心率相关等。

- 准线:对于横轴双曲线,准线是位于横轴上的两个点;对于纵轴双曲线,准线是位于纵轴上的两个点。

准线也与双曲线的离心率有关。

4. 双曲线的性质双曲线具有许多特殊的性质,包括但不限于:- 双曲线是对称的,关于$x$轴和$y$轴都具有对称性。

- 双曲线的离心率为超过1的正实数,离心率越大,曲线形状越扁平。

- 双曲线的渐近线是曲线的两个分支的极限位置,与曲线的形状和方程有关。

5. 双曲线的应用双曲线在数学和其他领域中有广泛的应用。

- 物理学中的抛物线轨迹、光学中的抛物面反射、天体力学中的行星轨道等问题都涉及到双曲线。

- 经济学中的供求曲线、成本曲线等也可以用双曲线进行建模和分析。

以上是对高中数学中双曲线知识点的简要归纳,希望对你有所帮助。

双曲线是数学中一个重要而有趣的概念,深入学习和应用双曲线将能拓宽你的数学视野。

高三双曲线的知识点总结

高三双曲线的知识点总结

高三双曲线的知识点总结高三阶段是学生面临高考冲刺阶段的重要时期。

在数学中,双曲线是一个重要的概念,它在高等数学中具有广泛的应用。

在此,我将对高三阶段学习中的双曲线相关知识点进行总结和归纳。

一、双曲线的基本定义双曲线是指平面上到两个固定点(称为焦点)的距离之差等于常数的点的集合。

一般来说,双曲线可以分为两类:横向双曲线和纵向双曲线。

- 横向双曲线的方程一般形式为:(x - h)² / a² - (y - k)² / b² = 1,其中(a > 0, b > 0)。

- 纵向双曲线的方程一般形式为:(y - k)² / a² - (x - h)² / b² = 1,其中(a > 0, b > 0)。

双曲线的标准方程:双曲线的标准方程一般形式为x^2 / a^2 -y^2 / b^2 = c,其中a、b、c是常数。

二、双曲线的图像特征从双曲线的方程可以看出,双曲线的图像具有以下特点:1. 具有两个分支:双曲线有两个分离的分支,分别沿焦点的两侧延伸。

2. 双曲线的对称轴:对称轴是双曲线的一条轴线,通过双曲线的中心点,垂直于双曲线的两个分支,并且与两个分支都相交。

3. 焦点和直线的关系:焦点是双曲线的一个重要特点,它与双曲线上的点之间的距离之差等于常数。

同时,双曲线上的每个点到焦点的距离之和等于双曲线的长轴的长度。

4. 双曲线的渐近线:双曲线的渐近线是双曲线的两个分支在无限远处趋于的直线。

横向双曲线的渐近线是y = ±(b / a) * x,纵向双曲线的渐近线是y = ±(a / b) * x。

5. 双曲线的离心率:离心率是双曲线的一个重要参数,它决定了双曲线的形状。

离心率的计算公式为e = √(a^2 + b^2) / a。

三、双曲线的性质和应用1. 高中阶段,双曲线的主要性质是焦点、顶点、长轴、短轴之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学双曲线知识点总结平面内到两个定点,的距离之差的绝对值是常数2a(2a<)的点的轨迹。

莁方程蒀简图肈蚃薄范围 肈顶点 虿焦点 袃渐近线 螁离心率袀对称轴蒈关于x 轴、y 轴及原点对称袃关于x 轴、y 轴及原点对称膂准线方程薂a 、b 、c 的关系考点题型一 求双曲线的标准方程1、给出渐近线方程ny x m=±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线22221x y a b -=共渐近线的方程可设为2222(0)x y a bλλ-=≠。

2、注意:定义法、待定系数法、方程与数形结合。

【例1】求适合下列条件的双曲线标准方程。

(1)膃_蚀x蚆_螃y薄_螂x羈_袇y(2) 虚轴长为12,离心率为54; (3)(4) 焦距为26,且经过点M (0,12); (5)(6) 与双曲线221916x y -=有公共渐进线,且经过点()3,23A -。

解:(1)设双曲线的标准方程为22221x y a b -=或22221y x a b-=(0,0)a b >>。

由题意知,2b=12,c e a ==54。

∴b=6,c=10,a=8。

∴标准方程为236164x -=或2216436y x -=。

(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。

又2c=26,∴c=13。

∴222144b c a =-=。

∴标准方程为22114425y x -=。

(3)设双曲线的方程为2222x y a b λ-=(3,23A -在双曲线上∴(22331916-= 得14λ=所以双曲线方程为224194x y -=题型二 双曲线的几何性质方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出ce a=和222c a b =+的关系式。

【例2】双曲线22221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c 。

求双曲线的离心率e 的取值范围。

解:直线l 的方程为1x ya b-=,级bx+ay-ab=0。

由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离1d =,同理得到点(-1,0)到直线l 的距离2d =,122abs d d c=+==。

由s ≥45c ,得2ab c ≥45c ,即252c ≥。

于是得22e ≥,即42425250e e -+≤。

解不等式,得2554e ≤≤。

由于e >1>0,所以e 的取值范围是2e ≤≤【例3】设F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=,且︱AF 1︱=3︱AF 2︱,求双曲线的离心率。

解:∵1290F AF ∠=∴222124AF AF c +=又︱AF 1︱=3︱AF 2︱,∴12222AF AF AF a -==即2AF a =,∴222222212222910104AF AF AF AF AF a c +=+===,∴2c a ==即e =题型三 直线与双曲线的位置关系方法思路:1、研究双曲线与直线的位置关系,一般通过把直线方程与双曲线方程组成方程组,即2222220Ax By C b x a y a b++=⎧⎨-=⎩,对解的个数进行讨论,但必须注意直线与双曲线有一个公共点和相切不是等价的。

2、直线与双曲线相交所截得的弦长:【例4】如图,已知两定点12(F F ,满足条件212PF PF-=的点P 的轨迹是曲线E ,直线y=kx-1与曲线E 交于A 、B 两点,如果C ,使OA OB mOC +=,求(1)曲线E 的方程;(2)直线AB 的方程;(3)m 的值和△ABC 的面积S 。

解:由双曲线的定义可知,曲线E是以12(F F 为焦点的双曲线的左支,且c =a=1,易知1b ==。

故直线E 的方程为221(0)x y x -=<,(2)设11A(x ,y ), 22B(x ,y ),由题意建立方程组22y=kx-1x -y =1⎧⎨⎩消去y ,得22(1)220k x kx -+-=。

又已知直线与双曲线左支交于两点A 、B ,有22212212210,(2)8(1)0,20,120.1k k k k x x k x x k ⎧-≠⎪=+->⎪⎪-⎨+=<-⎪⎪-=>⎪-⎩解得1k <<-。

又∵12AB x x =-=依题意得=,整理后得422855250k k -+=,∴257k =或254k =。

但1k <<-,∴k =。

故直线AB的方程为102x y ++=。

(3)设(,)c c C x y ,由已知OA OB mOC +=,得1122(,)(,)(,)c c x y x y mx my +=,∴1212(,)(,)(0)c c x x y y x y m m m++=≠。

又12221kx x k +==--212122222()22811k y y k x x k k +=+-=-==--,∴点8)C m。

将点C 的坐标代入曲线E 的方程,的2280641m m -=,得4m =±,但当4m =-时,所得的点在双曲线的右支上,不合题意。

∴4m =,C点的坐标为(2),C 到AB13=,∴△ABC的面积1123S =⨯= 一、二、抛物线高考动向:抛物线是高考每年必考之点,选择题、填空题、解答题皆有,要求对抛物线定义、性质、直线与其关系做到了如指掌,在高考中才能做到应用自如。

(一)(二) 知识归纳(二)典例讲解题型一 抛物线的定义及其标准方程方法思路:求抛物线标准方程要先确定形式,因开口方向不同必要时要进行分类讨论,标准方程有时可设为2y mx =或2(0)x my m =≠。

【例5】根据下列条件求抛物线的标准方程。

(1)抛物线的焦点是双曲线22169144x y -=的左顶点;(2)经过点A (2,-3);(3)焦点在直线x-2y-4=0上;(4)抛物线焦点在x 轴上,直线y=-3与抛物线交于点A ,︱AF ︱=5.解:(1)双曲线方程可化为221916x y -=,左顶点是(-3,0)由题意设抛物线方程为22(0)y px p =->且32p-=-,∴p=6.∴方程为212y x =-(2)解法一:经过点A (2,-3)的抛物线可能有两种标准形式:y 2=2px 或x 2=-2py .点A (2,-3)坐标代入,即9=4p ,得2p =29点A (2,-3)坐标代入x 2=-2py ,即4=6p ,得2p =34∴所求抛物线的标准方程是y 2=29x 或x 2=-34y解法二:由于A (2,-3)在第四象限且对称轴为坐标轴,可设方程为2y mx =或2x ny =,代入A 点坐标求得m=29,n=-34,∴所求抛物线的标准方程是y 2=29x 或x 2=-34y(3)令x=0得y=-2,令y=0得x=4,∴直线x-2y-4=0与坐标轴的交点为(0,-2),(4,0)。

∴焦点为(0,-2),(4,0)。

∴抛物线方程为28x y =-或216y x =。

(4)设所求焦点在x 轴上的抛物线方程为22(0)y px p =≠,A (m ,-3),由抛物线定义得p 52AF m ==+,又2(3)2pm -=,∴1p =±或9p =±,故所求抛物线方程为22y x =±或218y x =±。

题型二 抛物线的几何性质方法思路:1、凡设计抛物线上的点到焦点距离时,一般运用定义转化为到准线l 的距离处理,例如若P (x 0,y 0)为抛物线22(0)y px p =>上一点,则02p PF x =+。

2、若过焦点的弦AB ,11(,)A x y ,22(,)B x y ,则弦长12AB x x p =++,12x x +可由韦达定理整体求出,如遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似得到。

【例6】设P 是抛物线24y x =上的一个动点。

(1)(2) 求点P 到点A (-1,1)的距离与点P 到直线1x =-的距离之和的最小值; (3)(4) 若B (3,2),求PB PF +的最小值。

解:(1)抛物线焦点为F (1,0),准线方程为1x =-。

∵P 点到准线1x =-的距离等于P 点到F (1,0)的距离,∴问题转化为:在曲线上求一点P ,使点P 到A (-1,1)的距离与P 到F (1,0)的距离之和最小。

显然P 是AF 的连线与抛物线的交点,最小值为AF =(2)同理PF 与P过B 做B Q ⊥准线于Q 点,交抛物线与P 1点。

∵11PQ PF =,∴114PB PF PB PQ BQ +≥+==。

∴PB PF +的最小值是4。

题型三 利用函数思想求抛物线中的最值问题方法思路:函数思想、数形结合思想是解决解析几何问题的两种重要的思想方法。

【例7】已知抛物线y =x 2,动弦AB 的长为2,求AB 的中点纵坐标的最小值。

分析一:要求AB 中点纵坐标最小值,可求出y 1+y 2的最小值,从形式上看变量较多,结合图形可以观察到y 1、y 2是梯形ABCD 的两底,这样使得中点纵坐标y 成为中位线,可以利用几何图形的性质和抛物线定义求解。

解法一:设A(x 1,y 1),B(x 2,y 2),AB 的中点为M(x,y)由抛物线方程y =x 2知焦点1F(0,)4,准线方程14y =-,设点A 、B 、M 到准线的距离分别为|AD 1|、|BC 1|、|MN|,则|AD 1|+|BC 1|=2|MN|,且1MN =2(y+)4,根据抛物线的定义,有|AD 1|=|AF|、|BC 1|=|BF|,∴12(y+)4=|AF|+|BF|≥|AB|=2,∴12(y+)24≥∴3y 4≥,即点M 纵坐标的最小值为34。

分析二:要求AB 中点M 的纵坐标y 的最小值,可列出y 关于某一变量的函数,然后求此函数的最小值。

解法二:设抛物线y =x 2上点A(a,a 2),B(b,b 2),AB 的中点为M(x ,y),则∵|AB|=2,∴(a ―b)2+(a 2―b 2)=4,则(a +b)2-4ab +(a 2+b 2)2-4a 2b 2=4则2x =a +b,2y =a 2+b 2,得ab =2x 2-y,∴4x 2―4(2x 2―y)+4y 2―4(2x 2―y)=4整理得14122++=x x y即点M 纵坐标的最小值为3/4。

相关文档
最新文档