飞行器结构力学电子教案32

合集下载

西工大飞行器结构力学电子教案

西工大飞行器结构力学电子教案

西工大飞行器结构力学电子教案第一章:飞行器结构力学概述1.1 飞行器结构力学的定义介绍飞行器结构力学的概念和基本原理。

解释飞行器结构力学的研究对象和内容。

1.2 飞行器结构的特点与分类讨论飞行器结构的特点,包括轻质、高强度、耐腐蚀等。

介绍飞行器结构的分类,包括飞行器壳体、梁、板、框等。

1.3 飞行器结构力学的基本假设阐述飞行器结构力学分析的基本假设,如材料均匀性、连续性和稳定性。

第二章:飞行器结构受力分析2.1 飞行器结构受力分析的基本方法介绍飞行器结构受力分析的基本方法,包括静态分析和动态分析。

2.2 飞行器结构受力分析的实例通过具体实例,讲解飞行器结构受力分析的过程和方法。

2.3 飞行器结构受力分析的计算方法介绍飞行器结构受力分析的计算方法,包括解析法和数值法。

第三章:飞行器结构强度分析3.1 飞行器结构强度理论介绍飞行器结构强度理论的基本原理,包括最大应力理论和能量原理。

3.2 飞行器结构强度计算方法讲解飞行器结构强度计算的方法,包括静态强度计算和疲劳强度计算。

3.3 飞行器结构强度分析的实例通过具体实例,展示飞行器结构强度分析的过程和方法。

第四章:飞行器结构稳定分析4.1 飞行器结构稳定理论介绍飞行器结构稳定理论的基本原理,包括弹性稳定理论和塑性稳定理论。

4.2 飞行器结构稳定计算方法讲解飞行器结构稳定计算的方法,包括解析法和数值法。

4.3 飞行器结构稳定分析的实例通过具体实例,讲解飞行器结构稳定分析的过程和方法。

第五章:飞行器结构动力学分析5.1 飞行器结构动力学基本原理介绍飞行器结构动力学的基本原理,包括振动理论和冲击理论。

5.2 飞行器结构动力学计算方法讲解飞行器结构动力学计算的方法,包括解析法和数值法。

5.3 飞行器结构动力学分析的实例通过具体实例,展示飞行器结构动力学分析的过程和方法。

第六章:飞行器结构疲劳与断裂分析6.1 飞行器结构疲劳基本理论介绍飞行器结构疲劳现象的基本原理,包括疲劳循环加载、疲劳裂纹扩展等。

西工大飞行器结构力学电子教案5-1

西工大飞行器结构力学电子教案5-1
关键:将杆元素的其他物理量(如元素内位移、应变、应力、 关键:将杆元素的其他物理量(如元素内位移、应变、应力、 结点力,应变能等)用结点位移表示。 结点力,应变能等)用结点位移表示。 (1)元素内位移 ) 元素内各点的位移叫做内位移。 元素内各点的位移叫做内位移。杆元素的内位移可用结点位 内位移 移通过线性插值得到: 移通过线性插值得到: ui x x x x ui ] = [ N i ( x ) N j ( x )] u ( x ) = (1 − )ui + u j = [1 − Lij Lij Lij Lij u j u j
e
= [ S ]{δ }e = S ⋅ δ e
式中, 称为元素的应力矩阵 式中,[ S ]称为元素的应力矩阵。 称为元素的应力矩阵。 (4)杆元素轴力 )杆元素轴力N 的杆元素, 对于等面积 A 的杆元素,其轴力用节点位移表示为
EA N = σA = [− 1 L ij
1]{ δ } e
(5)平衡条件与刚度矩阵 ) 作用在杆元素上的结点力与杆轴力,满足平衡条件: 作用在杆元素上的结点力与杆轴力,满足平衡条件:
5.2 杆元素与桁架位移法求解
本节将由最简单的杆元素 和桁架开始, 和桁架开始,逐步介绍矩 阵位移法的基本原理和计 算过程 。
5.2 杆元素与桁架位移法求解
对于图示桁架, 对于图示桁架,编号为 1、2、3、4、5、6的铰结 、 、 、 、 、 的铰结 点称为结点 结点, 点称为结点,两结点之间 的链杆称为杆元素 杆元素, 的链杆称为杆元素,如杆 元素12、杆元素23等 元素 、杆元素 等。 位移法中, 位移法中,将以每个结 点处的位移(结点位移)作为基本未知量, 点处的位移(结点位移)作为基本未知量,建立关于未知结点 位移的方程,首先求出结点位移,然后利用求出的结点位移, 位移的方程,首先求出结点位移,然后利用求出的结点位移, 再求出其他的物理量(如元素应变、应力、内力等)。 再求出其他的物理量(如元素应变、应力、内力等)。 在图示坐标系中,由于每一杆元素的方位不尽相同, 在图示坐标系中,由于每一杆元素的方位不尽相同,为具普 遍性,任取其中一杆元素i ,首先来研究杆元素的平衡关系。 遍性,任取其中一杆元素 j,首先来研究杆元素的平衡关系。

飞行器结构力学电子教案PPT课件

飞行器结构力学电子教案PPT课件
飞行器结构力学电子教案ppt 课件

CONTENCT

• 飞行器结构力学概述 • 飞行器结构力学基础知识 • 飞行器结构静力学分析 • 飞行器结构动力学分析 • 飞行器结构疲劳与损伤容限分析 • 飞行器结构优化设计
01
飞行器结构力学概述
定义与特点
定义
飞行器结构力学是研究飞行器结构强度、刚度和稳定性的学科, 主要关注飞行器在各种载荷作用下的响应和行为。
迭代算法
通过不断迭代更新解,逐步逼近最优解,常用的 算法包括梯度下降法、牛顿法等。
飞行器结构优化设计方法
尺寸优化
通过改变结构件的尺寸,以达到最优化的结构性 能。
拓扑优化
在给定的设计区域内,寻找最优的材料分布和连 接方式。
形状优化
通过改变结构的形状,以实现最优的结构性能。
多学科优化
综合考虑多种学科因素,如气动、热、强度等, 进行多学科协同优化。
技术发展
飞行器结构力学的发展推动了航空航天技术的进步 ,为新型飞行器的设计和研发提供了技术支持。
飞行器结构力学的历史与发展
历史
飞行器结构力学的发展可以追溯到20世纪初期,随着航空工 业的快速发展,结构力学逐渐成为飞行器设计的重要学科。
发展
近年来,随着新材料、新工艺和计算技术的不断发展,飞行 器结构力学在理论和实践方面都取得了重要进展。未来,随 着环保要求的提高和新能源的应用,飞行器结构力学将面临 新的挑战和机遇。
损伤容限
指材料或结构在受到损伤后仍能保持一定承载能力的程度,是评估结构剩余寿命的重要 指标。
疲劳与损伤容限分析的必要性
飞行器在服役过程中受到各种复杂载荷的作用,结构疲劳与损伤是不可避免的现象,因 此进行疲劳与损伤容限分析是确保飞行器安全的重要手段。

西工大飞行器结构力学电子教案

西工大飞行器结构力学电子教案

西工大飞行器结构力学电子教案第一章:绪论1.1 课程简介1.2 飞行器结构力学的研究对象和内容1.3 飞行器结构力学的应用领域1.4 学习方法和教学要求第二章:飞行器结构的基本受力分析2.1 概述2.2 飞行器结构的受力分析方法2.3 飞行器结构的受力类型及特点2.4 飞行器结构的基本受力分析实例第三章:飞行器结构的弹性稳定性分析3.1 概述3.2 弹性稳定性的判别准则3.3 飞行器结构弹性稳定性分析方法3.4 飞行器结构弹性稳定性分析实例第四章:飞行器结构的强度分析4.1 概述4.2 飞行器结构强度计算方法4.3 飞行器结构材料的力学性能4.4 飞行器结构强度分析实例第五章:飞行器结构的刚度分析5.1 概述5.2 飞行器结构刚度计算方法5.3 飞行器结构刚度分析实例5.4 飞行器结构刚度优化设计第六章:飞行器结构的疲劳分析6.1 概述6.2 疲劳寿命的计算方法6.3 疲劳裂纹扩展规律6.4 飞行器结构疲劳分析实例第七章:飞行器结构的断裂力学分析7.1 概述7.2 断裂力学的基本概念7.3 断裂判据和裂纹扩展规律7.4 飞行器结构断裂力学分析实例第八章:飞行器结构的动力学分析8.1 概述8.2 飞行器结构动力学的基本方程8.3 飞行器结构的动力响应分析8.4 飞行器结构动力学分析实例第九章:飞行器结构复合材料分析9.1 概述9.2 复合材料的力学性能9.3 复合材料结构分析方法9.4 飞行器结构复合材料分析实例第十章:飞行器结构力学工程应用案例分析10.1 概述10.2 飞行器结构力学在飞机设计中的应用10.3 飞行器结构力学在航天器设计中的应用10.4 飞行器结构力学在其他工程领域的应用重点和难点解析重点环节一:飞行器结构的基本受力分析补充和说明:飞行器结构的基本受力分析是理解飞行器结构力学的基础,需要掌握各种受力类型的特点和分析方法,并通过实例加深理解。

重点环节二:飞行器结构的弹性稳定性分析补充和说明:弹性稳定性是飞行器结构设计中的关键问题,需要理解判别准则,掌握分析方法,并通过实例了解实际应用。

飞行器结构力学电子教案

飞行器结构力学电子教案
01
具有最少必需约束。
静定结构 静不定结构 建立补充方程 平衡方程
4.2 力法基本原理与力法正则方程
本节将通过一个2次静不定结构的例子,说明力法基本原理和力法正则方程。
4.2 力法基本原理与力法正则方程
对于具有2个多余约束的静不定结构。 选取1处的2个约束为多余约束,解除之,代之以约束力。 静不定结构 注 意: 1、解除多余约束,不是简单地将约束去掉,而必须用相应的约束力来代替。
添加标题
分析基本系统在单位基本未知力和外界因素作用下的位移,建立位移协调条件——力法典型方程或正则方程。
添加标题
解除多余约束,转化为静定的基本系统。多余约束代以多余未知力——基本未知力。
添加标题
根据结构几何组成分析,正确判断多余约束数——静不定次数。
添加标题
将静不定问题转化为静定问题,以多余未知力作为基本未知量,利用变形协调条件建立补充方程,从而求解结构内力的方法,称为力法( force method )。
静不定结构的内力求解:
叠加< P > 状态和单位状态< 1 >和 < 2 > 求出多余未知力:X1 和 X2
求出静不定结构的全部内力
δ11、δ21、δ12、δ22 — 单位状态影响系数。
Δ1P、Δ2P — 载荷影响系数。
Δ1P =< 1 > ×< P > Δ2P =< 2 > ×< P >
δ11 =< 1> ×< 1 > δ12 = δ12 = < 1 > ×< 2 > δ22 =< 2 > ×< 2 >
静定结构与静不定结构的对比:

飞行器结构力学基础电子教学教案

飞行器结构力学基础电子教学教案

飞行器结构力学基础电子教学教案一、教案简介本教案旨在通过电子教学方式,让学生了解和掌握飞行器结构力学的基础知识。

通过本课程的学习,学生将能够理解飞行器结构的基本组成,掌握飞行器结构受力分析的方法,以及运用力学原理解决飞行器结构设计中的问题。

二、教学目标1. 了解飞行器结构的基本组成和分类。

2. 掌握飞行器结构受力分析的基本方法。

3. 学习飞行器结构力学的基本原理和计算方法。

4. 能够运用所学知识解决飞行器结构设计中的实际问题。

三、教学内容1. 飞行器结构概述:飞行器结构的基本组成、分类和特点。

2. 飞行器结构受力分析:飞行器结构的受力类型、受力分析方法。

3. 飞行器结构力学原理:力学基本概念、力学基本定律、飞行器结构力学基本原理。

4. 飞行器结构力学计算:弹性力学、塑性力学、飞行器结构强度计算、稳定性和振动分析。

5. 飞行器结构设计实例:飞行器结构设计原则、实例分析。

四、教学方法1. 采用电子教学课件,结合文字、图片、动画和视频等多种形式,生动展示飞行器结构力学的基本知识和实例。

2. 利用数值计算软件,进行飞行器结构受力分析和强度计算,提高学生的实践能力。

3. 组织课堂讨论和小组合作,培养学生的团队协作能力和创新思维。

4. 布置课后习题,巩固所学知识,提高学生的自主学习能力。

五、教学评估1. 课后习题:评估学生对飞行器结构力学基础知识的掌握程度。

2. 课堂讨论:评估学生在团队协作和分析解决问题方面的能力。

3. 课程报告:评估学生对飞行器结构设计实例的理解和应用能力。

4. 期末考试:全面评估学生对本门课程的掌握程度。

六、教学资源1. 电子教学课件:包括飞行器结构力学的基本概念、原理、实例等内容。

2. 数值计算软件:用于飞行器结构受力分析和强度计算。

3. 教学视频:展示飞行器结构设计和制造过程。

4. 案例资料:提供飞行器结构设计实例,供学生分析和讨论。

5. 课后习题集:包括各种类型的题目,巩固所学知识。

【大学课件】飞机结构力学电子教学教案

【大学课件】飞机结构力学电子教学教案

【大学课件】飞机结构力学电子教学教案第一章:课程介绍与基本概念1.1 课程背景与意义介绍飞机结构力学的发展历程及其在航空航天领域的重要性。

强调本课程的目标和意义,即培养学生对飞机结构力学的理解和应用能力。

1.2 课程内容概述概述课程的主要内容,包括飞机结构的基本类型、受力分析、材料力学性质等。

1.3 教学方法与要求介绍本课程的教学方法,包括课堂讲解、案例分析、实验实践等。

对学生的学习要求进行说明,包括课堂参与、作业完成、期末考试等。

第二章:飞机结构的基本类型与特点2.1 飞机结构的基本类型介绍飞机结构的主要类型,包括梁、板、壳、框架等。

2.2 飞机结构的特点分析飞机结构的特点,包括轻质、高强、耐腐蚀、可制造性等。

2.3 实际案例分析通过实际案例分析,让学生更好地理解飞机结构的基本类型和特点。

第三章:飞机结构的受力分析3.1 飞机结构的受力类型介绍飞机结构所受的各种力,包括重力、气动力、惯性力等。

3.2 飞机结构的受力分析方法介绍飞机结构的受力分析方法,包括静态分析、动态分析等。

通过实际案例分析,让学生更好地理解飞机结构的受力分析方法和过程。

第四章:飞机结构的材料力学性质4.1 材料的应力与应变介绍材料的应力与应变概念,包括应力应变关系、弹性模量等。

4.2 材料的屈服与破坏分析材料的屈服条件、破坏形式及其影响因素。

4.3 材料的选用与匹配介绍飞机结构材料的选择原则,包括强度、刚度、耐腐蚀性等。

第五章:飞机结构的设计与优化5.1 飞机结构设计的基本原则介绍飞机结构设计的基本原则,包括安全性、可靠性、经济性等。

5.2 飞机结构设计的步骤与方法详细介绍飞机结构设计的步骤与方法,包括需求分析、方案设计、详细设计等。

5.3 飞机结构的优化方法介绍飞机结构的优化方法,包括拓扑优化、尺寸优化等。

第六章:飞机结构的连接与接头设计6.1 飞机结构连接的类型介绍飞机结构连接的类型,包括螺栓连接、焊接连接、粘接连接等。

飞行器结构力学电子教案4-3

飞行器结构力学电子教案4-3
飞行器结构力学基础
——电子教学教案 电子教学教案
西北工业大学航空学院 航空结构工程系
第四章
静不定结构的内力与变形计算
Internal Forces and Deformations of Statically Indeterminate Structures 第三讲 力法一般原理
一、力法一般原理
i i P 1 1 2 2 n n i 1 1 i 2 2 i n n i
P
=0
式中, 式中,(∑SiVj )表示第 i 个单位状态的内力在第 j 个单位状态位 移上所做的虚功, 同样, 移上所做的虚功,仍记为δi j ,同样,记∑SiVP=iP ,则上式可 写成: 写成:
δ i1 X 1 + δ i 2 X 2 + L + δ in X n + iP = 0
一、力法一般原理
静不定结构内力同时要用平衡条件和变形协调条件。因而, 静不定结构内力同时要用平衡条件和变形协调条件。因而, 我们仍然从满足这两个条件出发进行讨论。 我们仍然从满足这两个条件出发进行讨论。 1.满足平衡条件 . 对n次静不定结构,根据力作用的叠加原理将真实的内力状态 次静不定结构, 次静不定结构 <R >看做是由 n+1 个内力状态叠加而成,其中一个内力状态是 个内力状态叠加而成, 看做是由 与外载荷相平衡的,即载荷状态<P , 与外载荷相平衡的,即载荷状态 >,其余 n 个内力状态是自身 平衡的(与外力无关 与外力无关)。 平衡的 与外力无关 。每一个自身平衡状态只决定一个多余未知 力X i,当X i =1时,即为单位状态 >。既然每个内力状态都满 时 即为单位状态<i 。既然每个内力状态都满 足平衡条件,那么, 足平衡条件,那么,这 n+1 个内力状态叠加的结果也必然满足 平衡条件。 平衡条件。即:

飞行器结构力学基础电子教学教案

飞行器结构力学基础电子教学教案
(2)将作用面积很小的分布载荷等效地简化为集中载荷。 (3)将载荷梯度变化不大的分布载荷简化为均布载荷。 (4)将动力效应不大的动力载荷简化为静力载荷。
例如:将作用在飞机机翼表面上的气动分布载荷,等效地简化 为作用在计算模型的各个结点上的集中载荷。
三、结构力学的计算模型
第一章 绪论
2. 几何形状的简化
一、结构力学的任务
第一章 绪论
结构力学顾名思义就是研究结构在外界 因素作用下的力学行为及其组成规律。
组成规律 研究受力系统中结构元件之间的连 接方式是否合理以及系统的组成规 律,称为结构几何组成分析。
受力系统是否具有承受和传递载荷 的能力,取决于系统中元件之间的 连接方式的合理性。
一、结构力学的任务
不计摩擦的铰接 、刚接 或 滑接
三、结构力学的计算模型
第一章 绪论
铰接
铰接的力学特征:
被连接的元件在铰接点处,不能发 生相对移动,但可以绕铰接点发生 自由转动(夹角发生改变)。
因此,铰接可以传递力,但不能传 递力矩。
用符号 表示铰接, 也称为铰结点。
三、结构力学的计算模型
第一章 绪论
刚接
刚接的力学特征:
元件A、B采用刚接, 元件C采用铰接
组合结点具有铰结点和刚结点的 力学特征,
刚接+铰接
三、结构力学的计算模型
第一章 绪论
5、支座的简化(外部连接)
支座:连接结构于基础或其它支承物的装置。
支座可分为
可动铰支座 固定铰支座 固定支座(或称固持) 定向支座
三、结构力学的计算模型
第一章 绪论
可动铰支座
可动铰支座的几何特征:
结构具有绕铰A的转动及平 行于基础平面方向的平动, 但在垂直于基础平面方向上 不能发生平动。

飞行器结构力学基础电子教学教案

飞行器结构力学基础电子教学教案

飞行器结构力学基础电子教学教案第一章:飞行器结构力学概述1.1 教学目标了解飞行器结构力学的定义和研究内容掌握飞行器结构力学的基本原理和概念理解飞行器结构力学在航空航天工程中的应用1.2 教学内容飞行器结构力学的定义和研究内容飞行器结构力学的基本原理和概念飞行器结构力学在航空航天工程中的应用1.3 教学方法讲授和讲解飞行器结构力学的基本概念和原理通过实例和案例分析,让学生了解飞行器结构力学在实际工程中的应用开展小组讨论和问题解答,加深学生对飞行器结构力学知识的理解1.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构力学概念的理解程度布置课后作业,评估学生对飞行器结构力学原理的掌握情况第二章:飞行器结构受力分析2.1 教学目标掌握飞行器结构受力的基本原理和分析方法学会运用力学原理对飞行器结构进行受力分析了解飞行器结构受力分析在工程设计中的应用2.2 教学内容飞行器结构受力的基本原理和分析方法飞行器结构受力分析的步骤和技巧飞行器结构受力分析在工程设计中的应用2.3 教学方法讲授和讲解飞行器结构受力的基本原理和分析方法通过实例和案例分析,让学生掌握飞行器结构受力分析的步骤和技巧开展小组讨论和问题解答,加深学生对飞行器结构受力分析的理解2.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构受力分析方法的掌握程度布置课后作业,评估学生对飞行器结构受力分析的应用能力第三章:飞行器结构动力学基础3.1 教学目标了解飞行器结构动力学的定义和研究内容掌握飞行器结构动力学的基本原理和概念理解飞行器结构动力学在航空航天工程中的应用3.2 教学内容飞行器结构动力学的定义和研究内容飞行器结构动力学的基本原理和概念飞行器结构动力学在航空航天工程中的应用3.3 教学方法讲授和讲解飞行器结构动力学的基本概念和原理通过实例和案例分析,让学生了解飞行器结构动力学在实际工程中的应用开展小组讨论和问题解答,加深学生对飞行器结构动力学的理解3.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构动力学概念的理解程度布置课后作业,评估学生对飞行器结构动力学原理的掌握情况第四章:飞行器结构强度与稳定性4.1 教学目标掌握飞行器结构强度和稳定性的基本原理和方法学会运用力学原理对飞行器结构进行强度和稳定性分析了解飞行器结构强度和稳定性分析在工程设计中的应用4.2 教学内容飞行器结构强度和稳定性的基本原理和方法飞行器结构强度和稳定性分析的步骤和技巧飞行器结构强度和稳定性分析在工程设计中的应用4.3 教学方法讲授和讲解飞行器结构强度和稳定性的基本原理和方法通过实例和案例分析,让学生掌握飞行器结构强度和稳定性分析的步骤和技巧开展小组讨论和问题解答,加深学生对飞行器结构强度和稳定性的理解4.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构强度和稳定性分析方法的掌握程度布置课后作业,评估学生对飞行器结构强度和稳定性分析的应用能力第五章:飞行器结构优化设计了解飞行器结构优化设计的定义和方法掌握飞行器结构优化设计的基本原理和步骤学会运用优化方法对飞行器结构进行设计优化5.2 教学内容飞行器结构优化设计的定义和方法飞行器结构优化设计的基本原理和步骤飞行器结构优化设计中常用的优化方法5.3 教学方法讲授和讲解飞行器结构优化设计的基本原理和步骤通过实例和案例分析,让学生了解飞行器结构优化设计的方法和应用开展小组讨论和问题解答,加深学生对飞行器结构优化设计的理解5.4 教学第六章:飞行器结构材料力学性质6.1 教学目标理解飞行器结构材料的力学性质对结构性能的影响掌握常用飞行器结构材料的力学性能参数学会运用材料力学性质进行飞行器结构选材和设计6.2 教学内容飞行器结构材料的力学性质及其对结构性能的影响常用飞行器结构材料的力学性能参数飞行器结构选材和设计方法讲授和讲解飞行器结构材料的力学性质及其对结构性能的影响通过实例和案例分析,让学生了解常用飞行器结构材料的力学性能参数开展小组讨论和问题解答,加深学生对飞行器结构选材和设计的理解6.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构材料力学性质的理解程度布置课后作业,评估学生对飞行器结构选材和设计的掌握情况第七章:飞行器结构疲劳与断裂力学7.1 教学目标理解飞行器结构疲劳和断裂力学的原理掌握飞行器结构疲劳和断裂分析的方法学会运用疲劳和断裂力学进行飞行器结构的安全评估7.2 教学内容飞行器结构疲劳和断裂力学的原理飞行器结构疲劳和断裂分析的方法飞行器结构的安全评估方法7.3 教学方法讲授和讲解飞行器结构疲劳和断裂力学的原理通过实例和案例分析,让学生掌握飞行器结构疲劳和断裂分析的方法开展小组讨论和问题解答,加深学生对飞行器结构安全评估的理解7.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构疲劳和断裂力学的理解程度布置课后作业,评估学生对飞行器结构安全评估的掌握情况第八章:飞行器结构动力学分析方法8.1 教学目标理解飞行器结构动力学分析的方法和原理掌握飞行器结构动力学分析的计算方法学会运用动力学分析方法进行飞行器结构的动力学优化8.2 教学内容飞行器结构动力学分析的方法和原理飞行器结构动力学分析的计算方法飞行器结构动力学优化方法8.3 教学方法讲授和讲解飞行器结构动力学分析的方法和原理通过实例和案例分析,让学生掌握飞行器结构动力学分析的计算方法开展小组讨论和问题解答,加深学生对飞行器结构动力学优化的理解8.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构动力学分析方法的理解程度布置课后作业,评估学生对飞行器结构动力学优化的掌握情况第九章:飞行器结构力学数值分析9.1 教学目标理解飞行器结构力学数值分析的方法和原理掌握飞行器结构力学数值分析的计算方法学会运用数值分析方法进行飞行器结构力学问题求解9.2 教学内容飞行器结构力学数值分析的方法和原理飞行器结构力学数值分析的计算方法飞行器结构力学数值分析在实际工程中的应用9.3 教学方法讲授和讲解飞行器结构力学数值分析的方法和原理通过实例和案例分析,让学生掌握飞行器结构力学数值分析的计算方法开展小组讨论和问题解答,加深学生对飞行器结构力学数值分析的理解9.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构力学数值分析方法的理解程度布置课后作业,评估学生对飞行器结构力学数值分析的掌握情况第十章:飞行器结构力学实验与验证10.1 教学目标理解飞行器结构力学实验的目的和方法掌握飞行器结构力学实验的操作技能学会运用实验结果验证飞行器结构力学理论10.2 教学内容飞行器结构力学实验的目的和方法飞行器结构力学实验的操作技能飞行器结构力学实验结果的分析和验证10.3 教学方法讲授和讲解飞行器结构力学实验的目的和方法通过实验操作,让学生掌握飞行器结构力学实验的操作技能开展小组讨论和问题解答,加深学生对飞行器结构力学实验结果分析和验证的理解10.4 教学评价课堂问答和小组讨论,评估重点和难点解析1. 飞行器结构力学概述难点解析:理解飞行器结构力学的概念和原理,以及如何将其应用于实际工程中。

飞行器结构力学电子教案

飞行器结构力学电子教案
结构变形可通过不同的结构位移形式来表征,并通过计算位移值来定量描述。
结构在外界因素(诸如载荷、温度改变、支座移动、制造误差等)作用下几何形状发生的变化,称为结构变形。
1、结构的变形
一、结构位移计算概述
相对线位移:两个参考点沿某一方向上的相对变形量。
线位移:参考点沿某一方向上的变形量。
角位移:参考截面或元件的转动变形量,转角、扭转角等。
飞行器结构力学基础 ——电子教学教案
单击此处添加副标题
01
第三讲
单击此处添加正文
02
静定结构的位移计算
单击此处添加正文
第三章 静定结构的内力与变形计算 Internal Forces and Deformations of Statically Determinate Structures
CONTENT
06
实质:用静力平衡法解几何问题。
07
虚力原理对求解静不定结构内力具有重要的应用。
08
五、单位载荷法-求位移的Mohr公式 单位载荷法的一般表达式 利用虚功原理(虚力原理),可以求出变形结构中任意一点由于变形而产生的位移。 真实的位移状态 平衡的虚力状态 令 ,则有 虚功原理
因为,在发生虚位移的过程中,外力和内力保持不变,因此,在虚功的表达式中无系数“1/2”。
虚功的例子
真实外力 虚位移 虚功为:
1
虚力—— 一种假想的、满足平衡条件的任意力系。
2
假象的:是指虚力仅仅是想象中一种可能力系。
5
因此,在发生虚力的过程中,变形体的位移均保持不变,即保持原有的协调状态。
4
任意的:是指虚力与变形体的变形无关。
上式可写成:
五、单位载荷法-求位移的Mohr公式

西北工业大学飞行器结构力学电子教案5-6分析

西北工业大学飞行器结构力学电子教案5-6分析
值得注意的是,剖面的翘曲变形
w z dz (ax by c) z d
不一定符合平面分布。如原来是平面的剖面,变形后发生翘曲, 变形后的剖面不一定再是平面,但其沿母线投影仍是平面的。
▄ 简化假设
显然,满足以上简化假设的薄壁结构,其纤维可以自由伸缩, 剖面可以自由翘曲——称为自由弯曲和自由扭转。 注意,工程梁理论不适用于下列情形: (1)小展翼型机翼如三角型机翼。沿纵向(z向)其剖面变化剧 烈,不符合简化假设(1)要求的棱柱壳体。 (2)长直机翼的根部。不符合简化假设(4)。 (3)开口区附近。不符合简化假设(4)。 (4)材料性质沿纵向不连续。不符合简化假设(4)。 工程梁理论研究的是自由弯曲和自由扭转下薄壁结构的受 力和变形分析,这也是本章的重点内容。
x0
Ax A
i i
i
y0
Ay A
i i
i
相应于形心坐标轴的剖面惯性矩、惯性积和剖面总面积由下列各式确定:
J x Ai y i
2
J y Ai x i
2
进一步可以求出形心主惯性轴x’oy’:
J xy Ai xi y i F0 Ai
tg 2
2 2 J xy
翼肋的构造
典型的机翼布局
典型的机身布局
在飞行器构造中经常遇到梁 式薄壁结构,如长直机翼、后 掠机翼的中外翼、机身等。对 于这类薄壁结构,在已知外载 荷作用下各剖面的总内力(弯矩、 扭矩、轴力和剪力)是静定的, 但若要进一步求出各个元件(桁 条、蒙皮等)的内力,由于这种 梁式长直机翼 具有多桁条的结构是高度静不定 的,要用力法求解就必须借助于电子计算机。倘若蒙皮较厚, 能同时承受正应力和剪应力,此时可以把结构看作是有无穷多 桁条排列着,因而静不定次数是无穷的,用力法来解不可能, 而必须采用有限元素法或能量法,但那也非常麻烦。

西北工业大学飞行器结构力学电子教案7资料

西北工业大学飞行器结构力学电子教案7资料
23 23 23
q23 0
同理可得 q12 、q31 也都等于零 。 所以,对三角形板:
q12 q23 q31 0
三角形板在受剪板式计 算模型中是不受力的。
(2)长方形板的平衡
长方形板四个边上的四个未知剪流q12、q14、 q32、q34,板在其作用下处于平衡 由平面力系有三个平衡方程,可得:
采用了上述简化假设的受剪板式薄壁结构计算模型中,只 包含两类结构元件:承受轴力的杆和承受剪流的板,杆和板之 间只有剪流作用。
▄ 受剪板式薄壁结构计算模型的几个例子。
图(a)机身圆形框,可以简化为由若 干段直梁所组成的受力模型
图(b)机翼,可以简化为由若干个盒式结构 组成的受力模型
机翼盒式模型
机身笼式计算模型
即杆子两端的轴力仅相当于一个独 N ( x) N12 q12 x 杆轴力沿杆轴线线性变化,其斜率为 立变量 。 N ( x) 因此,受剪杆相当于起一个约束。 q12 x
(4) 杆轴力的内力图,有4中可能。
返回
飞行器结构力学基础
——电子教学教案
西北工业大学航空学院 航空结构工程系
第七章
受剪板式薄壁结构内力和位移 计算
第二讲 7.3 静定平面薄壁结构内力计算
一、平面薄壁结构的组成分析
受剪板式薄壁结构的计算模型是由结点、杆和板元件组成。如果这些元件 的中心点和中线都在同一平面内,则称为平面薄壁结构,它只能承受作用在 此平面内的外载荷。
▄ 飞机薄壁结构典型元件受力分析及其理想化
(1)蒙皮
在结构作为一个整体的受力和传力过程中,蒙皮的主要作用是支承和传递由于剪 切和扭转而引起的剪应力,同时它还部分支承和传递由于弯曲而引起的正应力。正应 力主要由较强的长桁和突缘等纵向元件承担,蒙皮在这方面的作用是第二位的。因此, 在对蒙皮进行理想化的时候,假设蒙皮只承受并传递剪应力;蒙皮实际上具有的承受 并传递正应力的能力将人为地附加到纵向元件(如长桁)上去。 由于蒙皮壁厚一般很薄,可近似认 为蒙皮上的剪应力大小沿厚度方向不变化, 且剪应力沿厚度中线的切线方向。因为剪 应力的值沿厚度方向不变,所以可以用剪 应力沿厚度方向的合力 q = τ ×t 来替代剪 应力,称 q 为剪流,用半箭头表示。

飞机结构力学电子教学教案

飞机结构力学电子教学教案
复铰:连接两个以上刚片的铰
N=5
复铰 等于多少个
单铰?
1连接m个刚片的复铰 = (m-1)个单铰
第二章 结构的几何组成分析
A
A
B
单复刚结点 C = 3 m-1个
连接m个杆的 复刚结点等于多 少个单刚结点?
复单链杆 C = 12m-3个
连接m个铰的 复链杆
等于多少个 单链杆?
第二章 结构的几何组成分析
2


个 单
3
铰?
1
讨论
2
将等可杆于体变安多件系吗排少重f??新
3
f = 0,体系
1
是否一定
几何不变呢?
f = (2×12+3)-3×9 = 0
除去约束后,体系的自由度将增加, 这类约束称为必要约束。
因为除去图中任 意一根杆,体系 都将有一个自由 度,所以图中所 有的杆都是必要 的约束。
除去约束后,体系的自由度并不改变, 这类约束称为多余约束。
度,约束数就是多少。
一根链杆 为一个约束
C=1
曲杆,C =1
N=3 平面刚体——N刚=片2
第二章 结构的几何组成分析

单铰联后
x
α
β
N=4
y
两个自由刚片共有6个自由度
1个单铰 = 2个约束
第二章 结构的几何组成分析
两刚片用两链杆连接
C
B
N=4
x A
y
两相交链杆构成一虚铰,起2个约束
第二章 结构的几何组成分析
( geometrically stable system )
结构
在任意荷载作用下,系统的几何形状及位置 均保持不变的系统。不计材料弹性变形。

飞行器结构力学基础电子教学教案

飞行器结构力学基础电子教学教案

飞行器结构力学基础电子教学教案第一章:飞行器结构力学概述1.1 飞行器结构力学的定义1.2 飞行器结构力学的研究内容1.3 飞行器结构力学的重要性1.4 飞行器结构力学的发展历程第二章:飞行器结构的基本类型2.1 飞行器结构的基本组成2.2 飞行器结构的主要类型2.3 不同类型结构的特点与应用2.4 飞行器结构的选择原则第三章:飞行器结构力学分析方法3.1 飞行器结构力学的分析方法概述3.2 弹性力学的分析方法3.3 塑性力学的分析方法3.4 动力学分析方法第四章:飞行器结构强度与稳定性分析4.1 飞行器结构强度分析4.2 飞行器结构稳定性分析4.3 强度与稳定性的关系4.4 强度与稳定性分析的工程应用第五章:飞行器结构优化设计5.1 结构优化设计的基本概念5.2 结构优化设计的方法5.3 结构优化设计的原则与步骤5.4 结构优化设计的工程应用实例第六章:飞行器结构动力学6.1 飞行器结构动力学基本理论6.2 飞行器结构的自振特性6.3 飞行器结构的动力响应分析6.4 飞行器结构动力学在设计中的应用第七章:飞行器结构疲劳与断裂力学7.1 疲劳现象的基本概念7.2 疲劳寿命的预测方法7.3 断裂力学的基本理论7.4 飞行器结构疲劳与断裂的检测与控制第八章:飞行器结构的环境适应性8.1 飞行器结构环境适应性的概念8.2 飞行器结构在各种环境力作用下的响应8.3 环境适应性设计原则与方法8.4 提高飞行器结构环境适应性的措施第九章:飞行器结构材料力学性能9.1 飞行器结构常用材料9.2 材料的力学性能指标9.3 材料力学性能的测试方法9.4 材料力学性能在结构设计中的应用第十章:飞行器结构力学数值分析方法10.1 数值分析方法概述10.2 有限元法的基本原理10.3 有限元法的应用实例10.4 其他结构力学数值分析方法简介第十一章:飞行器结构力学实验与测试技术11.1 结构力学实验概述11.2 材料力学性能实验11.3 结构强度与稳定性实验11.4 结构动力学实验与测试技术第十二章:飞行器结构力学计算软件与应用12.1 结构力学计算软件概述12.2 常见结构力学计算软件介绍12.3 结构力学计算软件的应用流程12.4 结构力学计算软件在工程实践中的应用实例第十三章:飞行器结构力学在航空航天领域的应用13.1 航空航天领域结构力学问题概述13.2 飞行器结构设计中的应用13.3 飞行器结构分析与优化13.4 航空航天领域结构力学发展趋势第十四章:飞行器结构力学在其他工程领域的应用14.1 结构力学在建筑工程中的应用14.2 结构力学在机械工程中的应用14.3 结构力学在交通运输工程中的应用14.4 结构力学在其他工程领域的应用前景第十五章:飞行器结构力学发展趋势与展望15.1 飞行器结构力学发展历程回顾15.2 当前飞行器结构力学面临的挑战与机遇15.3 飞行器结构力学未来发展趋势15.4 飞行器结构力学发展展望与建议重点和难点解析本文主要介绍了飞行器结构力学的基础知识,包括飞行器结构力学的定义、研究内容、重要性、发展历程,以及飞行器结构的基本类型、力学分析方法、强度与稳定性分析、优化设计等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚性接头
刚架的分类:
按照维数,分为平面刚架和空间刚架。 1. 平面(二维)刚架(plane frame)
——组成刚架的所有元件及其外载荷均在 同一平面内。
2. 空间(三维)刚架(space frame)
——组成刚架的元件或载荷不都在同一 平面内。
载荷、结构元件均不在一 个平面内。
载荷与结构元件不在一个 平面内。
(0 x2 b / 2)
3、绘制内力图
弯矩图上的轴折剪力点力图图上上的的突突变变点 说明了什点么说?明说了明什了么什?么?
绘制内力图时,应注意以下几点:
1、图形要按一定在比只例尺有寸两绘杆制;汇交且无外力偶作用 2、在力图的各的个折刚点结、点结构处的,拐两点、杆极杆值点端、弯突矩变点必处大,应小注明内力值; 3、标明力图的单位(如相果有等单,位且的话同)侧。 受压。
2、求支座反力
x 0 : H1 H4 0
y 0 : R1 R4 P
M1
0
:
R4Βιβλιοθήκη bPb 2
解出: R1R4P 2 H1H4
取一半结构(例如左半部分)分析,由 于5点是一个链铰,不传递弯矩,故利用
N
(
y
2
)
R4
875
kg
(0 y2 h)
例1 求图示刚架的内力
2、求内力 (2)求截面内力
对2-3段:以5点为分界点,分左右两段来 计算。在左段上任取一截面III-III,截取 分离体:
建立静力平衡方程:
N ( x1 ) H 1 500 kg
Q ( x1 ) R1 375 kg
M
( x1 )
H1
h
R1
x1
125000 375 x1
(0 x1 b / 2)
例1 求图示刚架的内力
2、求内力 (2)求截面内力
再在右段上任取一截面IV-IV,截取分离体:
建立静力平衡方程:
N (x2 ) 0 Q(x2 ) R4 875 kg M (x2 ) R4 x2 875 x2
二、静定刚架组成规则
1、平面刚架的组成规则
(2)逐次连接刚架法:复合刚架
将2个或更多简单刚架用最小必需的约束 (3个)连接起来,使各部分之间不会发生相对移 动或瞬时可动,得到一个复合刚架。
二刚片规则 三刚片规则
静定刚架
二、静定刚架组成规则
1、平面刚架的组成规则
(2)逐次连接刚架法:复合刚架
几何不变系统
建立静力平衡方程:
M ( y1) H1 y1 500 y1 Q( y1) H1 500 kg N ( y1) R1 375 kg
(0 y1 h)
例1 求图示刚架的内力
2、求内力 (2)求截面内力
对4-3段:任取一剖面II-II,截取分离 体:
建立静力平衡方程:
QM((yy22))00
几何瞬变系统
二、静定刚架组成规则
1、平面刚架的组成规则
(3)封闭刚架
如何确定这3 个未知力?仅 静力平衡方程
逐次连接杆子法时,如果形成了够封吗闭?刚架,则在
封闭处就引入了多余约束,组成了具有多余约束的静
不定刚架。
将A处切断
可知:平面刚架每封闭一次,增加3个多余约束。
二、静定刚架组成规则
分析图示平面刚架的几何组成特性
刚架:frame
一、计算模型
(1) 组成元件可以是直杆,也可以是曲杆; (2) 元件之间用刚性接头或铰连接; (3) 外力可以以任意形式作用在刚架的任意部位
(任意位置、任意方向;集中力、分布力、 力矩、扭矩) 。
• 所谓刚性接头是指:被连接的元件之间在刚 性接头处不发生相对位移,即元件之间的夹 角不变。
例1 求图示刚架的内力
2、求内力
(1)先求支反力
X0 H1P10
Y 0 R1R4P2 M1 0 R4bP2b 2P1h0
解出:
H 1 500 kg
R 4 975 kg
H1
R1 375 kg
R1
R4
例1 求图示刚架的内力
2、求内力 (2)求截面内力
对1-2段:任取一剖面I-I,截取分离体:
例2 绘制图示刚架的内力图。
(说明:题中如无特别指明,仅绘制弯矩图。)
解:
1、作几何特性分析
1-2-5、5-3-4为两个简 单刚架,并和基础一起形 成三个平面刚片,利用三 刚片规则可知,该刚架为 无多余约束的几何不变体, 故为静定的。
例2 绘制图示刚架的内力图。
(说明:题中如无特别指明,仅绘制弯矩图。)
刚性接头的力学特征:
保持角度不变
被连接的元件在刚接点处,即不 能发生相对移动,也不能绕刚接 点发生相对转动。
因此,刚接即可以传递力,也可 以传递力矩。
• 刚性接头是无多余约束的装置。
有一个自由度, 不能承弯。
无多余约束,可 以承弯。
• 平面刚性接头:相当于起3个约束; • 空间刚性接头:相当于起6个约束。
刚架的内力计算,就是求出刚架中任意剖面上的内 力,并以内力图的形式表达出来。 刚架的内力计算,通常采用截面法。
例1 求图示刚架的内力,并绘制内力图。已知 P1=P2=500kg。
解:
1、作几何特性分析
逐次连接杆子法, 组成无内部多余约束 的简单刚架,再用3 个外部约束将其固定 在基础上,符合两刚 片规则,该刚架为无 多余约束的几何不变 体,故为静定的。
刚架的内力
平面梁:在梁的任意一个 横截面上,均承受3个内 力:轴力、剪力、弯矩。
y z
x
平面梁
空间梁:在梁的任意一个横 截面上,均承受6个内力:1 个轴力、2个剪力、2个弯矩、 1个扭矩。
空间梁
y
z
x
二、静定刚架组成规则
1、平面刚架的组成规则 (1)逐次连接杆子法:简单刚架
从某一基础或几何不变体开始,每增加一个平面 杆件,用一个刚性接头将该杆件连接在基础上,这样 依次用刚性接头连接杆子,将组成静定的简单刚架。
3
3
3
3
3 3
f=3
f=6
f=9
二、静定刚架组成规则
分析图示平面刚架的几何组成特性
3
3
3
3
f = 12
f=9
Why? 比较这两个 结构的区别
三、静定刚架的内力计算
刚架内力符号规定
轴力N以元件段受拉为正,受压为负。
剪力Q以元件段顺时针转动为正,逆 时针转动受压为负。
弯矩M没有正负号规定,在弯矩图上 将弯矩画在受压一侧。
飞行器结构力学基础
——电子教学教案
西北工业大学航空学院 航空结构工程系
第三章 静定结构的内力与变形计算
Internal Forces and Deformations of Statically Determinate Structures
第二讲
静定刚架和混合结构的内力计算
3-3 静定刚架的内力计算
相关文档
最新文档