新课标高中数学必修一至必修五知识点总结

合集下载

高中数学必修一至必修五知识点总结(最新最全)

高中数学必修一至必修五知识点总结(最新最全)

⾼中数学必修⼀⾄必修五知识点总结(最新最全)必修1第⼀章集合与函数概念⼀、集合有关概念1、集合的含义:某些指定的对象集在⼀起就成为⼀个集合,其中每⼀个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的⽆序性⾮负整数集(即⾃然数集)记作:N正整数集N或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常⽤⼩写的拉丁字母表⽰,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA⼆、集合间的基本关系任何⼀个集合是它本⾝的⼦集。

AA②真⼦集:如果AB,且BA那就说集合A是集合B的真⼦集,记作AB(或BA)3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的⼦集,空集是任何⾮空集合的真⼦集。

三、集合的运算1.交集的定义:⼀般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.(即找公共部分)记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:⼀般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

(即A和B中所有的元素)记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.4、全集与补集(1)补集:设S是⼀个集合,A是S的⼀个⼦集(即),由S中所有不属于A的元素组成的集合,叫做S中⼦集A的补集(或余集)(即除去A剩下的元素组成的集合)四、函数的有关概念定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次⽅根的被开⽅数不⼩于零;(3)对数式的真数必须⼤于零;(4)指数、对数式的底必须⼤于零且不等于1.(5)如果函数是由⼀些基本函数通过四则运算结合⽽成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(⼜注意:求出不等式组的解集即为函数的定义域。

新课标高中数学必修一至必修五知识点总结可直接打印版

新课标高中数学必修一至必修五知识点总结可直接打印版

WORD 格式高中数学必修1②偶次方根的被开方数大于或等于零;如:y5x,则5x0 1、集合的含义与表示③对数的底数大于0且不等于1;:ylog a (x2),则a0且a1 如一般地,集合的表示有列举法、描述法。

④对数的真数大于0;:ylog(x2),x20如a 则描述法格式为:{元素|元素的特征},例如{x |x5,且xN}⑤指数为0的底不能为零;x 如:y(m1),则m10 2、常用数集及其表示方法(1)自然数集N (又称非负整数集):0、1、2、3、,,(2)正整数集N *或N +:1、2、3、,, 11、函数的奇偶性(在整个定义域内考虑)(3)整数集Z :-2、-1、0、1、,,(4)有理数集Q :包含分数、整数、有限小数等 (1)奇函f(x)f(x),奇函数的图象关于原点对称;(5)实数集R :全体实数的集合(6)空集Ф:不含任何元素的集合 3、元素与集合的关系:属于∈,不属于 (2 例如:a注:①具有奇偶性的函数,其定义域关于原点对称;②若奇函数在原点有定义,则f(0)0 4、集合与集合的关系:子集、真子集、相等 ③根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

(1)子集的概念如果集合A 中的每一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集(如 图1),记作AB 或BA.若集合P 中存在元素不是集合Q 的元素,那么P 不包含于Q ,记作PQ BAA,B 或 (图1)12、函数的单调性(在定义域的某个区间内考虑)当x 12 (2)真子集的概念若集合A 是集合B 的子集,且B 中至少有一个元素不属于A,那么集合A 叫做当 x1 2B A 函数集合B 的真子集(如图2).AB 或BA.(3)集合相等:若集合A 中的元素与集合B 中的元素完全相同则称集合A 等于集合B,记作A=B. AB,BAAB(图2)13、一元二次方程 20 axbxc(a0)5、重要结论(1)传递性:若AB ,BC ,则AC (2)空Ф集是任意集合的子集,是任意非空集合的真子集. n6、含有n 个元素的集合,它的子集个数共有2 子集有2n–2个. n个;真子集有22–1个;非空子集有–1个(即不计空集);非空的真2 bb4ac2x 1(2)判别式:b4ac(1)求根公式:,22a (3)0时方程有两个不等实根;0时方程有一个实根;0时方程无实根。

2024年高二数学必修一到五知识点总结范本(二篇)

2024年高二数学必修一到五知识点总结范本(二篇)

2024年高二数学必修一到五知识点总结范本高二数学必修一到五是中学数学的基础部分,涵盖了数学的各个方面,包括代数、几何、函数与方程、概率与统计等。

下面将对高二数学必修一到五的知识点进行总结,供您参考。

必修一:代数基础1. 实数- 理解实数的定义和性质,包括有理数和无理数。

- 利用实数的性质进行加减乘除、开方等运算。

2. 平方根与立方根- 理解平方根和立方根的意义。

- 计算整数、分数和小数的平方根和立方根。

3. 整式与多项式运算- 理解整式的定义和概念。

- 进行多项式的加减乘除运算,包括分配律、合并同类项等操作。

4. 因式分解- 理解因式分解的定义和原理。

- 进行一元多项式的因式分解,包括公因式提取法、提取平方根法等方法。

5. 一次、二次根式与分式方程- 理解根式的定义和性质。

- 解一次、二次根式方程和分式方程。

必修二:函数与方程1. 幂函数与指数函数- 理解幂函数和指数函数的定义和性质。

- 描述幂函数和指数函数的图像和性质。

2. 对数函数- 理解对数函数的定义和性质。

- 描述对数函数的图像和性质。

3. 三角函数- 理解三角函数的定义和性质。

- 了解正弦、余弦、正切函数及它们的反函数。

- 利用三角函数求解问题。

4. 一次函数和二次函数- 理解一次函数和二次函数的定义和性质。

- 描述一次函数和二次函数的图像和性质。

- 掌握一次函数和二次函数的相关计算方法。

5. 方程与不等式- 解线性方程和一元二次方程。

- 解简单的一元二次不等式和一元二次方程组。

必修三:解析几何与向量1. 向量- 理解向量的定义和性质。

- 进行向量的运算,包括向量加减、数量乘法、点乘和叉乘。

2. 平面与空间- 理解平面和空间的概念和性质。

- 确定平面和空间的方程,包括点法式、一般式等。

3. 直线和圆- 理解直线和圆的概念和性质。

- 计算直线和圆的方程和位置关系,包括直线与直线的关系、圆与直线的关系等。

4. 曲线与椭圆- 理解曲线和椭圆的概念和性质。

新课标高中数学必修1-5所有知识点

新课标高中数学必修1-5所有知识点

高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A C ard A B C ard A C ard B C ard A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。

高中数学必修一至必修五知识点总结完整版

高中数学必修一至必修五知识点总结完整版

高中数学必修一至必修五知识点总结完整版一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1、元素的确定性;2、元素的互异性;3、元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2、集合的表示方法:列举法与描述法。

非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a 不属于集合A 记作 aA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:(1)、有限集含有有限个元素的集合(2)、无限集含有无限个元素的集合(3)、空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1、“包含”关系f(x),那么f(x)就叫做奇函数、注意:1、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

新课标高中数学必修一至必修五知识点总结

新课标高中数学必修一至必修五知识点总结

高中数学常用公式及结论必修1第二章 函数8、映射观点下的函数概念如果A ,B 都是非空的数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作y=f(x),其中x ∈A ,y ∈B.原象的集合A 叫做函数y=f(x)的定义域,象的集合C (C ⊆B )叫做函数y=f(x)的值域.函数符号y=f(x)表示“y 是x 的函数”,有时简记作函数f(x).9、分段函数:在定义域的不同部分,有不同的对应法则的函数。

如⎩⎨⎧--+=3122x x y 00≤>x x 10、求函数的定义域的原则:(解决任何函数问题,必须要考虑其定义域)①分式的分母不为零;01,11:≠--=x x y 则如 ②偶次方根的被开方数大于或等于零;05,5:≥--=x x y 则如 ③对数的底数大于0且不等于1;10),2(log :≠>-=a a x y a 且则如④对数的真数大于0;02),2(log :>--=x x y a 则如⑤指数为0的底不能为零;x m y )1(:-=如,则01≠-m 11、函数的奇偶性(在整个定义域内考虑)(1)奇函数满足)()(x f x f -=-, 奇函数的图象关于原点对称; (2)偶函数满足)()(x f x f =-, 偶函数的图象关于y 轴对称;注:①具有奇偶性的函数,其定义域关于原点对称; ②若奇函数在原点有定义,则0)0(=f③根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

12、函数的单调性(在定义域的某个区间内考虑)当21x x <时,都有)()(21x f x f <,则)(x f 在该区间上是增函数,图象从左到右上升;当21x x <时,都有)()(21x f x f >,则)(x f 在该区间上是减函数,图象从左到右下降。

函数)(x f 在某区间上是增函数或减函数,那么说)(x f 在该区间具有单调性,该区间叫做单调(增/减)区间13、一元二次方程20ax bx c ++=(0)a ≠(1)求根公式:aac b b x 2422,1-±-= (2)判别式:ac b 42-=∆(3)0>∆时方程有两个不等实根;0=∆时方程有一个实根;0<∆时方程无实根。

【精品】高中数学必修1-5知识点总结(高考)

【精品】高中数学必修1-5知识点总结(高考)

【新课标】高中数学必修1-5知识点总结高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂【1.1.3】集合的基本运算(∅=∅B A ⊆ B B ⊆A A =A ∅=B A ⊇ B B ⊇U2 )A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集{|x)()U B A =()()()UU U A B A B =(20)【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.()()例:函数的定义域是y x x x =--432lg(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. 例如:求下列函数的最值:()123134y x x =-+- ()2243y x x =-+ (),33232x y x x >=-(),,54901y x xx =+∈(] []()()设,,449302y x x x =++-=∈cos θθπ【1.2.2】函数的表示法yxo (5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.(一对一,多对一,允许B 中有元素无原象。

新课标高中数学必修一至必修五知识点总结,强列推荐

新课标高中数学必修一至必修五知识点总结,强列推荐
高中数学常用公式及结论大全 必修 1
1 、集合的含义与表示
(新课标 )
一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。它具有三大特性: 确定性、互异性、无序性。集合的表示有列举法、描述法。 描述法格式为: { 元素 |元素的特征 } ,例如
{x | x
5, 且x
N}
2 、常用数集及其表示方法 ( 1)自然数集 N (又称非负整数集) : 0 、 1、 2、 3 、 ,, ( 2)正整数集 N 或 N + : 1 、 2、 3、 ,, ( 3)整数集 Z : -2 、 -1 、 0 、 1 、 ,, ( 4)有理数集 Q : 包含分数、整数、有限小数等 ( 5)实数集 R :全体实数的集合 ( 6)空集 Ф:不含任何元素的集合 3 、元素与集合的关系:属于∈,不属于 例如: a 是集合 A 的元素,就说 a 属于 A ,记作 a∈ A 4 、集合与集合的关系:子集、真子集、相等 ( 1)子集的概念 如果集合 A 中的每一个元素都是集合 作 B 中的元素, 那么集合 A 叫做集合 B 的子集 (如图 1) ,记 P 不包含于 Q, B A 或 ( 图 1) A,B
0)
2
( 1)顶点坐标为 (
b 4ac b ; , ) ( 2)对称轴方程为: x= 2a 4a
x=
2
b ; 2a
2
y x 0
( 3)当
a
0 时,图象是开口向上的抛物线,在
4ac b b 处取得最小值 2a 4a b 4ac b 处取得最大值 2a 4a

2

a
0时,图象是开口向下的抛物线,在
x=
注:①具有奇偶性的函数
,其定义域关于原点对称

高一数学必修1-5知识点

高一数学必修1-5知识点

高一数学必修1-5知识点一、函数及其表示1. 函数的定义及特点函数是一种特殊关系,将自变量与因变量对应起来。

其中,自变量是输入值,因变量是输出值。

函数的特点包括唯一性、多个自变量对应一个因变量、每个自变量都有对应的因变量等。

2. 函数的表示方法函数可以用各种不同的表示方法进行表达,常见的方法包括:- 变量代数表示法:用自变量和因变量之间的关系式表示,如y = 2x + 3。

- 函数图像表示法:通过绘制函数的图像来表示函数关系。

- 函数表达法:将函数的自变量与因变量的对应关系列成表格进行表示。

二、函数的基本性质1. 定义域与值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

2. 奇偶性与周期性奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。

周期函数f(x) = f(x + T),其中T为正常数。

3. 单调性与极值函数的单调性可以分为增函数和减函数。

在某个区间上,如果函数的值随着自变量的增大而增大,则为增函数;如果函数的值随着自变量的增大而减小,则为减函数。

极值即函数的最大值和最小值。

三、函数的运算1. 四则运算函数可以进行加、减、乘、除等基本运算,例如:- f(x) + g(x)表示函数f和g的和。

- f(x) - g(x)表示函数f和g的差。

- f(x) * g(x)表示函数f和g的乘积。

- f(x) / g(x)表示函数f和g的商。

2. 复合函数复合函数是指函数之间进行嵌套运算的情况。

例如:f(g(x))表示将g(x)的结果作为f函数的自变量。

四、一次函数一次函数是函数的一种形式,表达式为y = kx + b。

其中k为斜率,b为截距。

1. 斜率与截距斜率k表示函数图像上两点间的纵坐标差与横坐标差的比值。

截距b表示函数图像与y轴的交点。

2. 函数图像一次函数的图像为一条直线,斜率决定了直线的倾斜方向和程度,截距决定了直线与y轴的位置关系。

3. 直线的性质- 平行关系:若两条直线的斜率相等,则它们平行。

高中数学必修一至必修五知识点总结完整版

高中数学必修一至必修五知识点总结完整版

高中数学必修1知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a 属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合(3).空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B任何一个集合是它本身的子集。

高中数学必修1-5知识点+公式大全-最新最全

高中数学必修1-5知识点+公式大全-最新最全

全部覆盖数学必修1至5的所有知识点以与相关公式,方便复习和与时总结,祝大家能取得好的成绩!!!数学必修1-5常用公式与结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法 2、集合间的关系:子集:对任意x A ∈,都有x B ∈,则称A 是B 的子集。

记作A B ⊆真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 AB交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为AB补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=> f (–x)=–f (x) ,偶函数 <=> f (–x)= f (x)(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2①f ( x 1 )< f ( x 2 ) <=> f ( x 1 )– f ( x 2 )< 0 <=> f ( x )是增函数 ②f ( x 1 )> f ( x 2 ) <=> f ( x 1 )– f ( x 2 )> 0 <=> f ( x )是减函数2、复合函数的单调性: 同增异减三、二次函数y = ax 2+bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a bx 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数 1、幂的运算法则: (1)a m•a n= am + n,(2)nm n m aa a -=÷,(3)( a m ) n = am n(4)( ab ) n= a n• bn(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=- (8)m n mna a =(9)m n m naa 1=-2、根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x(a > 0且a ≠1)的性质:(1)定义域:R ;值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化:log b a N b a N =⇔=(0,1,0)a a N >≠>.五、对数与对数函数 1对数的运算法则:(1)a b= N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b= b (5)alog aN= N(6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N(8)log a N b= b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10N (13)自然对数:ln A = logeA (其中 e = 2.71828…) 2、对数函数y= log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ;值域:R (2)图象过定点(1,0)六、幂函数y = x a的图象:(1) 根据 a 的取值画出函数在第一象限的简图 .例如: y = x 221x x y ==11-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八.平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。

高中数学必修一至必修五知识点总结完整版

高中数学必修一至必修五知识点总结完整版

结总高中数学必修 1 知识点第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1. 元素确实定性;2. 元素的互异性;3. 元素的无序性说明:(1) 对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2) 任何一个给定的集合中,任何两个元素都是不同的对象,一样的对象归入一个集合时,仅算一个元素。

(3) 集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比拟它们的元素是否一样,不需考察排列顺序是否一样。

(4) 集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ , } 如{我校的篮球队员},{ 太平洋, 大西洋, 印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

非负整数集〔即自然数集〕记作:N正整数集N* 或N+ 整数集Z 有理数集Q 实数集R关于“属于〞的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说 a 属于集合 A 记作a∈A ,相反,a 不属于集合 A 记作a A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{ 不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2 的解集是{x?R| x-3>2} 或{x| x-3>2}4、集合的分类:〔1〕.有限集含有有限个元素的集合〔2〕.无限集含有无限个元素的集合〔3〕.空集不含任何元素的集合例:{x|x2= -5}二、集合间的根本关系1. “包含〞关系—子集注意:有两种可能〔1〕A是B的一局部,;〔2〕A与B是同一集合。

数学高一上一到五章知识点

数学高一上一到五章知识点

数学高一上一到五章知识点【数学高一上一到五章知识点】数学是一门抽象而精密的学科,对学生来说,高一上学期是扎实基础、打好数学理论基础的关键时期。

下面将为大家梳理一到五章的数学知识点,帮助大家更好地掌握和理解数学的基础知识。

一、集合与函数1. 集合的表示方法:列举法、描述法、文氏图。

2. 集合的基本运算:并集、交集、补集、差集。

3. 集合的包含关系:包含、相等、子集、真子集。

4. 函数的概念与表示:自变量、因变量、函数关系、函数图像。

5. 函数的性质:单调性、奇偶性、周期性。

6. 基本初等函数:幂函数、指数函数、对数函数、常函数、分段函数。

二、数列与数列的极限1. 数列的概念与表示:数列的通项公式、数列的递推公式。

2. 数列的性质:有界性、单调性。

3. 等差数列与等差中项数列:公差、通项公式、求和公式。

4. 等比数列与等比中项数列:公比、通项公式、求和公式。

5. 数列极限的概念与性质:有界数列的极限、单调递增数列的极限、保号性。

三、数与式1. 实数与有理数、无理数:有理数的性质、无理数的性质。

2. 分数与分数运算:约分、分数的四则运算。

3. 整式与分式:整式与分式的概念。

4. 乘方与开方:指数、指数运算、幂指对换、开方与平方。

5. 公式与恒等式:整式等式、分式等式、解方程。

四、二元一次方程组1. 二元一次方程组的概念与解法:代入法、消元法。

2. 二元一次方程组的应用:线性方程组的几何解释、实际问题的数学建模。

五、直线与函数的图像1. 直线的表示与性质:截距式、一般式、点斜式。

2. 直线的方程与应用:平行、垂直、倾斜角、距离。

以上是数学高一上一到五章的知识点概述,希望同学们能够通过对这些知识点的系统学习和理解,打好数学的基础,为高中数学学习奠定坚实的基础。

数学不仅仅是一门学科,更是一种思维方式和解决问题的思路,通过不断的练习和思考,相信大家都能够成为数学的行家里手。

加油!。

新课标高中数学必修一至必修五知识点总结可直接打印版.docx

新课标高中数学必修一至必修五知识点总结可直接打印版.docx

高中数学常用公式及大全(新 )必修 11、集合的含与表示一般地,我把研究象称元素,把一些元素成的体叫做集合。

它具有三大特性:确定性、互异性、无序性。

集合的表示有列法、描述法。

描述法格式:{ 元素 | 元素的特征 } ,例如{ x | x5,且 x N}2、常用数集及其表示方法( 1)自然数集N(又称非整数集):0、1、 2、 3、⋯⋯(2)正整数集N*或 N+:1、 2、 3、⋯⋯( 3)整数集 Z: -2 、 -1 、 0、1、⋯⋯(4)有理数集 Q:包含分数、整数、有限小数等( 5)数集 R:全体数的集合( 6)空集Ф:不含任何元素的集合3、元素与集合的关系:属于∈,不属于例如: a 是集合 A的元素,就 a 属于 A,作 a∈A4、集合与集合的关系:子集、真子集、相等( 1)子集的概念如果集合 A 中的每一个元素都是集合 B 中的元素,那么集合 A 叫做集合 B 的子集 ( 如B A或A,B1) ,作A B 或 B A .( 图若集合 P 中存在元素不是集合Q的元素,那么P 不包含于 Q,作P Q( 2)真子集的概念若集合 A 是集合 B 的子集,且 B 中至少有一个元素不属于A, 那么集合 A 叫做B A集合 B 的真子集 ( 如 2). A B或B A.( 3)集合相等:若集合 A 中的元素与集合 B 中的元素完全相同称集合 A 等于集合 B, 作 A=B.(图A B,B A A B5、重要(1)性:若A B , B C , A C( 2)空Ф集是任意集合的子集,是任意非空集合的真子集 .6、含有n个元素的集合 , 它的子集个数共有2n个;真子集有2n– 1 个;非空子集有2n– 1 个 ( 即不空集 ) ;非空的真子集有 2n–2个.7、集合的运算:交集、并集、集( 1)一般地,由所有属于 A 又属于 B 的元素所成的集合, 叫做 A,B 的交集.A B作 A∩ B(作" A 交 B"),即 A∩ B={ x|x ∈A,且 x∈ B}.( 2)一般地,于定的两个集合A,B 把它所有的元素并在一起所成的集合,A B叫做 A,B 的并集.作 A∪ B(作" A 并 B"),即 A∪ B={ x|x ∈ A,或 x ∈B}.( 3)若 A 是全集 U 的子集,由 U 中不属于 A 的元素构成的集合,C U AA 叫做 A 在 U中的集,作C U A C U A x | x U ,且 x A,注:集合的情况,不要忘了A的情况。

高一数学必修1-5知识清单

高一数学必修1-5知识清单

高一数学知识清单数学知识:代数 几何 统计1-1:集合与函数的概念 1-2:基本初等函数2-1:空间几何体 2-2:立体几何 2-3:直线与方程 2-4:圆与方程3-1:算法初步 3-2:统计 3-3:概率4-1:三角函数 4-2:平面向量 4-3:三角恒等变换5-1:解三角形 5-2:数列 5-3:不等式数学描述:文字(通俗易懂) 图形(形象直观) 符号(简洁抽象)代数部分:⎪⎩⎪⎨⎧反比,三角,指对幂),函数(一次,二次,集合间元素对应:映射减,乘,除,方,开方集合内元素运算:加,运算关系表示元素构成集合:概念必修1—第1章:集合与函数的概念一、元素与集合1、集合的含义: 研究对象统称为元素;元素组成的总体叫做集合。

2、元素的性质:确定性、互异性、无序性。

3、集合的表示:列举法、描述法。

4、集合的图示:数轴、Venn 图。

5、集合的分类:空集、有限集、无限集。

6、元素与集合的关系:属于、不属于。

7、集合与集合的关系:相等、包含(子集 真子集)。

8、集合与集合的运算:并集、交集、补集。

二、映射与函数 1、映射(1)文字描述:设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称B A f →:为从集合A 到集合B 的一个映射。

(2)图形理解:(3)符号表示:B A f →: “f (对应关系) A (原象) B (象)” 2、函数(集合为数集的映射)设A 、B 是两个非空的数集,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数。

记作 A x x f y ∈=),( (1)域:定义域: A x 的取值范围自变量,定义域既要有数学意义又要有物理意义。

值域: {}的子集。

,它是集合|构成的集合函数值B A x x f x f ∈,)( )((2)表示方法:解析式 图象法 列表法(3)性质:单调性,奇偶性,最值(注意定义域内的存在性)。

数学必修一到必修五知识点总结

数学必修一到必修五知识点总结

数学必修一到必修五知识点总结必修一:集合:集合的概念、表示方法(自然语言法、列举法、描述法、图示法)、集合的分类(有限集、无限集、空集)、集合间的关系(子集、真子集、集合相等)。

函数:函数的概念、函数的表示方法(解析法、列表法、图象法)、函数的性质(单调性、奇偶性、周期性)、反函数、分段函数。

指数函数与对数函数:指数函数的概念、性质、图象;对数函数的概念、性质、图象;指数函数与对数函数的关系。

必修二:立体几何初步:柱、锥、台、球的结构特征;空间几何体的表面积与体积。

平面解析几何初步:平面直角坐标系的概念;直线的方程(点斜式、斜截式、一般式);圆的方程;直线与圆、圆与圆的位置关系。

必修三:算法初步:算法的概念、表示方法(流程图、伪代码)、基本算法(顺序、选择、循环)。

统计:数据的收集与整理、数据的描述(平均数、中位数、众数、方差)、数据的推断(抽样、回归分析)。

概率:随机事件的概念、概率的计算方法(古典概型、几何概型)、随机变量及其分布。

必修四:三角函数:三角函数的概念、性质、图象;三角函数的诱导公式;三角函数的和差化积、积化和差公式;三角函数的倍角公式、半角公式。

平面向量:向量的概念、表示方法;向量的运算(加法、减法、数乘、向量积);向量的应用(力的合成与分解、速度的合成与分解)。

必修五:解三角形:正弦定理、余弦定理;三角形的面积公式;三角形的解法(已知两边及夹角、已知三边、已知两边及一边的对角)。

数列:数列的概念、表示方法;等差数列的概念、性质、通项公式、前n 项和公式;等比数列的概念、性质、通项公式、前n项和公式;数列的极限。

不等式:不等式的性质;一元二次不等式的解法;绝对值不等式的解法;简单的不等式组的解法。

以上是数学必修一到必修五的主要知识点总结,具体的学习内容可能因教材版本、学校要求等因素而有所不同。

在学习过程中,建议结合教材、课堂讲解、练习册等多种资源进行学习,及时巩固和复习所学内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学常用公式及结论大全(新课标)必修11、集合的含义与表示一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。

它具有三大特性:确定性、互异性、无序性。

集合的表示有列举法、描述法。

描述法格式为:{元素|元素的特征},例如},5|{N x x x ∈<且2、常用数集及其表示方法(1)自然数集N (又称非负整数集):0、1、2、3、…… (2)正整数集N *或N + :1、2、3、…… (3)整数集Z :-2、-1、0、1、……(4)有理数集Q :包含分数、整数、有限小数等 (5)实数集R :全体实数的集合 (6)空集Ф:不含任何元素的集合 3、元素与集合的关系:属于∈,不属于∉例如:a 是集合A 的元素,就说a 属于A ,记作a ∈A 4、集合与集合的关系:子集、真子集、相等 (1)子集的概念如果集合A 中的每一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集(如图1),记作B A ⊆或A B ⊇.若集合P 中存在元素不是集合Q 的元素,那么P 不包含于Q , 记作Q P ⊄(2)真子集的概念若集合A 是集合B 的子集,且B 中至少有一个元素不属于A,B 的真子集(如图2). A ≠⊂B 或B ≠⊃A .(3)集合相等:若集合A 中的元素与集合B 中的元素完全相同则称集合A 等于集合B,记作A=B.B A A B B A =⇔⊆⊆,5、重要结论(1)传递性:若B A ⊆,C B ⊆,则C A ⊆(2)空Ф集是任意集合的子集,是任意非空集合的真子集.6、含有n 个元素的集合,它的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个(即不计空集);非空的真子集有2n–2个.7、集合的运算:交集、并集、补集(1)一般地,由所有属于A 又属于B 的元素所组成的集合,叫做A,B 记作A ∩B (读作"A 交B "),即A ∩B={x |x ∈A ,且x ∈B }.图1)或 (图2)(2)一般地,对于给定的两个集合A,B集.记作A ∪B (读作"A 并B "),即A ∪B={x |x ∈A ,或x∈B }.(3)若A 是全集U 的子集,由U 中不属于A 的元素构成的集合, 叫做A 在U 中的补集,记作AC U ,{}A ,U |A C U ∉∈=x x x 且注:讨论集合的情况时,不要发遗忘了Φ=A 的情况。

8、映射观点下的函数概念如果A ,B 都是非空的数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作y=f(x),其中x ∈A ,y ∈B.原象的集合A 叫做函数y=f(x)的定义域,象的集合C (C ⊆B )叫做函数y=f(x)的值域.函数符号y=f(x)表示“y 是x 的函数”,有时简记作函数f(x).9、分段函数:在定义域的不同部分,有不同的对应法则的函数。

如⎩⎨⎧--+=3122x x y 00≤>x x 10、求函数的定义域的原则:(解决任何函数问题,必须要考虑其定义域)①分式的分母不为零;01,11:≠--=x x y 则如 ②偶次方根的被开方数大于或等于零;05,5:≥--=x x y 则如 ③对数的底数大于0且不等于1;10),2(log :≠>-=a a x y a 且则如④对数的真数大于0;02),2(log :>--=x x y a 则如⑤指数为0的底不能为零;xm y )1(:-=如,则01≠-m 11、函数的奇偶性(在整个定义域内考虑)(1)奇函数满足)()(x f x f -=-, 奇函数的图象关于原点对称; (2)偶函数满足)()(x f x f =-, 偶函数的图象关于y 轴对称;注:①具有奇偶性的函数,其定义域关于原点对称; ②若奇函数在原点有定义,则0)0(=f③根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

12、函数的单调性(在定义域的某个区间内考虑)当21x x <时,都有)()(21x f x f <,则)(x f 在该区间上是增函数,图象从左到右上升; 当21x x <时,都有)()(21x f x f >,则)(x f 在该区间上是减函数,图象从左到右下降。

函数)(x f 在某区间上是增函数或减函数,那么说)(x f 在该区间具有单调性,该区间叫做单调(增/减)区间13、一元二次方程20ax bx c ++=(0)a ≠(1)求根公式:aac b b x 2422,1-±-= (2)判别式:ac b 42-=∆(3)0>∆时方程有两个不等实根;0=∆时方程有一个实根;0<∆时方程无实根。

(4)根与系数的关系——韦达定理:a b x x -=+21,acx x =⋅2114、二次函数:一般式c bx ax y ++=2(0)a ≠; 两根式))((21x x x x a y --=(0)a ≠(1)顶点坐标为24(,)24b ac ba a--;(2)对称轴方程为:x=a b 2-; (3)当0>a 时,图象是开口向上的抛物线,在x=a b2-处取得最小值aac 44当0<a 时,图象是开口向下的抛物线,在x=ab2-处取得最大值a b ac 442-(4)二次函数图象与x 轴的交点个数和判别式∆的关系:0>∆时,有两个交点;0=∆时,有一个交点(即顶点);0<∆时,无交点。

15、函数的零点使0)(=x f 的实数0x 叫做函数的零点。

例如10-=x 是函数1)(2-=x x f 的一个零点。

注:函数()x f y =有零点 ⇔ 函数()x f y =的图象与x 轴有交点 ⇔ 方程()0=x f 有实根 16、函数零点的判定:如果函数()x f y =在区间[]b a ,上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f 。

那么,函数()x f y =在区间()b a ,内有零点,即存在()()0,,=∈c f b a c 使得。

17、分数指数幂 (0,,a m n N *>∈,且1n >) (1)n m nm a a=.如233x x =;(2) nmnm nm a a a11==-. 如2331-=xx ;(3)na =;(4)当n a =; 当n ,0||,0a a a a a ≥⎧==⎨-<⎩.18、有理指数幂的运算性质(Q s r a ∈>,,0) (1)sr sraa a +=⋅; (2)rss r a a =)(; (3)rrrb a ab =)(19、指数函数xa y =(0>a 且1≠a ),其中x 是自变量,a 叫做底数,定义域是R20、若N a b=,则叫做以为底N 的对数。

记作:b N a =log (1,0≠>a a ,0>N )其中,a 叫做对数的底数,N 叫做对数的真数。

注:指数式与对数式的互化公式:log b a N b a N =⇔=(0,1,0)a a N >≠> 21、对数的性质(1)零和负数没有对数,即N a log 中0>N ;(2)1的对数等于0,即 01log =a ;底数的对数等于1,即1log =a a 22、常用对数N lg :以10为底的对数叫做常用对数,记为:NN lg log 10=自然对数N ln :以e(e=2.71828…)为底的对数叫做自然对数,记为:N N e ln log = 23、对数恒等式:N aNa =log24、对数的运算性质(a >0,a ≠1,M >0,N >0)(1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈ (注意公式的逆用)25、对数的换底公式 log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论①或1log log a b b a =; ②log log m na a nb b m=.26、对数函数x y a log =(0>a ,且1≠a ):其中,x 是自变量,a 叫做底数,定义域是),0(+∞1>a10<<a图像性质定义域:(0, ∞)值域:R 过定点(1,0) 增函数减函数 取值范围0<x<1时,y<0 x>1时,y>00<x<1时,y>0 x>1时,y<027、指数函数xa y =与对数函数x y a log =互为反函数;它们图象关于直线x y =对称.1y1xx28、幂函数αx y =(R ∈α),其中x 是自变量。

要求掌握3,2,1,21,1-=α这五种情况(如下图) 29、幂函数αx y =的性质及图象变化规律:(Ⅰ)所有幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(Ⅱ)当0α>时,幂函数的图象都通过原点,并且在区间),0[+∞上是增函数.必修230、边长为a 的等边三角形面积243a S =∆正 31、柱体体积:h 底柱=S V , 锥体体积:h 锥底=S 31V球表面积公式:24R S π=球, 球体积公式:334R V π=(上述四个公式不要求记忆)32、四个公理:① 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

② 过不在一条直线上的三点,有且仅有一个平面。

③ 如果两个不重合的平面有一个公共点,那么它们有且仅有一条过该点的公共直线。

④ 平行于同一直线的两条直线平行(平行的传递性)。

33、等角定理:空间中如果两个角的两边对应平行,那么这两个角相等或互补(如图)34、两条直线的位置关系:⎪⎩⎪⎨⎧⎩⎨⎧异面直线 相交平行共面直线 直线与平面的位置关系:(1)直线在平面上;(2)直线在平面外(包括直线与平面平行,直线与平面相交) 两个平面的位置关系:(1)两个平面平行;(2)两个平面相交 35、直线与平面平行:定义 一条直线与一个平面没有公共点,则这条直线与这个平面平行。

判定 平面外一条直线与此平面内的一直线平行,则该直线与此平面平行。

性质 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

36、平面与平面平行:1 2 3 :(不同在任何一个平面内的两条直线,没有公共点) :(在同一平面内,没有公共点) :(在同一平面内,有一个公共点)定义 两个平面没有公共点,则这两平面平行。

判定 若一个平面内有两条相交直线与另一个平面平行,则这两个平面平 行。

性质 ① 如果两个平面平行,则其中一个面内的任一直线与另一个平面平行。

相关文档
最新文档